调节阀气开气关方式的确定原则

调节阀气开气关方式的确定原则
调节阀气开气关方式的确定原则

调节阀气开气关方式的确定原则

确定调节阀开关方式的原则是:当信号压力中断时,应保证工艺设备和生产的安全。如阀门在信号中断后处于打开位置,流体不中断最安全,则选用气关阀;如果阀门在信号压力中断后处于关闭位置,流体不通过最安全,则选用气开阀。

在一个自动控制系统中,应使调节器、调节阀、对象三个环节组合起来,能在控制系统中起负反馈作用。

一般步骤,首先由操纵变量对被控变量的影响方向来确定对象的作用方向,然后由工艺安全条件来确定调节阀的气开、气关型式,最后由对象、调节阀、调节器三个环节组合后为“负”来确定调节器的正、反作用。

当信号压力增加时,推杆向下动作的叫正用式执行机构;反之,信号压力增加时,推杆向上动作的叫反作用式执行机构。在结构上,正、反作用执行机构基本相同,均由膜盖、波纹膜片、推杆部件、弹簧、支架等组成。在正作用式的结构上,加上垫块,更换个别零件,即可变为反作用式。(气开/气闭在铭牌上有O/C 或者是K/B的标识)

该执行机构型号表示:国产型号ZMA型(正作用,配气关阀)与ZMB型(反作用配气开阀),其含义为:Z——执行器大类;M——气动薄膜型式;A——正作用;B——反作用。

有区别的

气开阀门是属于常闭气控阀。

气关阀门是属于常开气控阀。

他们执行器上面的结构是不一样的。

当然,如果你配套一个二位三通的电磁阀的话,把电磁阀与气控阀相结合,只要控制电磁阀就可以了。

多功能水利控制阀特性

产品名称: JD745X(760)BFDS101X多功能水泵控制阀 产品类别:多功能水力控制阀 产品规格: JD745X(760)BFDS101X 产品口径: 50-1000 产品压力: 0.6-2.5Mpa 浏览次数: 1850 录入时间: 2008-10-25 本页关键词:多功能水泵控制阀、多功能水力控制阀 产品详情 一、多功能水泵控制阀简介 多功能水泵控制阀是一种新型水力控制阀门,一阀可替代电动蝶(闸)阀、止回阀和水锤消除器三种装置。它能自动实现开泵时的缓开,停泵时的速闭与缓闭,无需任何电气控制与其它动力和人力,也无需油压装置。 二、多功能水泵控制阀的主要优点 (1)无需操作控制。利用水泵启停时阀门前后的水压差作为控制动力,具有随水泵的启闭而自动启闭的功能。 (2)阀门启闭动作过程能有效地因防止水锤压力波升高而产生的事故。据现场使用情况调查和实测,停泵水锤压力峰值均在工作压力的1.3倍以内。 (3)无需现场调试,适用工况范围广。 (4)基本无需维修。由于一阀替代三阀,维护维修工作量大大减少。 (5)阻力损失小。采用流线型、宽阀体设计,阻力损失比国外同类产品降低50%以上,如DN200产品在v=2m/s的经济流速工况时,多功能水泵控制阀损失为0.7m,而国外同类产品为1.5m。 三、多功能水泵控制阀结构及工作原理 1)、水泵启动前,阀门出口端压力作用在主阀板上,阀门处于关闭位置,同时膜片控制器的上腔连通压力水,下腔则与阀门进口端的低压相通。 2)、水泵启动后,阀门进口压力逐渐升高,同时压力水通过阀门进口端的连接管缓慢进入膜片控制器下腔,实现主阀板的缓慢开启,开启速度可通过控制阀进行调节。 3)、水泵停机,阀门进口的压力降低,当接近零流量时,主阀板在自身重力作用下迅速关闭。因阀门进口端压力降低,阀门出口端的压力水通过连接管进入膜片控制器上腔,下腔水通过阀门进口端的连接管压回至阀门进口端,缓闭阀板缓慢关闭,慢关时间可通过控制阀进行调节。主阀板的速闭和缓闭阀板的缓闭符合两阶段关闭规律,能有效地消除水锤。 三、多功能水泵控制阀在安全供水中的应用:(几个技术问题)

调节阀关试题库

调节阀题库 一、单相选择题 1.在设备安全运行的工况下,能够满足气开式控制阀的是( A )。 A、锅炉的燃烧油(气)调节系统; B、锅炉汽包的给水调节系统; C、锅炉汽包的蒸汽入口压力调节系统; D、锅炉炉膛进口引风压力调节系统; 2.调节阀阀盖四氟填料的工作温度不适用于(D) A.20~150℃ B.-40~250℃ C.-40~450℃(加散热法) D.200~600℃ 3.某调节阀的工作温度为400℃,其上阀盖形状应选择为(B) A.普通型 B.散热型 C.长颈型 D.波纹管密封型 4.压缩机入口调节阀应选(B) A.气开型 B.气关型 C.两位式 D.快开式 5.调节阀口径大或压差高时可选用( C )执行机构。 A、薄膜式; B、活塞式; C、无弹簧气动薄膜; D、气动长行程 6.调节阀的泄漏量就是指( A )。 A.指在规定的温度和压力下,阀全关状态的流量大小 B.指调节阀的最小流量 C.指调节阀的最大量与最小量之比 D.指被调介质流过阀门的相对流量与阀门相对行程之间的比值 7.精小型调节阀具有许多优点,但不具有(C )的特点。 A.流量系数提高30% B.阀体重量减轻30% C.阀体重量增加30% D.阀体高度降低30% 8.执行机构为(A )作用,阀芯为()装,则该调节阀为气关阀。 A、正、正 B、正、反 C、反、正 D、正或反、正 9.低噪音调节阀常用的是(B)。 A.单座阀 B.套筒阀 C.隔膜阀 D.角阀 10.直通双座调节阀不存在( D)的特点。 A.有上下两个阀芯和底阀座 B.阀关闭时,泄漏量大 C.允许阀芯前后压差较大 D.阀关闭时,泄漏量小

阀门的用途和各种阀门的介绍

阀门的用途大全 阀门是国民经济建设中使用极为广泛的一种机械产品。阀门在石油、天然气、煤炭、冶金、和矿石的开采、提炼加工和管道输送系统中;阀门在石油化工、化工产品,医药,和食品生产系统中;阀门在水电、火电和核电的电力生产系统中;阀门在城建的给排水、供热和供气系统中;阀门在冶金生产系统中;阀门在船舶、车辆、飞机、航天以及各种运动机械的使用流体系统中;阀门在国防生产以及新技术领域里;阀门在农业排灌系统中都有大量的需求。 阀门分自动阀门与驱动阀门。自动阀门(如安全阀、减压阀、蒸汽疏水阀、止回阀)是靠装置或管道本身的介质压力的变化达到启闭目的的。驱动阀门(闸阀、截止阀、球阀、蝶阀等)是靠驱动装置(手动、电动、液动、气动等)驱动控制装置或管道中介质的压力、流量和方向。由于介质的压力、温度、流量和物理化学性质的不同,对装置和管道系统的控制要求和使用要求也不同,所以阀门的种类规格非常多。剧不完全统计,我过的阀门产品品种已达四千多个型号,近四万个规格,阀门在经济生活中起着非常大的作用。 电磁阀 电磁阀是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动。电磁阀用于控制液压流动方向,工厂的机械装置一般都由液压钢控制,所以就会用到电磁阀。而通常意义上,国内电磁阀厂家也并不以液压电磁阀为主打,一般多生产二位二通气液用电磁阀。 电磁阀的工作原理,电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。这样通过控制电磁铁的电流就控制了机械运动。 球阀 球阀和旋塞阀是同属一个类型的阀门,只有它的关闭件是个球体,球体绕阀体中心线作旋转来达到开启、关闭的一种阀门。

重型车气路基本图解及工作原理

重型车气路基本图解及工作原理 为了使部分网友对现在重型车的整体气路有一个明确的认识,我画了一张气路图,供大家参考 A.气泵; B.组合式干燥器总成;C四回路保护阀;G1.前制动储气筒;G2.中后桥制动储气筒;G3.手制动储气筒;I1.I2.气压表;J.刹车总泵;N1.N2.前制动分室;M1.主制动继动阀;M2.手制动继动阀;M3.闸阀(单向阀);01-04.中后桥组合式制动分室;P.手制动阀;Q.挂车制动控制阀;S1.挂车充气接头;S2.挂车制动控制接头;R1.离合器助力按钮阀;R2.离合器助力缸;L1.调压阀(空气滤清调节阀);L2.高低档换挡阀(双H阀);L3.高档工作汽缸;L4.低档工作汽缸;L5.离合器制动控制阀;L6.离合器制动气缸;T1.轮间差速锁电磁阀;T2.中桥轮间差速锁工作缸;T3.后桥轮间差速锁工作缸;U1.轴间差速锁电磁阀;U2.轴间差速锁工作缸;V1.熄火器开关阀;V2.断油工作缸;V3.熄火工作缸(排气制动蝶阀);W1.喇叭电磁阀;W2.气喇叭;X1.前驱动挂档开关阀;X2.前驱动挂档工作缸;Y1.取力器电磁开关;Y2.取力器工作缸;Y3.空挡工作缸; 下面我就把整个气路的工作原理向大家介绍一下。 第一回路:压缩空气经出口21不断向前桥制动储气筒G1充气,G1同时为主制动阀J提供前制动气压,当主制动阀(即刹车总泵)工作时,压缩空气将通向前轴制动分室N1和N2,使前轮产生制动。 第二回路:压缩空气经出口22不断向中后桥制动储气筒G2充气,G2同时为主制动阀J提供中后桥制动控制气压,为继动阀M1提供工作气压,当制动总泵J工作时,压缩空气通过继动阀M1控制接口4,从而打开继动阀使早已等候在继动阀进气口1的压缩空气快速进入中后桥主制动分室01-04。继动阀M1的作用是快充和快放,以缩短制动反应时间,在第一回路与第二回路之间接装一个双针气压表(现在有的装用两个表,甚至装在刹车总泵上面,其实原理是一样的),以反映前制动出气筒和中后桥制动储气筒的气压值。 第三回路,压缩空气经出口24,一路经单向阀M3提供给手刹制动阀P和手制动继动阀M2,另一路为手制动储气筒G3充气,当手制动阀P置于“停车”位置时,继动阀M2的控制口4经手制动阀P排空,从而切断继动阀M2向手制动分室充气的通路,打开手制动分室01-04经继动阀M2出气口2排空的通道,手制动分室排气,在弹簧作用下使制动器动作产生制动作用,当手制动阀P置于“行车”位置时,压缩空气经手制动阀P通向控制口4,打开继动阀进气口1与出气口2的通道,使早已等候在继动阀进气口1的压缩空气迅速向手制动分室充气,压缩弹簧从而解除制动。手制动阀P的操作杆如置于“制动”与“行车”位置之

调节阀的基本知识

气动调节阀工作原理 已有76 次阅读2011-01-27 09:04标签: 气动调节阀电磁阀转换器动力源 气动调节阀 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、**等连接安装调试后形成气动调节阀。 气动调节阀工作原理气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门**、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 结构分类根据阀门动作方式可基本分为:直行程(薄膜调节阀、直行程气缸)和角行程(拨叉式、齿轮齿条式)两种方式。 维修检查气动调节阀准确正常地工作对保证工艺装置的正常运行和安全生产有着十分重要的意义。因此加强气动调节阀的维修是必要的。 一、检修时的重点检查部位 检查间体内壁:在高压差和有腐蚀性介质的场合,阀体内壁、隔膜阀的隔膜经常受到介质的冲击和腐蚀,必须重点检查耐压耐腐情况; 检查阀座:因工作时介质渗入,固定阀座用的螺纹内表面易受腐蚀而使阀座松弛; 检查阀芯:阀芯是调节阀的可动部件之一,受介质的冲蚀较为严重,检修时要认真检查阀芯各部是否被腐蚀、磨损,特别是在高压差的情况下,阀芯的磨损因空化引起的汽蚀现象更为严重。损坏严重的阀芯应予更换;检查密封填料:检查盘根石棉绳是否干燥,如采用聚四氟乙烯填料,应注意检查是否老化和其配合面是否损坏; 检查执行机构中的橡胶薄膜是否老化,是否有龟裂现象。 二、气动用调节阀的日常维护 当调节阀采用石墨一石棉为填料时,大约三个月应在填料上添加一次润滑油,以保证调节阀灵活好用。如发现填料压帽压得很低,则应补充填料,如发现聚四氟乙燥填料硬化,则应及时更换;应在巡回检查中注意调节阀的运行情况,检查阀位指示器和调节器输出是否吻合;对有**的调节阀要经常检查气源,发现问题及时处理;应经常保持调节阀的卫生以及各部件完整好用。 三、常见故障及产生的原因 (一)调节阀不动作。故障现象及原因如下: 1.无信号、无气源。①气源未开,②由于气源含水在冬季结冰,导致风管堵塞或过滤器减压阀堵塞失灵,③压缩机故障;④气源总管泄漏。 2.有气源,无信号。①调节器故障;③**波纹管漏气;④调节网膜片损坏。 3.**无气源。①过滤器堵塞;②减压阀故障I③管道泄漏或堵塞。 4.**有气源,无输出。**的节流孔堵塞。

电磁阀电动阀和气动阀的区别

电磁阀和电动阀的区别 1.开关形式: 电磁阀通过线圈驱动,只能开或关,开关时动作时间短。 电动阀的驱动一般是用电机,开或关动作完成需要一定的时间模拟量的,可以做调节。 2.工作性质: 电磁阀一般流通系数很小,而且工作压力差很小。比如一般25口径的电磁阀流通系数比15口径的电动球阀小很多。电磁阀的驱动是通过电磁线圈,比较容易被电压冲击损坏。相当于开关的作用,就是开和关2个作用。 电动阀的驱动一般是用电机,比较耐电压冲击。电磁阀是快开和快关的,一般用在小流量和小压力,要求开关频率大的地方电动阀反之。电动阀阀的开度可以控制,状态有开、关、半开半关,可以

控制管道中介质的流量而电磁阀达不到这个要求。 电磁阀一般断电可以复位,电动阀要这样的功能需要加复位装置。 3.适用工艺: 电磁阀适合一些特殊地工艺要求,比如泄漏、流体介质特殊等,价格较贵。 电动阀一般用于调节,也有开关量的,比如:风机盘管末端。 气动阀和电动阀的区别, 各有什么优、缺点,都适合用在什么场合? 一电动阀使用电机做动力,气动阀使用压缩空气作动力。 (1)电动阀优点:对液体介质和大管径气体效果好,不受气候影

响。不受空压气的压力影响。缺点:成本高、在潮湿环境不好。 (2)气动阀优点:对气体介质和小管径液体效果好,成本低,维护方便。缺点:受空压气压力波动的影响, 在北方冬季易受空压气含水影响,造成传动部分冻结、不动作。二一般气动要比电动快,电动的都是手电两用的。而气动要手、气两用的价格比较高。 三电动阀门用于一些大管径的地方 因为气动很难做到但是电动阀门的稳定性不如气动开关速度慢执行机构长时间会出现卡齿现象气动阀门开关速度快精度高但是需要稳定的气源。 四电动阀动作慢电动阀能做到防爆的品牌不是很多;气动阀动作迅速,防爆相对来说价格比电动底(关键气动阀配什么附件,配大品牌附件就会比电动阀贵)。 涉及到连锁的阀门也用电动的,为什么? (1)根据当地天气气候,如果气候潮湿气动阀就不能使用,因为气源带水。 (2)电动阀也可以实现联锁功能不会额外增加费用,气动实现联锁就会增加

调节阀几种典型气路图

Accessory Schematics These drawings are helpful in determining what accessories are needed and their proper arrangement for a particular application. The following engineering schematics are used by Valtek when attaching accessories to control valves. Standard Positioner Control Air Filter Schematic 19-1A: Positioner Signal-to-open, Fail-closed Air Filter Schematic 19-1B: Positioner Signal-to-close, Fail-open 19-11

19-12 Supply EB P A B Supply EB P A B Air Filter Air Filter Schematic 19-2B: Four-way Solenoid, De-energize-to-open, Fail-open Schematic 19-2A: Four-way Solenoid, De-energize-to-close, Fail-closed ASCO 8345 - Typ ASCO 8345 - Typ Solenoid Operated On-Off EA EA

19-13 Schematic 19-3A: Signal-to-open, Fail-closed, I/P 2000 SOV Signal Interrupt, De-energize-to-close De-energizing solenoid valve interrupts the signal to the positioner and drives the actuator to the low signal position. This is dependent on the proper functioning of the positioner and the integrity of the feedback linkage. Schematic 19-3B: Signal-to-close, Fail-open, I/P 2000-SOV Signal Interrupt, De-energize-to-open Supply Supply

气动调节阀气开气关选择

气动调节阀气开、气关方式的选择 上海沪贡阀门制造有限公司 气动调节阀气开、气关方式的选择主要是从生产安全角度出发来考虑的。当调节阀上信号或气源中断时,应避免损坏设备和伤害人员。如事故情况下,调节阀处于关闭位置危害小,则应选用气开式调节阀;反之,应选用气关式调节阀。举例来说,如加热炉的燃料气或燃料油调节阀,应选用气开式,以保证事故时能切断燃料,以免烧坏炉子。对于塔、储罐等设备,它们的压力控制若是通过排出物料来操纵,则调节阀应选用气关式;若是通过进入物料来进行操纵,则调节阀应选用气开式,以防事故时设备超压损坏。 对供气安全系数特别高的大型石油化工厂,因为它们除有足够容量的储气罐以外,还设有备用压缩机、外接气源等,而且工厂的供电等级也很高,所以供气系统的不安全度极小。在这种情况下,一般用途的调节阀可以根据操作习惯与方便、统一的原则来选择调节阀的气开、气关方式。对于少数极重要的调节阀,则不仅需要合理选择气开、气关方式,还需要考虑设置保位阀、事故用储气罐等专有的附属装置,以确保其在任何清况下的安全、可靠,并有利于事故后恢复生产。 气动调节阀的气开、气关方式,可以通过气动执行机构的正、反作用与阀芯正、反装的组合来实现。 确定调节阀的一些参数 一.调节阀 ⑴确定计算流量:根据生产能力,设备负荷及介质状况,确定Qmax和Qmin. ⑵确定计算压差:根据系数特点选定S值,然后确定计算压差。 ⑶计算流量系数:选择合适的计算公式或图表,求取最大和最小流量时的Cmax和Cmin。 ⑷C值的选取:根据Cmax,在所选产品型式的标准系列中,选取大于Cmax并最接近的那 一级C值。 ⑸调节阀开度验算:要求最大流量时,阀开度不大于90%,最小流量时开度不小于10%,(根据《自动化选型规定》HG/T20507-92). 对于直线特性阀,最大开度≦80%,最小开度应≧10%; 等百分比特性阀,最大开度≦90%,最小开度应≧30%. ⑹实际可调比的验算:一般要求,实际可调比不小于10.(一般选取30左右自认为) ⑺口径的确定:验证合适后,根据C值决定。 二 S值的定义 S值是调节阀全开时,阀上的压差△P v与系统中压力损失总和(在最大流量时)之比, 简称阀阻比(压降比)。 对于液体:常选S=0.3~0.5,对于高压系统,考虑到节约动力消耗允许S值到0.15,若 S<0.15,只能选用新型低S值调节阀。 对于气体:阻力损失小,S值都大于0.5,但在低压以及真空系统中,由于允许压损较小,仍在0.3~0.5之间为宜。 三.气开/气关的选择 ㈠①设备安全②减少原料和动力消耗③考虑介质特性 举例如下: ⑴加热炉的进料系统:气关式

多功能水泵控制阀作用

多功能水泵控制阀作用 何谓多功能水泵控制阀?水泵有什么运行特性需要阀门来控制?水泵控制阀能否实现这些控制?以及它与传统的闸阀、蝶阀、止回阀以及匀速、双速缓闭的水力控制止回阀在原理、功能等方面有什么质的不同。 在本文中以活塞式多功能水泵控制阀(下称控制阀)为例,通过对其结构、主要功能、工作原理的剖析,提出对上述问题的看法,供读者参阅。 一、结构 控制阀结构的主要特点是取消了阀座中间的定位机构和阀瓣上侧的弹簧,而且在阀瓣的下侧设计了导流板,最大限度减少了介质过流时的机械损失和阀瓣下侧穹腔内的旋涡损失。以缸体内的活塞作驱动元件,在介质自身压力作用下带动阀瓣作上下运动,实现阀的开启或关闭。活塞、启闭件、连同缸体配置在阀体上,流线形、宽阀腔的阀体,不但水头损失可以比同类产品减少30%以上,而且具有良好的抗气蚀性能。 以电磁阀换向机构(下称电磁阀)和压力管路组成伺服系统,取控制阀两端的压力水为驱动源,通过电信号指令,任意一端的压力水都能实现水泵控制阀在设定的时刻和速度执行泵的开启或关闭。 二、泵的运行特性与控制阀的功能特点、工作原理 1、泵的启动特性及其控制

a)离心泵的零流量启动特性及其控制(即关阀启动) 离心泵在零流量工况时轴功率最小,为额定轴功率的30%-90%,所以离心泵的启动特性是零流量启动(即关阀启动)。待泵至额定转速之后控制阀按设定的速度缓慢开启。 工作原理:泵启动时(前)压力水经过设有延时的电磁阀流向缸体内活塞上腔,而活塞下腔通过缸体下端经电磁阀通向大气,此时控制阀处于关闭状态。 电动机补偿启动结束,泵正常运转,电磁阀即执行换向指令,切断活塞上腔压力水源、关闭缸体下端通向大气的回路,同时将压力水经电磁阀注入缸内活塞下腔、打开活塞上腔通向大气的回路,活塞上腔的水经电磁阀排出阀外,控制阀按设定的速度缓慢开启,完成并满足了离心泵在零流量时轴功率最小的启动特性,保证泵机组的安全运转。 b)轴流泵的大流量启动特性及其控制(即全开阀启动) 轴流泵在零流量工况时轴功率最大,为额定轴功率的140%~200%,所以轴流泵的启动特性应是大流量启动(即全开阀启动)。 工作原理:控制阀满足轴流泵全开阀启动的工作原理是离心泵关阀启动的逆运行,即电磁阀先工作,将阀全开后,泵再启动。参阅a)条,不赘述。 轴流泵启动前,这时阀的进口压力为零,控制阀利用阀出水端的介质压力将阀开启,而离心泵启动时是利用阀进水端的介质压力将阀开启。无论阀的哪一端介质都能实现控制阀的开或启,这是水泵控制阀功能的重要特征之一。

防喘振调节阀典型气路图

防喘振调节阀典型气路图 描述:整个气路的功能在正常情况下实现精确的阀位控制,快开慢关;在紧急情况下(失气、失电)下快速打开阀门以保护风机。 正常情况下,两个电磁阀带电,对三通电磁阀,1和2通;两通电磁阀,1和2断开。这时经过过滤减压后的空气分成三路,一路经单向阀到四通,然后到2625、储气罐、377的F口;一路经三通电磁阀后,到377的SUP 口,SUP口的气压压缩377内部弹簧,这样在377内部气路中,A口和B 口通,D口和E口通;另一路到DVC6020的SUP口,作为DVC的气源。当控制信号(控制系统DCS/PLC输出到DVC6020的4-20MA信号)增大时,定位器A口输出增大,B口输出减小;增大的A口气压经377AB口、快排阀后作用在汽缸(1061执行机构)上腔;B口的气压经377DE作为气

路放大器2625的输入信号,控制2625输出到汽缸(1061执行机构)下腔的压力;这时,汽缸活塞上部的压力》下部的压力+管道风压作用在碟版上的力,活塞往下运动,有铭牌上ACTION:PDTC可知,阀门开口度减小。反之,控制信号减小,定位器A口输出减小,B口增大,这时由于有快排阀和气路放大器2625的作用,活塞快速往上运动,阀门实现快开。 当电磁阀失电,对三通电磁阀,1和3桶,两通电磁阀1和2通;这时,377SUP口的压力经三通电磁阀3口卸掉,377在内部弹簧的作用下,气路发生转换。B口和C口通。E口和F口通;储气罐的气加上气源的气经377FE口作为气路放大器2625的控制信号,由于这时储气罐的气压很高(等于减压阀的出口压力)。使2625全开,储气罐里的气和气源的气以最大流量经2625进入汽缸下腔,上腔的气经快排阀、两通电磁阀快速排向大气,阀门快速打开。 当失气时,由于有单向阀的存在,使得储气罐的压缩空气不致倒流。整个原理同失电一样,只是使阀门快开的只有储气罐里的压缩空气。

气动调节阀知识

气动调节阀知识 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 ◆◆◆ 气动调节阀工作原理(图)

气动调节阀通常由气动执行机构和调节阀连接安装调试组成,气动执行机构可分为单作用式和双作用式两种,单作用执行器内有复位弹簧,而双作用执行器内没有复位弹簧。其中单作用执行器,可在失去起源或突然故障时,自动归位到阀门初始所设置的开启或关闭状态。 气动调节阀根据动作形式分气开型和气关型两种,即所谓的常开型和常闭型,气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 ◆◆◆ 气动调节阀作用方式: 气开型(常闭型)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。顾通常我们称气开型调节阀为故障关闭型阀门。 气关型(常开型)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。顾通常我们称气关型调节阀为故障开启型阀门。

气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全。 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 ◆◆◆ 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。本文根据气动调节阀的结构和工作原理对在气动调节阀在日 常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。 本文以美国博雷(BARY)厂家生产的 S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。 1、气动调节阀的结构和工作原理 1.1、气动调节阀的结构 气动调节阀由执行机构和阀体两部分组成。 1.2、气动调节阀的工作原理 气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。执行机构是调节阀的推力

部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。 2、气动调节阀的日常维护 在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。 3、气动调节阀常见故障原因分析

气动调节阀动作分气开型和气关型

气动调节阀动作分气开型和气关型 气动调节阀动作分气开型和气关型两种。气开型(Air to Open)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。故有时气开型阀门又称故障关闭型(Fail to Cl ose FC)。气关型(Air to Cl ose)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式 实现。 气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全?举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于

开启位置更安全些,宜选用气关式(即FO)调节阀。气开式改变为气关式或气关式改变为气开式,如调节阀安装有智能式阀门定位器,在现场可以很容易进行互相切换。 但也有一些场合,故障时不希望阀门处于全开或全关位置,操作不允许,而是希望故障时保持在断气前的原有位置处。这时,可采取一些其它措施,如采用保位阀或设置事故 专用空气储缸等设施来确保。 阀门定位器 阀门定位器是调节阀的主要附件,与气动调节阀大大配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器和智能式阀门定位器。 阀门定位器能够增大调节阀的输出功率,减少调节信号的传递滞后,加快阀杆的移动速度,能够提高阀门的线性度,克服阀杆的磨擦力并消除不平衡力的影响,从而保证调节阀的 正确定位。 常用执行机构分气动执行机构,电动执行机构,有直行程、角行程之分。用以自动、手动开闭各类伐门、风板等。下地址是气动阀动作效果,模拟了气动薄膜调节阀工作原理

气动调节阀故障保位方案

气动调节阀故障保位方案 1 控制阀保位的必要性 不同工艺系统的控制需求决定了执行机构不同的失效安全工作模式。失效安全模式的选择原则首先是安全生产,其次是连续性。 在工程实践中,当遇到自控系统的气源、电源及输出信号故障时,不同的场合对阀门的状态有不同的要求,这些要求往往是出于安全和尽量减少故障损失方面的考虑,另外在安全的情况下,尽量保持装置生产的连续性也是需要考虑的一个重要方面。这就要求自控系统采取一些必要的安全保护措施。例如:在用蒸汽对罐内的物料进行加热时,如果遇到气、电故障,应将蒸汽的入口阀门关闭,切断蒸汽,即故障关(Fail to close),以防罐内物料过热结焦;再如在水冷却物料系统中,遇故障时,则希望冷却水不要被切断,此时要求水入口调节阀故障开(Fail to open);而有些特殊的场合则希望故障出现时,阀位保持在原来的位置不变,以保持流体的稳定流量,如高温高分子中间聚合物的夹套管的蒸汽温度控制阀,一旦故障,全开会导致主管道内物料的结焦,全关则可能会导致熔体输送管线内的高分子聚合物冷却凝结,堵塞管线,此种情况下故障阀门需要保位(Fail to lock),以确保物料输入的稳定连续性。这就要求控制阀在设计中实现故障时安全的三断(断气、断电、断信号)保护措施。工程中常见的三种安全失效模式如图1所示。 图1 工程中常见的三种控制阀安全失效模式 确切说,前两种情况下的调节阀已经失去调节作用,只是在失效前采取了安全的失效模式,而对于故障保位的失效模式来说,相对稳定的控制系统,调节阀是在凭借记忆或惯性调控着介质的流量,在一定的时间内确保生产的稳定连续性,给出维护设备安全和仪表检修

气动调节阀工作原理图文详解

气动调节阀工作原理图文详解(附图) 气动调节阀工作原理简单地说是通过压缩空气实现的,在实际应用中,了解气动调节阀工作原理有很大的意义。下面,世界工厂泵阀网综合运用图文为大家详细介绍气动调节阀工作原理。 气动调节阀是石油、化工、电力、冶金等工业企业广泛使用的工业过程控制仪表之一。通常由气动执行机构、阀门、定位器等连接安装调试后形成气动调节阀。 气动调节阀工作原理 气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度等各种工艺参数。气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。 气动调节阀动作分气开型和气关型两种。气开型(Air to Open) 是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。 故有时气开型阀门又称故障关闭型(Fail to Close FC)。气关型(Air to Close)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全? 举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。 如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 阀门定位器

一液压阀的作用及分类

一、液压阀的作用 液压阀是用来控制液压系统中油液的流动方向或调节其压力和流量的,因此它可分为方向阀、压力阀和流量阀三大类。一个形状相同的阀,可以因为作用机制的不同,而具有不同的功能。压力阀和流量阀利用通流截面的节流作用控制着系统的压力和流量,而方向阀则利用通流通道的更换控制着油液的流动方向。这就是说,尽管液压阀存在着各种各样不同的类型,它们之间还是保持着一些基本共同之点的。例如: (1)在结构上,所有的阀都有阀体、阀芯(转阀或滑阀)和驱使阀芯动作的元、部件(如 弹簧、电磁铁)组成。 (2)在工作原理上,所有阀的开口大小,阀进、出口间压差以及流过阀的流量之间的关系都符合孔口流量公式,仅是各种阀控制的参数各不相同而已。 二、液压阀的分类 液压阀可按不同的特征进行分类,如表5—1所示。 表5—1 液压阀的分类

(1)动作灵敏,使用可靠,工作时冲击和振动小。 (2)油液流过的压力损失小。 (3)密封性能好。 (4)结构紧凑,安装、调整、使用、维护方便,通用性大。 1 液压系统清洗的意义[1] 从使用的角度看,液压系统正常工作的首要条件是系统内部必须清洁。在新的设备运行之前,或一台设备经过大修之后,液压系统遭到污染是不可避免的,尽管液压元件的制造厂家很注意元件本身的内部清洁,但新元件中仍可能含有毛刺、切屑、飞边、灰尘、焊渣和油漆等污染物。元件也可能由于不良的储存、搬运而造成污染。在油箱的制作过程中,可能积聚锈、漆片和灰尘等,虽然油箱在使用前经过清理,但许多污染物肉眼难以看到。在软管、管道和管接头的安装过程中都有可能将污染物带入系统。即使新的油液也会含有一些令人意想不到的污染物。必须采取措施尽快将污染物滤出,否则在设备投入运行后不久就有可能发生故障,而且早期发生的故障往往都很严重,有些元件例如泵、马达有可能会遭到致命性的损 坏。 元件清洗和系统冲洗的目的就是消除或最大限度地减少设备的早期故障。冲洗的目标是提高油液的清洁度,使系统油液的清洁度保持在系统内关键液压元件的污染耐受度内,以保证液 压系统的工作可靠性和元件的使用寿命

调节阀的作用

调节阀的作用 调节阀有哪几个主要功能? 调节阀的主要功能共有九个:调节、切断、克服压差、防堵、耐蚀、耐压、耐温、重量、外观。 调节阀的调节功能主要表现在哪几个方面? 调节阀的首要功能就是调节,其主要表现在五个方面: 1.流量特性。 2.可调范围R。 3.小开度调节性能。 4.流量系数Kv。 5.调节速度(响应时间)满足系统对阀动作的速度要求。 何谓流量特性? 流量特性是反映调节阀的开度与流量的变化关系,以适应不同的系统特性要求。如对流量调节系统反应速度快,需对数流量特性;对温度调节系统反应速度慢,需直线流量特性。流量特性反映了调节阀的调节品质。 何谓可调范围R? 可调范围反映调节阀控制的流量范围,用R=Qmax/Qmin之比表示。R越大,调节流量的范围越宽,性能指标就越好。通常阀的R=30;好的阀,如V形球阀的R=50;全功能超轻型的R可达100-200。 调节阀的小开度工作性能应当怎样? 有些阀爱到结构的限制,小开度工作性能差,产生启跳、振荡,R变得很小(即Qmin 很大),如双座阀、衬胶蝶阀。好的阀小开度应有微调功能,即可满足很小流量的调节,且工作又十分平衡,这类阀如V形球阀、偏心旋转阀、全功能超轻型阀。 流量系数表示阀的何种功能? 流量系统(Kv)表示阀通过流量的能力,同口径的阀,Kv值越大越好。角行程阀(球阀、蝶阀、全功能超轻型调节阀)是直行程阀(单座阀、双座阀、套筒阀)的2-3倍。 调节阀的切断功能用什么指标来表示? 切断功能由阀的泄漏指标来表示,切断通常指泄漏量小于0.001%,最高级别为VI级(气泡级),它反映阀的内在质量。 调节阀的克服压差功能用什么表示?为什么旋转类阀使用会越来越多? 调节阀的克服压差功能通常用阀关闭时的允许压差来表示,允许压差越大,此功能也就越好。如果考虑不周全,阀芯就会被压差顶开,造成阀关不到位,泄漏量越标。因此,保证阀切断就必须克服阀关闭时的工作压差。通常,单密封阀的允许压差小,如单座阀、角形阀、隔膜阀、三通阀;双密封阀和转动类阀的允许压差大,如双座阀、球阀、全功能超轻型调节阀。从泄漏量与克服压差两者来看,单密封阀泄漏小,但允许压差;双密封阀泄漏大,允许

气动调节阀阀门关不死的原因及解决方法

气动调节阀阀门关不死的原因及解决方法 当遇到气动阀门关不死的情况时,这个时候我们就需要先来找出原因,然后阀门都有一定的泄漏量,要看阀门的泄漏量是否超过标准规定值,超过就是质量问题了。其次,电气转换器输出是否与阀门膜头压力匹配。 1.阀门是否被杂物卡住。 2.阀门的弹簧力是否合适。 3.阀杆是否被卡住。 4.阀芯、阀座磨损严重膜头膜片漏气。 5.定位器故障。 6.气开阀,零点弹簧预紧力过大。 7.阀杆调的太短。 8.调节阀前后压差过大,选型有问题。 我们可以先从以上描述找出原因,在施以解决方案。 气动调节阀 气动阀门关不死的几点解决方案如果你的气动阀有手动,那就每次停止了,让人手动摇死,或者让仪表人员,重新调校一下,把零点和定位器重新调校一下;关位的行程不到位,阀杆磨损严重,压缩空气的压力是否达标,原因很多,先阀门定位器整定一下,再调一下关位的行程累;阀门是气开还是气关阀门。如果是气关阀门,可以看气源压力,定位器零位量程调整是否正常,还有就是阀芯有无卡的情况等。如果是气开阀门,将气源断开,阀门应该关死如果关不死,就可能是

阀门阀体有无异物卡住的问题了;如果阀门出现随机性的关不死现象,建议查看仪表风压是否足够,即定位器输出的风压是否能够达到调节阀关闭状态下的压力;看看气源压力是否足够,再看看阀门是否有卡的情况,或者是内漏,这也关不死。最好先调调定位器试试。气开阀: 1、弹簧的预紧力不够,可以适当加大一些; 2、工况允许的时候,阀门要拆下做一下打压试验,借此可以检查阀芯阀座的密封情况,以及阀芯与阀座是否有损伤。 3、如果再次发生关不死的情况下,可以将该阀门切出来,检查阀芯阀座处是否有异物。。 4、检查阀门的零点是否偏高。 气关阀: 1、弹簧的预紧力太大,可以适当减小一点预紧力。 2、工况允许的时候,阀门要拆下做一下打压试验,借此可以检查阀芯阀座的密封情况,以及阀芯与阀座是否有损伤。 3、如果再次发生关不死的情况下,可以将该阀门切出来,检查阀芯阀座处是否有异物。 4、检查一下该阀门的气源压力是否正常。 5、检查膜片是否有破损。 6、检查阀门的零点是否偏高。 如果以上工作进行之后还出现关不死的情况,建议核对该阀门的相关参数,看看设计的相关参数与实际工况是否有出入。

液压控制阀的分类及作用

液压控制阀的分类及作用 液压控制阀是液压系统中控制油液方向、压力和流量的元件。借助于这些阀,便能对执行元件的启动、停止、方向、速度、动作顺序和克服负载的能力进行控制与调节,使各类液压机械都能按要求协调地进行工作。 液压阀的分类 A【按用途分】 液压阀可分为方向控制阀(如单向阀和换向阀)、压力控制阀(如溢流阀、减压阀和顺序阀等)和流量控制阀(如节流阀和调速阀等)。这三类阀还可根据需要相互组合成为组合阀,如单向川页序阀、单向节流阀、电磁溢流阀等,使得其结构紧凑,连接简单,并提高了效率。 B【按工作原理分】 液压阀可分为开关阀(或通断阀)、伺服阀、比例阀和逻辑阀。开关阀调定后只能在调定状态下工作,本章将重点介绍这一使用最为普遍的阀类。伺服阀和比例阀能根据输入信号连续地或按比例的控制系统的数据。逻辑阀则按预先编制的逻辑程序控制执行元件的动作。 C【按安装连接形式分】 按安装连接形式,液压阀可分为: (1)螺丝式(管式)安装连接。阀的油口用螺丝管接头和管道及其他元件连接,并由此固定在管路上。这种方式适用于简单液压系统。 (2)螺旋式安装连接。阀的各油口均布置在同一安装面上,并用螺丝固定在与阀有对应油口的连接板上,再用管接头和管道与其他元件连接;或者把这几个阀用螺丝固定在一个集成块 的不同侧面上,在集成块上打孔,沟通各阀组成回路。由于拆卸阀时无需拆卸与之相连的其他元件,故这种安装连接方式应用较广。 (3)叠加式安装连接。阀的上下面为连接结合面,各油口分别在这两个面上,且同规格阀的油口连接尺寸相同。每个阀除其自身的功能外,还起油路通道的作用,阀相互叠装便成回路,无需管道连接,故结构紧凑,阻力损失很小。 (4)法兰式安装连接。和螺丝式连接相似,只是法兰式代替螺丝管接头。用于通径!32_

CRH380BL制动气路图分析

制动气路图分析 一.制动控制单元 B01:BCU1.1 B10:BCU1.2 B06.02:预控压力截断塞门B06.03:制动风缸压力截断塞门B60.02-1/2:常用制动电磁阀 B60.02-3:预控压力传感器 B60.03:紧急电磁阀B60.17:预控压力测试口 B60.04:双向阀B60.14:备用制动预控压力传感器B60.18:备用制动预控压力测试口B60.05:空重车调整阀 B60.15:空气簧压力传感器B60.19:空气簧压力测试口 B60.30:缩孔B60.06:空气簧压力截断塞门 B60.20:预控制压力测试口B60.07:制动中继阀 B60.13:制动风缸压力传感器 B60.21:制动风缸压力测试口 B60.08:制动高低分级电磁阀 B60.09:制动高低分级压力开关

B60.12:制动缓解电磁阀B60.10:制动缓解活塞阀 B60.22:制动缸压力测试口B60.11:制动缓解回路压力开关B60.23:制动状态压力开关B60.16:制动缸压力传感器 B55.04/05:列车管压力传感器B55.06:列车管压力测试口 B55.03:备用制动截断塞门B55.02:备用制动中继阀 B50:工作风缸B51:比例风缸 F06.10:总风压力传感器F06.02:撒砂截断塞门 F06.03:低压撒砂调压阀F06.04:高压撒砂调压阀 F06.08:低压撒砂压力测试口 F06.09:高压撒砂压力测试口 F06.05:干燥砂电磁阀F06.06:低压撒砂电磁阀 F06.07:高压撒砂电磁阀 制动控制单元由供风模块B06、常用制动模块B60、备用制动模块B55和撒砂模块F06组成 常用直通制动:施加常用制动时,常用制动电磁阀B60.02得电,通过绿色箭头向制动中继阀提供预控制压力Cv,即制动风缸风源→截断塞门B06.02→常用制动电磁阀(常用制动电磁阀B60.02-1得电打开,B60.02-2得电关闭不排风)→紧急电磁阀的A1和A3(A1和A3常通)→双向阀B60.04的A1和A2→空重车调整阀B60.05(根据空气簧压力调整通风比例)→制动中继阀B60.07的Cv处。制动风源压力R通过蓝色箭头提供至制动中继阀,即制动风缸风源→截断塞门B06.03→中继阀B60.07的R处。当中继阀的预控制压力Cv和制动风源压力R同时被提供,中继阀被打开,

相关文档
最新文档