第12章 量子物理

第12章 量子物理
第12章 量子物理

第12章 量子物理

习 题

12.1(1)推导实物粒子德布罗意波长与粒子动能Ek和静止质量m0的关系。

(2)证明时,λ;时,

12.2 设粒子静质量为m0、带电为q、被电压为U的电场加速,试导出一般形式的表示相对论粒子的德布罗意波长与电压的关系式。

12.3 要在电子显微镜中获得与使用0.2MeVg射线的γ射线显微镜相同的分辨本领,需对电子加速的加速电压为多大?

12.4 计算电子经过U1=100V和U2=104V的电压加速后的德布罗意波长λ1和λ2分别是多少?

12.5 用干涉仪确定一个宏观物体的位置精确度为±10-12m。如果我们以此精度测得一质量为0.50kg的物体的位置,根据不确定关系,它的速度不确定量多大?

12.6 一个质量为m的粒子,约束在长度为L的一维线段上。试根据不确定关系估算这个粒子所能具有的最小能量的值。

由此,试计算在直径10-14m的核内质子和中子的最小动能。

12.7 如果一个电子处于原子某能态的时间为10-8s,这个原子的这个能态的能量的最小不确定量是多少?

设电子从上述能态跃迁到基态,对应的能量为3.39eV,试确定所辐射光子的波长及这波长的最小不确定量。

12.8 证明若粒子位置不确定量约等于它的德布罗意波长时,则其速度的不确定量约等于它的速度。

12.9 由不确定关系证明,对于自由粒子,不确定关系还可写成

其中λ为该粒子的德布罗意波长。

12.10 一维无限深方势阱的宽度为a,试用不确定关系估算其中质量为m的粒子的零点能量。

12.11 量为m的粒子被限制在宽度为a的一维无限深方势阱中,计算在n=5的能级上,粒子出现概率密度最大的位置。当n→∞时,说明什么问题。

12.12用气体放电时高速电子撞击氢原子的方法,激发基态氢原子使其发光。如果高速电子的能量为12.2eV,试求氢原子被激发后所能发射的光的波长。

12.13 基态氢原子被外来单色光激发后发出的巴尔末系中,仅观察到两条光谱线。试求这两条谱线的波长及外来光的频率。

12.14 已知巴尔末系的最短波长是3650?。由此求里德堡常数。

12.15 对处于第一激发态(n=2)的氢原子,如果用可见光(3800 ?~7600 ?)照射,能否使之电离?

12.16 氢原子处于基态时,根据玻尔理论求电子的(1)量子数,(2)轨道半径,(3)角动量和线动量,(4)绕行频率、角速度和线速度,(5)所受的力和加速度,(6)动能、势能和总能量,各是多少?

12.17 原则上讲,玻尔理论也适用于太阳系:地球相当于电子,太阳相当于核,而万有引力相当于库仑电力。

(1)求出地球绕太阳运动的允许半径的公式;

(2)地球运行半径实际上是1.50×1011m,和此半径对应的量子数n多大?

(3)地球实际的轨道和它的下一个较大的可能轨道的半径差值多大?

12.18 求出能够占据一个d分壳层的最大电子数,并写出这些电子的ml和ms值。

12.19 写出钾原子中电子的排列方式。

部分习题答案

12.1 (1)

12.3 用非相对论关系,U=39.1kV,

用相对论关系,U=37.8kV.

12.4 1.23?(非相对论);0.127?(相对论)

12.5 2.11×10-22m/s

12.6 3.4×10-14J

12.7 0.659×10-7eV, 3670?, 7.13×10-5?

12.10

12.11 a/10, 3a/10, 5a/10, 7a/10, 9a/10

12.12 1219?, 1028?, 6577?

12.13 6563?, 4862?, 3.08?×1015Hz

12.14 1.096×107m-1

12.15 不能。

12.16 (1)1,(2)0.531?,(3)1.06×10-34kg·m2s-1,1.

99×10-24kg·ms-1,

(4)6.58×1015rev·s-1,4.13×1016rad·s-1,2.18×106m·s-1,

(5)8.24×10-8N,8.95×1022m·s-2,(6)13.6eV,-27.2eV,-13.6eV 12.17 (1)

(2)2.53×1074, (3)1.19×10-63m

大学物理学下册第15章

第15章 量子物理 一 选择题 15-1 下列物体中属于绝对黑体的是[ ] (A) 不辐射可见光的物体 (B) 不辐射任何光线的物体 (C) 不能反射可见光的物体 (D) 不能反射任何光线的物体 解:选(D)。绝对黑体能够100%吸收任何入射光线,因而不能反射任何光线。 15-2 用频率为υ的单色光照射某种金属时,逸出光电子的最大动能为k E ;若改用频率为2υ的单色光照射此金属,则逸出光电子的最大初动能为[ ] (A) k 2E (B) k 2h E υ- (C) k h E υ- (D) k h E υ+ 解:选(D)。由k E h W υ=-,'2k E h W υ=-,得逸出光电子的最大初动能 'k ()k E hv hv W hv E =+-=+。 15-3 某金属产生光电效应的红限波长为0λ,今以波长为λ(0λλ<)的单色光照射该金属,金属释放出的电子(质量为e m )的动量大小为[ ] (A) /h λ (B) 0/h λ (C) (D) 解:选(C)。由2e m 012 hv m v hv =+,2e m 012hc hc m v λλ= +,得m v = , 因此e m p m v == 。 15-4 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动速率之比13/v v 是[ ] (A) 1/3 (B) 1/9 (C) 3 (D) 9

解:选(C)。由213.6n E n =-,n 分别代入1和3,得22 1122331329112mv E E mv ===,因 此 1 3 3v v =。 15-5 将处于第一激发态的氢原子电离,需要的最小能量为[ ] (A) 13.6eV (B) 3.4eV (C) 1.5eV (D) 0eV 解:选(B)。由2 13.6 n E n =- ,第一激发态2n =,得2 3.4eV E =-,设氢原子电离需要的能量为2'E ,当2'20E E +>时,氢原子发生电离,得2' 3.4eV E >,因此最小能量为3.4eV 。 15-6 关于不确定关系x x p h ??≥有以下几种理解,其中正确的是[ ] (1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定 (3) 粒子的动量和坐标不可能同时确定 (4) 不确定关系不仅适用于电子和光子,也适用于其他粒子 (A) (1), (2) (B) (2), (4) (C) (3), (4) (D) (4), (1) 解:选(C)。根据h p x x ≥???可知,(1)、(2)错误,(3)正确;不确定关系适用于微观粒子,包括电子、光子和其他粒子,(4)正确。 二 填空题 15-7 已知某金属的逸出功为W ,用频率为1υ的光照射该金属能产生光电效应,则该金属的红限频率0υ=________,截止电势差c U =________。 解:由0W hv =,得h W v = 0;由21e m 12hv m v W =+,而2 e m c 12m v eU =,所以 1c hv eU W =+,得1c h W U e υ-= 。

大学物理第13章 量子物理习题解答(1)

习题 13-1 设太阳是黑体,试求地球表面受阳光垂直照射时每平方米的面积上每秒钟得到的辐射能。如果认为太阳的辐射是常数,再求太阳在一年内由于辐射而损失的质量。已知太阳的直径为1.4×109 m ,太阳与地球的距离为1.5×1011 m ,太阳表面的温度为6100K 。 【解】设太阳表面单位面积单位时间发出的热辐射总能量为0E ,地球表面单位面积、单位 时间得到的辐射能为1E 。 ()484720 5.671061007.8510W/m E T σ-==??=? 22 014π4πE R E R →=太阳地球太阳 () () ()2 92 3210 2 110.7107.85 1.7110W/m 1.510R E E R →?==? =??太阳 2 地球太阳 太阳每年损失的质量 ()() ()79 01722 87.851040.710365243600 1.6910kg 3.010E S t m c π?????????===??太阳 13-2 用辐射高温计测得炉壁小孔的辐出度为22.8 W/cm 2,试求炉内温度。 【解】由4 0E T σ=得 ()1/4 1/4 40822.810 1.416 K 5.6710E T σ-?????=== ? ? ??? ?? 13-3 黑体的温度16000T = K ,问1350λ= nm 和2700λ= nm 的单色辐出度之比为多少?当黑体温度上升到27000T =K 时,1350λ= nm 的单色辐出度增加了几倍? 【解】由普朗克公式 ()5 /1,1 hc k T T e λρλλ-∝- 348 239 11 6.6310310 6.861.3810600035010hc k T λ---???==???? 2112 3.43 5.88hc hc k T k T λλ==

第15章量子物理指导

第15章 量子物理基础 内容提要 1.黑体辐射基本定律和普朗克量子假设 黑体:能完全吸收入射辐射的物体,有最大的发射本领。 黑体辐射的两条实验规律: (1) 斯忒藩一玻尔兹曼定律:4 )(T T M σ= 式中4 2 8 1067.5---???=k m W σ称为斯忒藩一玻尔兹曼常数。 (2) 维思位移定律: b T m =λ 式中k m b ??=-310898.2,称为维恩常数,公式表明峰值波长λm 随温度升高向短波方向移动 (3) 普朗克量子假设 黑体是由带电谐振子组成,这些谐振子辐射电磁波并和周围的电磁场交换能量;谐振子的能量是最小能量νεh =的整数倍。νεh =称为能量子,s J h ??=-34 1063.6称 为普朗克常量。 2.光电效应的实验规律 实验发现,光电效应表现出四条规律: (1) 入射光的频率一定时,饱和光电流与光强成正比; (2) 光电子的最大初动能与入射光的频率成线性关系,与入射光的强度无关; (3) 光电效应存在一个红限0ν,如果入射光的频率0νν<,便不会产生光电效应 (4) 光电流与光照射几乎是同时发生的,延迟时间在10-9s 以下。 3.光量子假设与爱因斯坦方程 (1) 爱因斯坦认为:光是由以光速运动的光量子组成,在频率为ν的光波中,光子的能量

νεh = 光子的静质量为零,动量为 λ h p = (2) 入射的光子被电子吸收使电子能量增加νh ,电子把一部分能量用于脱离金属表面时所需要的逸出功,另一部分为逸出电子的初动能。即 A mv h m +=2 2 1ν 4.康普顿效应 康普顿效应的实验规律 (1) 散射线中除了和原波长0λ相同的谱线外,还有一种波长0λλ>。 (2) 波长差0λλλ-=?随散射角θ的增大而增加。其增加量为 2 sin 2200θλλλc m h = -=? (3) 0λλλ-=?与散射物质无关,但散射光中原波长0λ的强度随散射物的原子序数 增加而增大,而λ的光强则相对减小。 利用光量子理论对康普顿效应能给予很好的解释。康普顿效应进一步证实了光的量子性。 4.光的波粒二象性 光既具有波动性又具有粒子性。光的波动性可以用波长λ和频率ν描述,光的粒子性可以光子的质量、能量和动量描述,其关系可以表示为: 光子能量νεh = 光子动量 λ h P = 光子质量 2 c h m ν = 光子的静质量为零。 5.玻尔的氢原子理论 (1) 氢原子光谱的实验规律 实验发现,氢原子光谱系的波数可以写成 )1 1( 1 ~22n m R -==λ ν

第十二章-量子物理学

第十二章 量子物理学 §12.1 实物粒子的波粒二象性 一、 德布罗意物质波假设 νλ h E h P == h E P h = = νλ 二、 德布罗意物质波假设的实验证明 1、 戴维森——革未实验 2、 电子单缝实验 例1、运动速度等于300K 时均方根速率的氢原子的德布罗意波长是 1.45A 0 。质量M=1Kg ,以速率v=1cm/s 运动的小球的德布罗意波长是 6.63×10-14A 0 。(h=6.63×10-34J.s 、K=1.38×10-23J.K 、m H =1.67×10-27kg ) 解:(1) m k T v 32= 045.13A k Tm h mv h p h ==== λ (2)0191063.6A Mv h p h -?=== λ 例2、若电子的动能等于其静止能量,则其德布罗意波长是康谱 顿波长的几倍? 解:电子的康谱顿波长为c m h e c =λ,罗意波长为p h = λ 由题知:c v c m c m E k 2 32)1(2020= ?=?=-=γγ c m h v m h p h e e 2 3 2=== γλ,故 3 1= c λλ 三、 德布罗意物质波假设的意义 四、 电子显微镜 例子、若α粒子(电量为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动,则α粒子的德布罗意波长是:[A] (A )h/(2eRB) . (B )h/(eRB) .

(C)1/(2eRBh).(D)1/(eRBh).例2、如图所示,一束动量为p的电子,通过缝宽为a的狭缝,在距离狭缝为R处放置一荧光屏,屏上衍射图样中央最大的宽度d等于:[D] (A)2a2/R.] (B)2ha/p. (C)2ha/(Rp). (D)2Rh/(ap).

对量子力学的认识

对量子力学的认识 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特征,如不确定性、量子涨落、波粒二象性等,其基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。量子力学的关键现象有黑体辐射、光电效应、原子结构和物质衍射,前人正是在在这些现象的基础上建立了量子力学。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。 黑体是一个理想化了的物体,它可以吸收所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。但从经典物理学出发得出的有关二者间关系的公式(维恩公式和瑞利公式)与实验数据不符(被称作“紫外灾变”)。1900年10月,马克斯·普朗克通过插值维恩公式和瑞利公式,得出了一个于实验数据完全吻合的黑体辐射的普朗克公式。但是在诠释这个公式时,通过将物体中的原子看作微小的量子谐振子,他不得不假设这些原子谐振子的能量,不是连续的,而是离散的。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。 1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹和菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子理论,来解释这个现象。光的量子的能量在光电效应中被用来将金属中的电子射出和加速电子。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。照射时间有多长,都不会发生光电效应,而入射光的频率高于极限频率时,即使光不够强,当它射到金属表面时也会观察到光电子发射。 20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(来曼系)、一个可见光系列(巴耳麦系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。1913年,尼尔斯·玻尔提出了以他名字命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量的轨道上运转。假如一个电子,从一个能量比较高的轨道,跃到一个能量比较低的轨道上时,它发射的光的频率为通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+, Li2+, Be3+ 等。 1919年克林顿·戴维森等人,首次成功地使用电子进行了衍射试验,路易·德布罗意由此提出粒子拥有波性,其波长与其动量相关。简单起见这里不详细描写戴维森等人的试验,

(完整版)南华物理练习第13章答案

第十三章早期量子论和量子力学基础 练习一 选择题 1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B)吸收了辐 射在它上面的全部能量; (C)不辐射能量; (D)只吸收不辐射能量。 2. 一绝对黑体在温度 T i = 1450K 时,辐射峰值所对应的波长为 1,当温度降为 725K 时, 辐射峰值所对应的波长为 2,则1/ 2为(D ) 3. 一般认为光子有以下性质( A ) (1)不论在真空中或介质中的光速都是 c ; (2)它的静止质量为零;(3)它的动量为h v /c 2; (4)它 的动能就是它的总能量;(5)它有动量和能量,但没有质量。 以上结论正确的是 (A ) (A) ( 2) (4); (B) (3) (4) ( 5); (C) (2) (4) (5); (D) ( 1) (2) ( 3)。 4. 已知某单色光 照射到一金属表面产生了光电效应,若此金属的逸出电势是 U b (使电子从 二. 填空题 1. 用辐射高温计测得炉壁小孔的辐射出射度为 2 2.8 W/cm 2,则炉内的温度为 1.416X 103K o 2. 设太阳表面的温度为 5800K ,直径为1 3.9 X 108m 如果认为太阳的辐射是常数,表面积 保持不变,则太阳在一年内辐射的能量为 1.228X 1b 34 j ,太阳在一年内由于辐射而损失 的质量为 1.3647 X 1b 17 kg o 3. 汞的红限频率为 1.09 X 1015H Z ,现用=2000?的单色光照射,汞放出光电子的最大初速 度 V b = 7.73 105 m/s ,截止电压"=1.7V o 4. 如果入射光的波长从 400nm 变到300nm 则从表面发射的光电子的遏止电压 增大(增大、 减小)。 三. 计算题 1. 星星可以看作绝对黑体, 今测得太阳辐射所对应的峰值 (A) ,2 ; (B) 1/ . 2 ; (C) 2 ; (D) 1/2。 金属逸出需做功eU b ),则此单色光的波长 必须满足:(A ) hc hc (A) ; (B) elb elb (C) eU b hc , (D) eU0 o hc

大学物理 上册(第五版)重点总结归纳及试题详解第十六章 从经典物理到量子物理

第十六章 从经典物理到量子物理 一、基本要求 1. 了解描述热辐射的几个物理量及绝对黑体辐射的两条实验规律。 2. 理解普朗克的“能量子”假设的内容,了解普朗克公式。 3. 理解光电效应和康普顿效应的实验规律,以及爱因斯坦的光子理论对 这两个效应的解释。 4. 理解爱因斯坦光电效应方程;红限概念和康普顿散射公式。 5. 理解光的波粒二象性以及光子的能量,质量和动量的计算。 6. 掌握氢原子光谱的实验规律,理解玻尔氢原子理论的三条基本假设的内容;并由三条假设出发,推导出氢原子的光谱规律。 二、基本内容 1. 黑体辐射 (1)绝对黑体 在任何温度下都能全部吸收照射在其上的任何波长的电磁波的物体,称为绝对黑体。绝对黑体是一种理想模型,其在任何温度下对任何波长入射辐射能的吸收比均为1。 (2)黑体辐射的实验规律 斯特藩-玻尔兹曼定律 40)(T T M σ= 式中)(0T M 为绝对黑体在一定温度下的辐射出射度,σ=5.67×10-8W ·m -2·K -1为斯特藩常量。 维恩位移定律 b T m =λ 式中m λ为相应于)(0T M λ曲线极大值的波长,31089.2-?=b m ·K (3)普朗克的能量子假说 辐射黑体是由原子分子组成的。这些原子和分子的振动可看作线性谐振子,这些谐振子的能量只能是某一最小能量ε的整数倍,即ε,2ε,3ε...,n ε,

物体发射或吸收的能量必须是这个最小单元的整数倍。ε称为能量子,n 为正整数,叫量子数。在黑体辐射理论中,能量子ε=hv ,其中h 是普朗克常量,v 是特定波长的辐射所对应的频率。 (4)普朗克黑体辐射公式 )(0T M λ= 1 1 25 2 -?T k hc e hc λλ π 式中h 为普朗克常量,k 为玻尔兹曼常量,c 为真空中光速。由此公式可推导出斯特藩-玻尔兹曼定律和维恩位移定律,而且在低频和高频情况下可分别化为瑞利-金斯公式和维恩公式。 2. 光电效应 金属及其化合物在电磁辐射下发射电子的现象称为光电效应。 (1)光电效应的实验规律 ① 单位时间内逸出金属表面的光电子数与入射光强成正比。 ② 光电子的最大初动能随入射光的频率上升而线性增大,与入射光强无关。 ③ 如果入射光的频率低于该金属的红限,则无论入射光的光强多大,都不会使这种金属产生光电效应。 ④ 光电效应是瞬时的。只要入射光的频率大于该金属的红限,当光照射到这种金属表面时,几乎立即产生光电子,而与入射光强无关。 对光电效应经典理论遇到困难,主要表现在三个方面:①光电子最大初动 能问题;②光电效应的红限问题;③发生光电效应的时间问题。 (2)爱因斯坦的光子理论 爱因斯坦认为光束是以光速c 运动的粒子流 ,其中每一个粒子携带的能量为hv ,这些粒子称为光量子。光子具有波粒二象性。 光子的能量 hv ε= 光子的动量 λ h p = 其中ε,p 表示光子的粒子性;v ,λ表示光子的波动性。 光子的质量 2 2hv h m c c c ε λ = = = 光子的静止质量 00m =

第二章 量子物理学基础

第二章 量子物理学基础 思 考 题 2.1 什么是光的波粒二象性? 2.2 有人认为微观客体的波动性表示粒子运动的轨迹是一条正弦或余弦的曲线,这种看法对吗? 2.3 对于运动着的宏观实物粒子,德布罗意关系式也适用,为什么我们不考虑它们的波动性? 2.4 有哪些实验证实了微观粒子的波动性? 2.5 德布罗意波和经典波有何区别? 2.6 汤姆孙原子模型有什么缺点? 2.9 从经典物理看来,卢瑟福原子的核式模型遇到些什么困难? 2.8 在玻尔的氢原子理论中,势能为负值,而且在数值上比动能大,这个结果有什么含义? 2.9 试根据玻尔的氢原子能级公式,说明当量子数n 增大时,能级怎么变化.能级间的距离怎样变化? 2.10 若氢原于和氦离子都是从4=n 的轨道跃迁到2=n 的轨道,问两个原子发出的光的波长是否相同? 2.11 对应原理的内容是什么? 2.12 试从原子核运动引起的修正这一角度解释里德伯常数的理论值与实验值的区别。 2.13 弗兰克—赫兹实验证明了什么? 1.14 为什么说玻尔理论是半经典半量子的混合?它有什么局限性? 2.15 为什么说波函数是描述粒子的统计行为的一个物理量? 2.16 若) (t z y x ,,,ψ表示波函数,则dxdydz t z y x 2)(,,,ψ和1)(2=???dxdydz t z y x ,,,ψ各表示什么物理意义? 2.17 波函数的标准条件是什么? 2.18 波函数为什么要归一化? 2.19 薛定谔方程在量子力学中的地位怎样?试写出定态薛定谔方程. 2.20 什么是隧道效应? 2.21 描写氢原子中电子的状态需要几个量子数? 习 题 2.1 试求出质量为0.01kg 、速度为s m 10的一个小球的德布罗意波长. 2.2 一个质子从静止开始,通过lkV 的电压受到加速,试求它的德布罗意波长.(质子的质量为 kg 1067.127-?) 2.3 电子和光子的波长都是 A 2,它们的动量和总能量都相等否? 2.4 设卢瑟福散射用的α粒子动能为eV 1068.76?,散射物质是原子序数79=Z 的金箔.试求散射角尹 150=φ所对应的瞄准距离b 多大? 2.5 试计算氢原子帕邢系第二条谱线的波长. 2.6 已知氢原子莱曼系的最长波长是 A 1216,里德伯常量是多少? 2.7 用巴耳末公式计算巴耳末系中三条最长的波长. 2.8 将氢原子从1=n 激发到4=n 的能级. (1)计算氢原子所吸收的能量; (2)当它从4=n 的能级向低能级跃迁时,可能发出哪些波长的光子(17m 10097.1-?取R )?画出能级跃迁图.

第十七章 量子物理基础习题解

第十七章 量子物理基础 17–1 用辐射高温计测得炉壁小孔的辐射出射度为22.8W/cm 2,则炉内的温度为 。 解:将炉壁小孔看成黑体,由斯特藩—玻耳兹曼定律()4T T M B σ=得炉内的温度为 34 8 44 10416.11067.5108.22) (?=??==-σ T M T B K 17–2 人体的温度以36.5?C 计算,如把人体看作黑体,人体辐射峰值所对应的波长为 。 解:由维恩位移定律b T =m λ得人体辐射峰值所对应的波长为 33m 10363.95.30910898.2?=?== -T b λnm 17–3 已知某金属的逸出功为A ,用频率为1ν的光照射该金属刚能产生光电效应,则该金属的红限频率0ν= ,遏止电势差U c = 。 解:由爱因斯坦光电效应方程W m h += 2 m 2 1v ν,A W =,当频率为1ν刚能产生光电效应,则02 12 m =v m 。故红限频率 h A /0=ν 遏止电势差为 ()01011ννννν-=-=-= e h e h e h e W e h U c 17–4 氢原子由定态l 跃迁到定态k 可发射一个光子,已知定态l 的电离能为0.85eV ,又已知从基态使氢原子激发到定态k 所需能量为10.2eV ,则在上述跃迁中氢原子所发射的光子的能量为 eV 。 解:氢原子的基态能量为6.130-=E eV ,而从基态使氢原子激发到定态k 所需能量为 E ?=10.2eV ,故定态k 的能量为 eV 4.32.106.130-=+-=?+=E E E k 又已知eV 85.0-=l E ,所以从定态l 跃迁到定态k 所发射的光子的能量为 eV 55.2=-=k l E E E 17–5 一个黑体在温度为T 1时辐射出射度为10mW/cm 2,同一黑体,当它的温度变为2T1时,其辐射出射度为[ ]。 A .10mW/cm 2 B .20mW/cm 2 C .40mW/cm 2 D .80mW/cm 2 E .160mW/cm 2 解:由斯特藩—玻耳兹曼定律,黑体的总辐射能力和它的绝对温度的四次方成正比,即 ()4T T M B σ= 故应选(E )。

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

2020年高中物理竞赛名校冲刺讲义设计—第十二章 量子物理:光的量子性

2020高中物理竞赛 江苏省苏州高级中学竞赛讲义 第十二章 量子物理 §12-2 光的粒子性 一、光电效应的实验规律 1 光电效应(photoelectric effect) 光电效应:当光照射到金属表面上时,电子从金属表面逸出的现象叫光电效应现象。 逸出的电子称光电子(photoelectron)。 2 实验装置 GD 为光电管; 当A 接正极、K 接负极,光通过石英 窗口照射阴极K ,光电子从阴极表面逸出。 光电子在电场加速下向阳极A 运动,形成 光电流。 当K 接正极、A 接负极,光电子离开K 后, 将受反向电场阻碍作用,当反向电压为U 0时, 从K kmax 逸出的最大动能的电子刚好不能到达A, 电路中没有电流。此时U 0称为截止电压。有 3 实验规律 1) 饱和光电流强度 I S ∝ 入射光强 当光电流达到饱和时,阴极 K 上 逸出的光电子全部飞到了阳极A 上。 单位时间内从金属表面逸出的光电子数与入射光强成正比。 2)光电子的最大初动能随入射光频率的增加而增加,与入射光强无关。 c max 0 k E eU =

当电压U = 0 时,光电流并不为零; 只有当两极间加了反向电压 U = -U c < 0时,光电流才为零。 U c :截止电压(cutoff voltage) 表明:从阴极逸出的光电子必有初动能。 设u m 为光电子的最大初速度,则有最大初动能 其中m 和e 分别为电子的质量和电量。 显然,光电子的最大初动能与入射光强无关。 3) 截止电压U c 与入射光频率 ν 呈线性关系 U c =K ν - U 0 K :普适常数 (即直线斜率) 代入得 4)只有当入射光频率 ν 大于一定的红限频率时,才会产生光电效应。 令 代入可得 当 ν = ν0 时,光电子的最大初动能为零 若 ν < ν0 时,则无论光强多大都没有光电子产生,不发生光电效应。 ν0 称截止频率(cutoff frequency)或红限频率。 5)光电效应是瞬时发生的 只要入射光频率 ν > ν0,无论光多微弱,从光照射阴极到光电子逸出,驰豫时间不超过10- 9 s 。 二、经典物理学所遇到的困难 按照光的经典电磁理论:光波的能量与频率无关,电子吸收的能量也与频率无关,更不存在截止频率;光波的能量分布在波面上,电子积累能量需要一段时间,光电效应不可能瞬时发生! 1/2(m υm 2 )= eU c U -2 01()2 m mv e k U ν=-00U k ν= 2 000 1()2m eU mv ννν=-

大学物理习题答案 第17章 量子物理学基础

第17章 量子物理学基础 参考答案 一、选择题 1(D),2(D),3(C),4(B),5(A),6(C),7(C),8(C),9(D),10(C) 二、填空题 (1). λ/hc ,λ/h ,)/(λc h . (2). 2.5,4.0×1014 . (3). A /h ,))(/(01νν-e h . (4). π,0 . (5).3/ 1 (6). 1.66×10-33 kg ·m ·s -1 ,0.4 m 或 63.7 mm . (7). 1, 2. (8).粒子在t 时刻在(x ,y ,z )处出现的概率密度. 单值、有限、连续. 1d d d 2 =???z y x ψ (9). 2, 2×(2l +1), 2n 2 . (10). 泡利不相容, 能量最小. 三 计算题 1. 用辐射高温计测得炼钢炉口的辐射出射度为2 2.8 W ·cm -2,试求炉内温度. (斯特藩常量σ = 5.67×10-8 W/(m 2·K 4) ) 解:炼钢炉口可视作绝对黑体,其辐射出射度为 M B (T ) = 22.8 W ·cm -2=22.8×104 W ·m -2 由斯特藩──玻尔兹曼定律 M B (T ) = σT 4 ∴ T = 1.42×103 K 2.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2 . (1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度. (地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4 )) 解: (1) 太阳在单位时间内辐射的总能量 E = 1.37×103×4π(R SE )2 = 3.87×1026 W (2) 太阳的辐射出射度 =π= 2 04S r E E 0.674×108 W/m 2 由斯特藩-玻尔兹曼定律 4 0T E σ= 可得 5872/4 0== σE T K 3.图中所示为在一次光电效应实验中得出的曲线 (1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19 C) 解:(1) 由 A h U e a -=ν 得 e A e h U a //-=ν |U 14 Hz)

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:

011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

(完整版)南华物理练习第13章答案

第十三章 早期量子论和量子力学基础 练 习 一 一. 选择题 1. 内壁为黑色的空腔开一小孔,这小孔可视为绝对黑体,是因为它( B ) (A) 吸收了辐射在它上面的全部可见光; (B) 吸收了辐射在它上面的全部能量; (C) 不辐射能量; (D) 只吸收不辐射能量。 2. 一绝对黑体在温度T 1 = 1450K 时,辐射峰值所对应的波长为λ1,当温度降为725K 时,辐射峰值所对应的波长为λ2,则λ1/λ2为( D ) (A) 2; (B) 2/1; (C) 2 ; (D) 1/2 。 3. 一般认为光子有以下性质( A ) (1) 不论在真空中或介质中的光速都是c ;(2) 它的静止质量为零;(3) 它的动量为h ν/c 2; (4) 它的动能就是它的总能量;(5) 它有动量和能量,但没有质量。 以上结论正确的是 ( A ) (A) (2)(4); (B) (3)(4)(5); (C) (2)(4)(5); (D) (1)(2)(3)。 4. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从 金属逸出需做功eU 0),则此单色光的波长λ必须满足:(A ) (A) 0hc eU λ≤ ; (B) 0hc eU λ≥; (C) 0eU hc λ≤; (D) 0 eU hc λ≥。 二. 填空题 1. 用辐射高温计测得炉壁小孔的辐射出射度为2 2.8W/cm 2,则炉内的温度为 1.416×103K 。 2. 设太阳表面的温度为5800K ,直径为1 3.9×108 m ,如果认为太阳的辐射是常数,表面积保持不变,则太阳在一年内辐射的能量为 1.228×1034 J ,太阳在一年内由于辐射而损失的质量为1.3647×1017 kg 。 3. 汞的红限频率为1.09×1015 Hz ,现用λ=2000?的单色光照射,汞放出光电子的最大初速度0v =5 7.7310 m/s ? ,截止电压U a = 1.7V 。 4. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电压增大(增大、减小)。 三. 计算题 1. 星星可以看作绝对黑体,今测得太阳辐射所对应的峰值波长λm1=5500?,北极星辐射所对应的峰值波长λm2=0.35μm ,求太阳的表面温度T 1和北极星的表面温度T 2 .

大学物理第13章习题解答

第十三章习题解答 1选择题:1B ,2A ,3B ,4A ,5D 2填空题:1,2sin /d πθλ;2,0.45mm ;3,900nm ;4,变密;5,向上;6,向下;7,棱边,保持不变。 3计算题: 1 用λ=500nm 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的棱边是暗纹。若劈尖上面媒质的折射率n 1大于薄膜的折射率n (n =1.5).求: ⑴ 膜下面媒质的折射率n 2与n 的大小关系; (2) 第10条暗纹处薄膜的厚度; ⑶ 使膜的下表面向下平移一微小距离e ?,干涉条纹有什么变化?若e ?=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据? 解:⑴ n 2>n 。因为劈尖的棱边是暗纹,对应光程差为:2 ) 12(2 2λ λ +=+=?k ne , 膜厚e =0处,有k =0,只能是下面媒质的反射光有半波损失 2 λ 才合题意; (2) 3995009 1.5102 22 1.5 n e n λλ-??=? = ==?? mm (因10个条纹只有9个条纹间距) ⑶ 膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=?e μm ,原来第10条暗纹处现对应的膜厚为)100.210 5.1(33 --?+?='?e mm 34 3.5102 1.5212 5.010 n e N λ--'?????===? 现被第21级暗纹占据. 2 ⑴ 若用波长不同的光观察牛顿环,λ1=600nm ,λ2=450nm ,观察到用λ1时的第k 个暗环与用λ2时的第k +1个暗环重合,已知透镜的曲率半径是190cm .求用λ1时第k 个暗环的半径. (2) 又如在牛顿环中用波长为500nm 的第5个明环与用波长为λ2的第6个明环重合,求未知波长λ2. 解: ⑴ 由牛顿环暗环公式:λkR r k = 据题意有 21)1(λλR k kR r +== ,∴ 2 12λλλ-= k ,代入上式得: 2 121λλλλ-=R r =3 1085.1-?=m (2) 用1500λ=nm 照射,51=k 级明环与2λ的62=k 级明环重合,则有: 2)12(2)12(2211λλR k R k r -=-= ∴1 21221251 500409.121261k k λλ-?-==?=-?-nm 3 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由d 1= 1.40×10-2m 变为d 2=1.27×10-2m ,求液体的折射率. 解: 由牛顿环明环公式

第15章 量子物理基础习题解答

126 第15章 量子物理基础 15-1 太阳可看作是半径为m 100.78?的球形黑体,试计算太阳表面的温度。太阳光直射到地球表面上单位面积的的辐射功率为321.510W/m ?,地球与太阳的距离为111.510m d =?。 解 已知32 0 1.510W/m P =?,8s 7.010m R =?,m 105.111?=d 。太阳辐射的总功率2s 4πE R ?,假设 辐射没有能量损失,则分布在2 4πd 的球面上, 有 22s 04π4πE R p d ?=? 运用斯特藩—玻耳兹曼定律4E T σ=,得 113 1/21/41/21/43088 1.510 1.510()()()() 5.910(K)7.010 5.6710s p d T R σ-??===??? 15-2 已知地球到太阳的距离81.510km d =?,太阳的直径为61.410km D =?,太阳表面的温度为 5900K T =,若将太阳看作绝对黑体,求地球表面受阳光垂直照射时,每平方米的面积上每秒钟得到的辐 射能为多少? 解 根据斯特藩—玻耳兹曼定律4E T σ=和能量守恒方程220π4πE D p d =,得 ()942428 232011 11 1.410()() 5.67105900W/m 1.510W/m 441.510 D p T d σ-?==???=?? 15-3 在加热黑体的过程中,其单色辐出度的最大值所对应的波长由0.69μm 变化到0.50μm ,其总辐射出射度增加了几倍? 解 由维恩位移定律m T b λ =和斯特藩—玻耳兹曼定律4T E σ=得 444 22m111m20.69()()() 3.630.50 E T E T λλ====(倍) ,即增加了2.63倍. 15-4 从铝中移出一个电子需要4.2eV 的能量,今有波长为2000 ?的光投射到铝表面,求(1)从铝表面发射出来的光电子的最大初动能是多少?(2)遏止电势差为多大?(3)铝的红限频率为多大? 解 (1)由 2 m 12 h m W νυ= +得 34821919m 10 1 6.62610310 4. 2 1.60210J 3.2110J 2200010hc m h W W υνλ----?????=-=-=-??=?????? (2) 2 m 12a eU m υ= 2 m 12 2.0V a m U e υ== (3)由 0W h ν= 19150344.2 1.60210Hz 1.0210Hz 6.62610 W h ν--??===?? 15-5 用波长为4000 ?的紫光照射金属,产生光电子的最大初速度为5 510m/s ?,则光电子的最大初动能是多少?该金属红限频率为多少? 解 光电子的最大初动能为 ()2315219m m 11 9.1110(510) 1.1410J 22 k E m υ--= =????=?

大学物理讲义(第15章量子力学基础)第五节

§15.5 量子力学的基本概念和基本原理 描述微观粒子运动的系统理论是量子力学,它是薛定谔、海森伯等人在 1925~1926年期间初步建立起来的.本节介绍量子力学的基本概念和基本方程. 一、波函数极其统计解释 在经典力学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用 它的位置矢量和动量来描述的.但是,对于微观粒子,由于它具有波动性,根据不确 定关系,其位置和动量是不同时具有确定值的,所以我们就不可能仍然用位置、动 量及轨道这样一些经典概念来描述它的运动状态.微观粒子的运动状态称为量子 态,是用波函数来描述的,这个波函数所反映的微观粒子的波动性,就是德布罗意 波.这是量子力学的一个基本假设. 例如一个沿X 轴正方向运动的不受外力作用的自由粒子,由于能量E 和动量p 都是恒量,由德布罗意关系式可知,其物质波的频率ν和波长λ也都不随时间变化,因此自由粒子的德布罗意波是一个单色平面波. 对机械波和电磁波来说,一个单色平面波的波函数可用复数形式表示为 )(2)x/λνt πi Ae t y(x,--= 但实质是其实部.类似地,在量子力学中,自由粒子的德布罗意波的波函数可表示 为 η)/(0)(Px Et i e t x,--ψ=ψ 式中0ψ是一个待定常数, η/0iPx e ψ相当于x 处波函数的复振幅,而ηiEt/e -则反映波函 数随时间的变化. 对于在各种外力场中运动的粒子,它们的波函数要随着外场的变化而变化.力 场中粒子的波函数可通过下面要讲的薛定谔方程来求解. 经典力学中的波函数总代表某一个物理量在空间的波动,然而量子力学中的 波函数又代表着什么呢?对此,历史上提出了各种不同的看法,但都未能完善的解 释微观粒子的波—粒二象性,直到1926年玻恩(M.Born,1882—1970)提出波函数的 统计解释才完善的解释了微观粒子的波—粒二象性.玻恩认为:实物粒子的德布 罗意波是一种几率波;t 时刻,粒子在空间 r 附近的体积元dV 中出现的几率dW 与该处波函数的模方成正比,即 V t r,Ψt r,ΨV t r,ΨW *d d d 2 )()()(== (15.35) 由式(15.35)可知,波函数的模方2)(t r,Ψ代表t 时刻粒子在空间r 处的单位体积中 出现的几率,称为几率密度.这就是波函数的物理意义,波函数本身没有直接的物

相关文档
最新文档