超声波发生器调试说明书

超声波发生器调试说明书
超声波发生器调试说明书

超声波发生器调试说明书

一.产品外型图示

使用本产品前请参照本说明书调试

请保存好此说明书

二.技术参数

1.输出功率:0---3000W可选

2.输入电压:180---265V AC. 50/60Hz

3.工作温度:30---55度

4.环境温度:10---35度(不结露)

5.输出谐波参数:97%(Min)

6.启动峰值电流(3000W负载):小于等于20A

7.工作频率:20K---250KHz(高于250K需要订做)

8.远程控制电压:0V低电平控制,低电压关闭,恢复后软启动。

9.MOS/IGBT最高温度:50度(3000W负载,环境温度为25度时测试)。

三.功能说明:

1.功率调节:调节功率电位器,功率可以从零到额定功率可调。

2.电源开关:1为开启,O为关断。

3.显示窗:显示发生器工作时的电流。

4.电源线:连接机器与市电的连接器件。注意接地要良好。

5.输出接线口:超声清洗机与发生器的连接处。注意正负极性不可接反。

6.远程控制:为发生器的软启动接口,不断电源来控制超声波的启停。使用

时只需把插头内的短接线拆除外接一个开关或继电器就行。给它一个开关信号。

7.散热风扇:为主功率器件散热。

四.机器显示及接口图标

1.面板图

电流显示

频率/时间显示

时间增加

时间减少

功能键开关键功率调节电源开关

按键说明:

电流显示:显示当前工作的电流。

频率/时间、显示:显示当前工作的频率或时间,当KHZ指示灯亮时显示的是频率,当TIME指示灯亮时显示的是时间。时间为倒计时。

功率调节:工作的时候用来调输出功率的大小。

电源开关:是发生器的总电源开关,向上为开向下为关。

增加键:用来调节设定时间增加的。

减少键:用来调节设定时间减少的。

功能键:切换频率和时间显示的。如果当前显示的是时间,按一下功能键就显示频率,反之按一下就显示时间。在切换频率和时间显示的时候超声

波会停止工作,所以超声波工作的时候不要操作此按键。

开关键:用来开启或关闭超声波的。按一下开启,再按一下关闭。

定时功能的使用:

时间设定:在显示时间的模式下按“增加”或者“减少”键3秒钟,显示的时间会闪烁,松开按键,再按“增加”或者“减少”键来调节要清洗的时间,调完时间后按一下“功能键”就会保存并退出。或者无操作10秒后自动保存退出。此时按一下开关键超声波开启时间倒计时,计时到超声波自动关闭。定时功能也可用后面的远程控制,设定好时间后在时间模式下把远程信号接通超声波开如工作,时间到自动停止。如果不使用定时功能就按功能键转为频率显示,此时定时无效。按一下开关键或者接能后面的远程超声波就会长期工作。远程控制出厂时里面已经短接,使用时可以把短接的拆掉外接开关信号即可。

2.尾部图

3.内部图示

功率调节电位器 隔离变压 谐振电感

散热风扇

电源开关 信号驱动板

散热片

变压器

电源输入

电源保险丝

输出接线端

远程控制

散热风扇

驱动板 功率管 整流桥 储能电容

双频调节电位器 频率调节电位器 稳压管 温度保护开关 五.机器调试方法:

1.调试关键点见下图

注:在调试时地线禁止移动正极和升压连线移动来调节功率。 2.调试方法:

(1)将升压连接线端子接入升压变压器靠近地线端口的位置,输出正极接埠1

推动变压器

输出正极

输出地线 埠1 升压初级电源

埠2 埠3 埠4

升压连接线 埠5

端口。先不接震子讯号线。

(2)接通电源,打开电源开关。开关上指示灯和面板上电流表有亮证明电源接通。

先转换为频率显示,用小一字批缓缓调节频率调节电位器,直至输出频率和震子固有频率相符合(允许偏差±1KHZ)。关闭电源。检测频率可用频率计或是带频率的万用表,接在频率检测端口。COM端口接负,DRV端口接正。

(3)接能震子讯号线,将电位器调至最小位置,打开电源然后将电位器慢慢调至最大位。同时观察面板上的电流显示, 再调频率调节电位器调整频率,当发现频率升高或降低时电流都会变小时证明发生器输出已和震子的固有频率一至。达到了最佳谐振点。看输出功率是否达到规范。如果不够可将输出正极线向下调到埠2位。输出还不够时调到埠3位,依次类推。(输出正极接在埠1位电流最小,在埠5位电流最大。超声波清洗的行规:振子每300W 发生器输出1安培电流。即50W\60W每6个振子为1安培)

(4)升压连接线有2个挡位可调,在调试时可适当运用。调试完成,装好外壳。

六.电路方框图:

七.注意事项:

1.发生器使用时需接地线。

2.本机工作时散热处至少留150MM的空间,以便机器工作时充分散热。3.本机严禁进水或其他化学液蒸气。

4.确保电源电压在额定电压范围内。

5.严禁改装本机。

6.不要在振动和充满易爆炸及易燃烧气体的地方使用。

八.固障排除方法

芀一、超声波测距原理 肅超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的 同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S , 即: 膂S = v·△t /2 ① 芀这就是所谓的时间差测距法。 蝿由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: 螅V = 331.45 + 0.607T ② 芄 声 速 确 定

后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 薂二、系统硬件电路设计 腿图2 超声波测距仪系统框图 蒆基于单片机的超声波测距仪框图如图 2 所示。该系统由单片机定时器产生 40KHZ 的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机 是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单 片机复位,然后控制程序使单片机输出载波为40kHz 的10 个脉冲信号加到超声 波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后, 单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数, 这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 莅1 、超声波发射电路 螀超声波发射电路如图3所示,89C51 通过外部引脚P1.0 输出脉冲宽度为250 μ s , 40kHz 的10 个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发 射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远, 可对振荡信号进行功率放大后再加在超声波传感器上。 薈图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应 将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它 上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声 波传感器有专用型和兼用型,专用型就是发送器用作发送超声波,接收器用作接

《智能仪器仪表设计基础》 课程设计报告 单位: 学生姓名: 专业: 班级: 学号: 指导老师: 成绩: 设计时间:2013 年5月

指导老师提供的设计题目和要求 1、设计题目:基于超声波传感器的障碍物检测电路仿真设计 2、指导老师: 3、设计条件: [1]仿真软件可用Multisim10软件或者saber软件。 [2]超声波传感器详细参数: 工作频率:40KHz±1.0KHz 声压值:≥94dB(30cm/10Vrms sine wave) 灵敏度:≥-82dB/v/u bar(0dB=v/pa); 余振::≤1.2ms; -6dB方向性(度):60°±10° 电容:2000pf±10%; 最大输入电压(Vp-p):150(40KHz) 使用温度范围:-35℃—+80℃ 储藏温度范围:-40℃—+85℃ 4、设计要求: [1]设计电路包括超声波发射电路、超声波回波接收电路两部分。超声波发射电 路包括升压激励模块。超声波回波接收电路包括一级带通滤波电路、二级带 通电路、回波二值化电路组成。 [2]当在超声波发射电路输入端输入VPP=5V,Vmin=0V的方波信号时,超声 波发射电路输出端能输出VPP=100V~150V,f=40KHZ的一个激励信号。 [3]当在超声波回波接收电路输入端输出VPP=60mV~2V,f=40KHZ的正弦 波信号时,超声波回波接收电路输出端能输出电平信号。当在超声波回波接 收电路输入端输入低电平信号时,超声波回波接收电路输出端能输出高电平 信号。 [4]附加要求:请用虚拟仪器显示各个电路模块输入端信号及输出端信号 5、参考书目 [1]胡向东,刘京诚,余成波等编著,传感器与检测技术机械工业出版社,2009 [2] 张国雄主编测控电路机械工业出版社,第4版

重庆三峡职业学院 智能电子产品设计与制作实训报告项目名称超声波传感器 班级13级应用电子技术1班 姓名___________________________ 学号___________________________ 2014 --2015 学年度2 学期 机械与电子工程系

一超声波传感器简介 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好,能够成为射线而定向传播等特点。超声波传感器可以对集装箱状态进行探测,可以应用于食品加工厂,实现塑料包装检测的闭环控制系统。超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。 超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。这里仅介绍小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23-25KHZ 及40-45KHZ。这类传感器适用于测距、遥控、防盗等用途。该种有T/R-40-60,T/R-40-12等(其中T表示发送,R表示接收,40表示频率为40KHZ,16及12表示其外径尺寸,以毫米计)。另有一种密封式超声波传感器(MA40EI型)。它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好。超声波应用有三种基本类型,透射型用于遥控器,防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。 二超声波传感器的组成 超声波传感器是指产生超声波和接收超声波的装置,习惯上称为超声波换能器或超声波探头。超声波传感器利用压电晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的传输特性,实现对各种参量的测量,属典型的双向传感器。因此,超声波传感器由发射传感器(简称发射探头)和接收传感器(简称接收探头)两部分组成,如图6-3所示。 图6-3 超声波传感器的组成

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

超声波发生器的原理 超声波发生器,通常称为超声波发生源,超声波电源。它的作用是把我们的市电(220V或380V,50或60Hz)转换成与超声波换能器相匹配的高频交流电信号。从放大电路形式,可以采用线性放大电路和开关电源电路,大功率超声波电源从转换效率方面考虑一般采用开关电源的电路形式。线性电源也有它特有的应用范围,它的优点是可以不严格要求电路匹配,允许工作频率连续快速变化。从目前超声业界的情况看,超声波主要分为自激式和它激式电源。 发生器的原理是首先由信号发生器来产生一个特定频率的信号,这个信号可以是正弦信号,也可以是脉冲信号,这个特定频率就是换能器的频率,一般应用在超声波设备中的超声波频率为20KHz、25KHz、28KHz、33KHz、40KHz、60KHz;1OOKHz 或以上现在尚未大量使用。但随着以后精密清洗的不断发展。相信使用面会逐步扩大。 比较完善的超声波发生器还应有反馈环节,主要提供二个方面的反馈信号:第一个是提供输出功率信号,我们知道当发生器的供电电源(电压)发生变化时。发生器的输出功率也会发生变化,这时反映在换能器上就是机械振动忽大忽小,导致清洗效果不稳定。因此需要稳定输出功率,通过功率反馈信号相应调整功率放大器,使得功率放大稳定。

第二个是提供频率跟踪信号。当换能器工作在谐振频率点时其效率最高,工作最稳定,而换能器的谐振频率点会由于装配原因和工作老化后改变,当然这种改变的频率只是漂移,变化不是很大,频率跟踪信号可以控制信号发生器,使信号发生器的频率在一定范围内跟踪换能器的谐振频率点。让发生器工作在最佳状态。当然随着现代的电子超声技术,特别是微处理器(uP)及信号处理器(DSP)的发展,发生器的功能越来越强大,但不管如何变化,其核心功能应该是如上所述的内容,只是每部分在实现时超声波技术不同而已 超力超声的超声波发生器具有以下六个特点 1.面板设有输出强度条形装置,也有独特的频率和输出强度交替数字显示装置可选配; 2.设有强度可调的扫频功能,以不断改变清洗槽中的声场分布,避免工件表面的线状空化蚀刻纹路的产生,也使工件表面的污物迅速脱落,提高清洗效果; 3.设有功率调节功能,采用先进的功率调节线路,实现超声功率无级平滑调节,克服了通过调节频率来间接的调节功率这种传统方法所带来的诸多弊病; 4.具有国内独创的防共震功能,克服了传统发生器在工件表面易产生纹路而损坏工件,也避免了因因空化而击穿槽体的缺点;

超声波测距传感器 [(模拟传感器)主板模拟接口(A2 ~A6)、扩展板模拟接口(A16~A31)、I2C接口(新机器人)] 一、配件说明

二、 原理与功能 超声波测距传感器是模拟传感器。超声波测距传感器利用声音在空气中的传输距离和传输时间成正比的原 理,通过检测不同远近的反射面对超声波反射回去的时间不同来检测障碍物的距离。超声波传感器有一个发射头和一个接收头,安装在同一面上。在有效的检测距离内,发射头发射特定频率的超声波,遇到检测面反射部分超声波,接收头接收返回的超声波,由芯片记录声波的往返时间,并计算出距离值。超声波测距传感器可以通过两种方式将数据传输给主机,模拟接口和I 2C 接口。 三、 应用介绍 3.1 使用说明 老机器人用户请参阅3.1节模拟接口使用方法部分,新机器人用户请参阅3.1.1节模拟接口使用方法和3.1.2节I 2C 接口使用方法两部分。 3.1.1 模拟接口使用方法 使用模拟接口时将三线插头接至主机模拟口。无需设置I 2C 地址,拨码开关前三位无效;可选择短距离模式和长距离模式,见下图所示: 模式选择,使用四位拨码开关的第四位,可选模式为:短距离模式,长距离模式 4下:短距离模式,5cm~200cm ; 4上:长距离模式,30cm~300cm ; 超声波接收头 超声波发射头 四位拨码开关 数据线

I2C接口使用方法 当使用I2C接口时将四线插头接至I2C总线上。需设置I2C地址,见下图所示,模式选择和模拟接口使用方法一致。 地址选择:采用I2C接口,使用四位拨码开关的前三位,可选地址为0xB0,0xB2,0xB4,0xB6,0xB8,0xBA,0xBC,0xBE; 1下2下3下:地址为0xB0; 1下2下3上:地址为0xB2; 1下2上3下:地址为0xB4; 1下2上3上:地址为0xB6; 1上2下3下:地址为0xB8; 1上2下3上:地址为0xBA; 1上2上3下:地址为0xBC; 1上2上3上:地址为0xBE;

WIEKURT 超声波加湿器器使用说明书 MH-601型号 工作原理------------------------------ 1 分解图-------------------------------- 2 技术参数------------------------------ 3 加湿器特点--------------------------- 3 安全与维护--------------------------- 4 使用环境------------------------------ 4 使用方法------------------------------ 5 故障检查与排除--------------------- 6 电路图--------------------------------- 7

超声波加湿器工作原理 超声波技术是世界上比较成熟的技术,已被广泛应用在各种领域.超声波加显器采用超声波高频振荡原理将水雾化为1-5微米的超微粒子,通过风动装置,将水雾扩散到风气中,从而达到均匀加湿空气的目的,清新空气,滋润肌肤,增进健康。 适宜的科学湿度 相对湿度是指一定温度及一定空间的空气中水蒸气量与饱和水蒸气量之比,一般表示为“%RH”;如室内空气相对湿度为百分之五十,表示为50%RH。我们周围的空气中,总是混有水蒸气的。水蒸气占空气的比例随着湿度不同而不同;温度越高空气吸收的水蒸气越多。这也就是为什么使用“相对湿度”这一概念。冬季,室外的冷空气进入室内,被加热到室内一定的温度,同时,它的相对湿度也随之下降,要在室内保持健康的环境湿度,这就需要人工的方法将水或水蒸气加入到空气中----这就是空气加湿。 根据科学证明各种条件下适宜的相对湿度(仅供参考): 人最舒适的环境湿度为:45%RH---65%RH 最有利的防病、治病环境湿度:40%RH---55%RH 计算机、通讯器材环境湿度:45%RH---60%RH 家具、乐器环境湿度:40%RH---60%RH 图书馆、美术馆、博物馆环境湿度:40%RH---60%RH

自制一个由你掌控的 —— 超声波测距传感器(硬件篇) 一、背景 四年多前,我曾尝试自己制作一个超声波测距传感器。 当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。 为了达到目的,只好选用了 Sharp 公司的 GP2D12。但自制超声波测距传感器的愿望一直没被遗忘。一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。 前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。 本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。 现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。 二、需求分析 ?能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外; ?可以提供给大学生和爱好者 DIY,具有学习功能; ?方便自己随时修改程序,使学习的作用得以充分发挥; ?成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。 三、概要设计 总体设计参照 SensComp公司(https://www.360docs.net/doc/ed17857773.html,)6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。 TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。 TL851 与TL852 配套,它可实现超声波发射及控制TL852的增益变换,通过定时控制增益,使TL852的增益与回波时间相匹配,一方面提高了检测的灵敏度,同时减小了干扰。 如果不能随时间变换增益,为增加检测距离,就需要加大灵敏度;而开始时灵敏度就很高,无疑会收到一些不想要的信号。(6500测距模块的相关资料及芯片资料见附件) 解剖此模块时,对TL852的功能十分感兴趣,当初我制作时就是“栽”在这个环节;而TL851的功能基本属数字控制范畴,输出还需要配合单片机才能得到结果,接口也不是十分灵活,笔者认为完全可以用单片机替代。 所以,本次设计的主要改变就是用单片机替换6500模块的TL851。 单片机还是选用圆梦小车所用的STC12系列,一是考虑是51兼容,符合国内多数教材;二是下载程序方便。此次选用的是 STC12LE4052(4K FlashROM,256 RAM)。考虑体积因素,选择了SOP20封装。

2、超声波换能器的工作原理 (1) 超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压 电陶瓷式。电源输出到 超声波发生器,再到超声波换能器,一般还要经过 超声波导出、接收 装置就可以产生超声波了。 (2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出 电缆,其特征在于它还包括阵列接收器, 它由引出电缆、换能器、金属圆环、橡胶垫圈组成。 (3) 超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料 的压电效应将电信号转换为机械振动 ?超声波换能器是一种能量转换器件,它的功能是将输 入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。 超声波换能器的种类:可分为压电换能器、 夹心换能器、柱型换能器、倒喇叭型换能器等等。 40kHZ 超声波发射/接收电路综述 40kHZ 超声波发射电路 ⑴ 10kHz 因声波发射器]1 ) 40kHZ 超声波发射电路之一,由 F1~F3三门振荡器在F3的输出为40kHZ 方波,工作 频率主 要由C1、R1和RP 决定,用RP 可调电阻来调节频率。 F3的输出激励换能器 T40-16 的一端和反向器 F4, F4输出激励换能器 T40-16的另一端,因此,加入 F4使激励电压提高 了一倍。电容 C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器 F1~F4用CC4069 六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用 9V 叠层电池。测量F3 输出频率应为40kHZ ± 2kHZ 否则应调节 RR 发射超声波信号大于 8m 。 40kHZ 超声波发射电路 ⑵ 1615? F 100 — ^500 T40-16

超声波传感器 使用说明书 浙江亚龙教育装备股份有限公司

一、超声波传感器介绍: (一)、超声波传感器参数表 (二)、外观介绍 图1-1 如1-1图所示:左边绿色指示灯为电源和信号强度指示灯,右边黄色指示灯为信号输出指示灯,TEACH为调节按钮

(三)、工作原理 图1-2 工作原理图 如图1-2所示:可分为四个区域,最小和最大工作范围,近限和远限设定点。(1)检测物体在最小和最大工作范围内,电源指示灯变为绿色,代表物体在 可工作区域内; (2)检测物体在近限和远限设定点内,信号指示灯变为黄色,代表物体在 设定点范围内,有信号输出; (3)检测物体在最小和最大工作范围外,电源指示灯变为红色,信号指示灯变为白色,代表物体在工作范围外,无信号输出。 (四)、参数设置 1、近限和远限手动设置 (1)进入编程模式:长按TEACH Push Button 直到OUT灯变红; (2)设置低限:短按TEACH Push Button,设置完成OUT灯闪烁; (3)设置高限:短按TEACH Push Button,设置完成退出编程模式,进入RUN 模式OUT灯变回初始状态; (4)低限或高限没有设置完成前,长按TEACH Push Button,退出编程模式; (5)在编程模式下,低限设置前,如果时间超过120秒,退出编程模式

(五)、超声波传感器接线说明 图1-3 棕色(bn):+24v 蓝色(bu):0V(模拟量输出公共端) 白色(wh):模拟量输出端 黑色(bk):开关量信号端 灰色(gy):远程终端 屏蔽线(shiled):接地端

mm 数字 量68mm 28mm 6000 320000 二、西门子S7-224XP 与超声波传感器使用说明 (一)接线原理图 图1-4 (二)编程思路 S18UIA 传感器输出为4~20ma 的电流,西门子224XP 系列PLC 模拟量输入为0~10v 满量程为0~32000;所以在模拟量输出端外加500欧姆的电阻转化为2~10v 的电压。 此处实例: 下限高度为28mm 上限高度为68mm 由公式y=kx+b 可以计算出 K=650;b=-12200 图1-5

HKD-1027超声波 一、性能简介: 本电源是采用全数字设计的多功能、高性能、高可靠性的超声波专用功率源。 (一)采用微电脑控制和数字频率合成技术,频率自动跟踪。 (二)数字式超声功率连续可调,使用更灵活,功率更强,工作更稳定。 (三)具有完善的保护功能:过热保护、过流保护和过压保护。 (四)四位数码管显示频率、电流、工作状态和定时直观清晰。 (五)提供远程外控接口,方便与其它控制设备的连接。 (六)扫频速度和扫频宽度数字化调整,可变水花、声音,调试方便直观。 二、主要技术指标: 工作电压:220V 10% 工作频率:80KHz以下 功率控制范围:0-100% 8级数控调节(功率条指示)机内过热保护:65℃ 三、面板功能说明: 1.显示窗:显示工作频率,电流大小,功率等级,工作状态及故障情况。 2.启动/停止:控制超声启动和停止[ 恢复出厂数据]。 3.扫频开关:选择正常工作状态或扫频工作状态[确认此项进入下一项]。 4.时间加:设置定时工作值(设置显示“ON/OFF”)[频率加]。 5.时间减:设置定时工作值(设置显示时间“XX.XX”)[频率减]。

6.功率加:增大输出功率(设置显示电流“XX.XA”)。 7.功率减:减小输出功率(设置显示频率“FX.XX”)。 8.电源开关:控制220V电压。 注:本说明中显示内容中的“X”为数字,其它为字母。以下同。 小括号()中的功能需要与电源开关配合实现功能。 中括号 [ ]中的功能需要和控制板上的工厂短路接口配合实现功能。 四、使用说明: 1.“电源开关”: 将机器安放在通风干燥处,接好电源和输出接头。当打开电源时显示窗口将显示产品出产序列号。然后显示“----”表示扫描显示状态控制按键。 2.“启动/停止”键功能: 打开电源后如果上次关电源时是开启超声状态,那么这次开电源就会自动开启超声。如果上次关电源时是待机状态,那么这次开电源也会是待机状态,这时显示窗口显示“-OFF”,然后再按“启动/停止”,电源就会启动,并显示“FXX.X”\“XX.XA”\“-ON-”。如果已经定时,开机后会显示时间“XX.XX”。 3.“时间加、减”键功能: 在待机状态可以通过“时间加、减”键调设定时间,调整完成三秒钟会自动记忆设定的时间,“时间加、减”键会根据长按时间加速。如果设定了时间那么开机后都会显示“XX.XX”。4.“功率加、减”键功能: 在启动和待机状态都可以通过“功率加、减”键调整功率大小,但调整的功率必须在停止状态才可以自动记忆。如果在启动状态下调整了功率可以按一次“启动/停止”键,才会记忆调整的功率。 5.“扫频开关”键功能: 在超声输出状态通过对电源输出的规律改变,使超声震动模拟冲刷效果,对带有微孔的工件具有良好的清洗效果。 6.远程控制线的使用: 机器后面有一远程控制接口,主要用于自动控制设备中,通过设备中的PLC或其他设备灵活的控制超声的输出,避免频繁开关设备电源造成对设备的损害。当远程遥控口短接时,超声启动,面板上的“启动/停止”键被锁闭。当同一设备有多台受控超声电源时须用多组相互独立的开关触点。(如下图)

一、简介 URM37 V3.2上已经很好的实现了超声波开关量、串口(TTL和RS232电平可选)、脉冲输出功能、模块还可以控制一个舵机的旋转组成一个空间超声波扫描仪。为了方便客户使用模块,在出厂时可以根据客户需要配置其相应的参数,也可以根据客户具体需求定制软件,使他成为一个专用的模块。 当前版本URM37 V4.0在V3.2基础上对功能进行了升级使其具有更好的智能功能,机械尺寸与引脚接口以及通信命令兼容V3.2,在V3.2基础上做了如下更改: ●串口电平选择由原来的跳针方式改为通过按键设置,用户可以轻松的选择TTL电平输 出或是RS232电平输出(重启之后模式生效)。 ●修改了测距算法,使测量盲区减小,精度提高。 ●具有模拟电压输出功能,电压和测量距离正比。 ●宽电压支持+3.3V-5.0V。 ●具有电源接反保护功能。 ●自动测量时间间隔可修改。 ●修改舵机控制角度为0-180,兼容市面大部分舵机。 ●测量时长为100ms。 二、产品参数 1.产品规格 ●工作电源:+3.3V~+5.0V ●工作电流:<20mA ●工作温度范围:-10℃~+70℃ ●超声波距离测量: ●最大测量距离―500cm ●最小测量距离―5cm ●分辨率-1cm ●精度-1% ●模块尺寸22mm ×51 mm ●模块重量:约25g ●超声波一次测量时间为100ms 2.技术说明 ●由于使用了更好的测距处理方法,使测量距离更远更稳定,在测量上完全兼容V3.2, 但是我们可以做到在0.3-3M的距离上稳定2mm的精度,如果有需要可以和公司联系定制。 ●模块使用RS232串口通讯可靠性更高,同时可以通过电脑串口采集数据,编写通讯程 序非常的便捷。 ●串口电平工作方式是TTL还是RS232选择方式为按键设置或者软件设置(重启之后模 式生效)。 ●模块可以通过脉宽输出的方式将测量数据输出,这样使模块使用更简单。 ●模块可以预先设定一个比较值,在自动测量模式下,测量距离小于这个值后管脚 COMP/Trig输出一个低电平,这样模块能够方便的作为一个超声波接近开关使用。 ●模块提供一个舵机控制功能,在非自动测量模式下,可以和一个舵机组组成一个180 度测量组件用于机器人扫描0~180度范围障碍物。 ●模块内带温度补偿电路提高测量的精度。 ●模块内带123字节内部EEPROM,可以用于系统记录一些调电不丢失的系统参数。

超声波发生器电源控制电路信息发布时间:(2008年8月7日22:02:40 ) 发布者IP地址: 信息详细内容: 第60324篇:基于PWM大功率超声波电源的设计发布时间:2006年12月30日点击次数:120 来源:电子设计应用作者:内蒙古科技大学机械工程学院苏凤岐汪建新孙建平摘要:本文详细介绍了为驱动磁滞伸缩换能器而设计的一种频率、功率可调式大功率超声波电源,该电源采用由IGBT构成的全桥式逆变主电路,实现了逆变降压和输出电压调控。控制电路以脉宽调制电路为核心,通过给定信号和反馈信号电压的比较,获得宽度可变的脉冲信号,调节电源的输出电压,并实现对电源的闭环控制。关键词:IGBT;波形发生器;超声换能器;脉宽调制引言近年来,随着全控制型电子器件和PWM技术的迅速发展,功率超声的应用及其驱动电源的开发已成为热点研究领域之一。本文介绍的高频换能器驱动电源,采用全桥移相式串联电路拓扑,以单片脉宽调制电路为核心、IGBT功率管为功率开关器件,实现了大功率输出。它具有效率高、性能稳定、体积小、质量轻和调节方便等优点。超声波电源的设计超声波电源的组成及原理框图逆变式超声波电源主要由主电路和控制电路两部分组成,其基本原理框图如图1所示。图1超声波发生器原理框图主电路是将电能从电网传递给负载的电路,其主要作用是减小变压器体积和改善电源的动态品质。控制电路则主要为逆变主电路提供开关脉冲信号,驱动逆变主电路工作,并借助反馈电路和给定电路来实现对逆变器的闭环控制。逆变主电路逆变主电路包括输入整流滤波、逆变器和输出滤波三个主要部分,而逆变器则是其核心部件。逆变器本设计采用的逆变电路为全桥式逆变电路,其优点是:适用于大功率输出,主变压器只需一个原边绕组,通过正、反向的电压得到正、反向的磁通。因此,变压器铁芯和绕组得到最佳利用,使效率得到提高。另外,功率开关管在正常运行情况下,最大的反向电压不会超过电源电压,4个能量恢复二极管能消除一部分由漏感产生的瞬时电压,无须设置能量恢复绕组,反激能量 便得到恢复利用。在全桥式逆变电路中,采用IGBT作为大功率开关器件。IGBT管构成的逆变器的电路原理图如图2所示。图2桥式变换电路图交流电经桥式整流器而获得直流电压,并经C0滤波,变成平滑的直流电压V+。该电压加在IGBT功率管Tr1、Tr2、Tr3、Tr4组成的逆变桥上。当Tr1、Tr2、Tr3、Tr4都截止时,中频变压器T 原边线圈绕组T1p两端的电压U1=0。给Tr1、Tr3触发脉冲,这两个功率管导通, Tr2、Tr4截止时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=V+,流经变压器原边线圈绕组T1p的电流方向由下至上。当Tr1、Tr3截止, Tr2、Tr4导通时, 此时中频变压器T原边线圈绕组T1p两端的电压U1=-V+,变压器原边线圈绕组T1p电流的方向为由上至下。由此可见,通过Tr1、Tr3和Tr2、Tr4的交替导通和关断,也就是交替驱动Tr1、Tr3和Tr2、Tr4, 中频变压器T的二次侧即得到矩形波交流输出,实现了直流变交流的过程。T r1, Tr2、Tr3, Tr4的通断受控于电子控制电路,其每秒钟驱动IGBT的次数决定了电源的工作频率。中频变压器在逆变器部分, 中频变压器的作用是实现电压变换,功率传递以及输入、输出之间的隔离。由于中频变压器的工作频率较高,随着频率的增大,铁芯的铁损将成倍增加。为了减少其铁损需选用厚度极薄的硅钢片,这显然是很不经济的,因而选用高导磁合金材料的铁氧体磁芯。铁氧体磁芯的规格可根据输出功率及其效率来确定,则磁芯有效截面积Ae、总磁感应强度增量△B也就确定。根据公式1,可计算出中频变压器的原边绕组匝数。 (1) 其中,Np为变压器原边绕组匝数,U1为变压器绕组电压,△B为总磁感应强度增量,Ton为最大导通时间。控制电路控制电路主要由电子控制电路和驱动电路构成,而电子控制电路又包括时序控制电路和脉宽调制电路。其中,脉宽调制电路是整个超声电源控制系统的核心,它与控制系统中的其它电路都有直接联系,其主要作用是将电压给定信号和电压 反馈信号进行比较放大,根据给定值与反馈值的差值,输出相应宽度的脉冲信号,以调整电源输出电压的大小。通常采用定频率调脉宽的PWM方式来达到换能器所需的各种特性控制。脉宽调制电路还有欠压、过压、过流等保护功能,封锁输出脉冲,使电源停止输出。另外,脉宽调制电路还具有软启动、死区设定等功能。脉宽调制电路本设计采用SG3525A作为电源的PWM芯片。该芯片使用简单,只需要外接少量电阻电容,即可构成所需的脉宽调制电路。如图3所示,芯片内部主要由误差放大器N1、比较器N2、振荡器、分相器和触发器等组成。图3 脉宽调制电路图给定电压Ug和反馈电压Uf分别接至误差放大器N1的同相端和反相端,N1 端的输出电压UN1接至比较器N2的反相输入端,同时,振荡器产生的三角波信号UN2,接至N2的同相输入端。误差放大器的输出与锯齿波电压在比较器中进行比较,从而在比较器的输出端输出一个随误差放大器输出电压的高低而改变脉宽的方波脉冲。再将此方波脉冲送或非门的一个输入端,或非门另三个输入端分别为触发器、振荡锯齿波、欠压

超声波换能器使用说明书 一、概述 超声波筛分系统是一种简单实用、可靠的筛分系统,是当前网孔堵塞的最有效的解决方法。可广泛应用于制药、冶金、化工、选矿、食品等要求精细筛分过滤的行业,筛分过滤精度高,有效解决因团聚、静电、强吸附性卡堵网孔等筛分难题,是国内筛分行业的一项重大突破。 二、结构 超声波震动筛电源:38KHz高频大功率超声波电源。内置微电脑芯片,可根据物料的不同状态进行全程数字频率自动跟踪,无需人工调整,操作简单方便。长时间工作振荡器发热量低,工作状态稳定。 ●HF链接电缆线:超声波换能与超声波振动筛电源之间采用电缆链接。 ●连接器:航空链接插件。 ●换能器:高性能超声波转换器件。 ●超声波网架:由外网架于共振器组成。 ●筛网:适用于10目~635目。 三、工作原理 超声波筛分系统由超声波振动筛电源、HF链接电缆、换能器、共振器组成。超声波振动筛电源产生的高频电通过换能器转换成高频正弦形式的纵向振荡波,这些震荡波传到共振器上使共振器产生共振,然后由共振器将振动均匀传输至筛面。筛网上的物料在做低频三次元振动的同时,叠加上超声波振动,即可防止网孔堵塞,又可提高筛分产量和精度。 四、技术参数 超声波振动筛电源: 电源输入整机电流高频电流工作频率工作模式环境温度 AC220V±10% ≤0.6A ≤0.4A 38KHz 连续、脉冲-10~35℃50~60Hz 五、使用说明 1、首先将换能器锁定在贴好网的网架上(锁定力度为40~50kg),然后将超声波网架装入振动筛。 2、超声波振动筛电源与旋振筛分别供电,旋振筛为三相供电,超声波振动筛电源为单相供电,两者均需可靠接地。 3、超声波振动筛电源后面板OUT为超声波输出,请把超声波HF连接线插入锁紧,并检查链接可靠。HF链接电缆的航空插头另一端与换能器链接,并保证密封固定牢固。 4、接好超声波振动筛电源的电源及超声波HF链接电缆,检查无误后打开超声波电源开关。随着“滴”的声响,超声波振动筛电源启动,显示窗口显示“振动幅度XXXμm”,并进入自检状态。通过调整振幅旋钮,即可调整振动幅度(建议振动幅度100~150μm,有利于筛网的寿命)。 5、超声波谐振动电源有2种工作状态:连续“—”工作状态和脉冲“”工作状态,正常为连续“—”工作状态下,按摩式建,进入脉冲“”工作状态。在脉冲“”状态下按连续建,返回连续工作状态。 六、其他注意事项 在使用超声波振动系统前,请仔细阅读本注意项,按说明操作,以免造成设备不必要的损坏。 1、超声波振动筛电源工作输入电压为交流220V。 2、在能够满足生产要求的情况下,振动幅度最大不要超过200μm. 3、网架没有负载即网架没有绷网的时候,请勿打开超声波振动筛电源。否则,容易造成电源过流和网架及换能器的损坏。 4、筛网一定要绷紧,否则影响超声波输入及振动效果。

卡乐电极式加湿器 使用手册

目录 一、我司所用到的卡乐加湿器型号及元件描述 (1) 1.订货号与产品型号对照表 (1) 2.加湿桶型号表示方法 (2) 3.加湿控制板(CP3、CP4)技术说明 (2) 二、我司常规选用的加湿器外形及尺寸 (5) 1.外形及产品结构描述 (5) 2.各系列加湿器几何尺寸 (5) 三、加湿器的安装 (7) 1.安装步骤 (7) 2.注意事项 (8) 四、加湿器控制接线图(CP3、CP4) (10) 五、加湿控制板跳线说明 (12) 1.跳线D IP SWITCHES A(8位拨码开关) (12) 2.跳线D IP SWITCHES B(8位拨码开关) (12) 3.跳线D IPS“TA RATE”(4位拨码开关)及互感器绕线 (13) 六、加湿器开机前的检查工作 (14) 重要警告 (14) 1.初检 (14) 2.开机 (14) 七、常见器故障及处理方法 (15) 1.常见故障及解决方法: (15) 2.关于控制板报警 (16) 八、加湿器的维护 (18) 1.更换加湿桶 (18) 2.更换电极片 (18) 3.定期检查 (19) 4.其它装置的保养 (20) 九、控制板程序下载软件:HUMISET 使用说明 (22) 1.硬件连接 (22) 2.软件安装 (22) 3.软件使用 (23)

一、我司所用到的卡乐加湿器型号及元件描述 1.订货号与产品型号对照表 表1.1: 订货号与产品型号对照表 注:⑴以上型号的加湿器适用的加湿电压为3相380V,单相或三相220V加湿 电压的加湿器需参考另外的资料选型。 ⑵公司常规暂按低电导率订货号进行选型,如有变更将另行通知。 ⑶订货号说明 :00—标准电导率,L0—低电导率,H0—高电导率 03—5~8kg,04—10~15kg,05—25~35kg,06—45kg 表示加湿桶 SL表示申菱公司 HUM表示加湿器

基于超声波传感器的障碍物检测课程设计报告

《智能仪器仪表设计基础》 课程设计报告 单位: 学生姓名: 专业: 班级: 学号:

指导老师: 成绩: 设计时间:2013 年5月 指导老师提供的设计题目和要求 1、设计题目:基于超声波传感器的障碍物检测电路仿真设计 2、指导老师: 3、设计条件: [1]仿真软件可用Multisim10软件或者saber软件。 [2]超声波传感器详细参数: 工作频率:40KHz±1.0KHz 声压值:≥94dB(30cm/10Vrms sine wave) 灵敏度:≥-82dB/v/u bar(0dB=v/pa); 余振::≤1.2ms; -6dB方向性(度):60°±10° 电容:2000pf±10%; 最大输入电压(Vp-p):150(40KHz) 使用温度范围:-35℃—+80℃ 储藏温度范围:-40℃—+85℃ 4、设计要求: [1]设计电路包括超声波发射电路、超声波回波接收电路两部分。超声波发 射电路包括升压激励模块。超声波回波接收电路包括一级带通滤波电路、二级带通电路、回波二值化电路组成。 [2]当在超声波发射电路输入端输入VPP=5V,Vmin=0V的方波信号时, 超声波发射电路输出端能输出VPP=100V~150V,f=40KHZ的一个激

励信号。 [3]当在超声波回波接收电路输入端输出VPP=60mV~2V,f=40KHZ的正 弦波信号时,超声波回波接收电路输出端能输出电平信号。当在超声波回波接收电路输入端输入低电平信号时,超声波回波接收电路输出端能输出高电平信号。 [4]附加要求:请用虚拟仪器显示各个电路模块输入端信号及输出端信号 5、参考书目 [1]胡向东,刘京诚,余成波等编著,传感器与检测技术机械工业出版社,2009 [2] 张国雄主编测控电路机械工业出版社,第4版 一、摘要 本次仿真实验设计电路包括超声波发射电路、超声波回波接收电路两部分。超声波发射电路包括升压激励模块。超声波回波接收电路包括一阶低通滤波电路、二级低通电路、回波二值化电路组成。在本次应用Multisim10软件仿真实验过程中我们用555定时器产生了0~5V的方波激励信号,并通过升压激励电路最终能输出VPP=100V~150V,f=40KHZ的一个激励信号。 而当在超声波回波接收电路输入端输出VPP=60mV~2V,f=40KHZ的正弦波信号时,超声波回波接收电路输出端能输出电平信号。当在超声波回波接收电路输入端输入低电平信号时,超声波回波接收电路输出端能输出高电平信号。 二、相关电路概述及原理简介 1、超声波传感器 超声波发射与回波接收电路的主要作用是提高驱动超声波传感器的脉冲电压幅值,有效地进行电/声转换,增大超声波的发射距离,并通过收发一体的超声波传感器将返回的超声波转变成微弱的电信号。超声波发射与回波接收电路如图3所示(画出一路,其他三路与该路一样)。

LU20 超声波体积传感器标定操作步骤 调试按输出信号随高度上升而增大称正程标定[即4-20mA],反之按输出信号随高度上升而减少程逆程标定[即20-4mA] (1) 同时按住超声波传感器(SET)和(▲)键,开启主机电源开关,将传感器测量单位设为cm;另外同时按住超声波传感器(SET)和(▼)键,开启主机电源开关,将传感器测量单位设为inch; (2) EC4值是仪表LU20的4mA输出的设定值,其设定是:按住(MENU)键,直至EC4出现;松开(MENU)键,少待一会会出现一个数值,按(▲)键或按(▼)键,调整至20.3cm为止(逆程设为548.6cm);按(SET)键存储设定值; (3) EC20值是仪表LU20的20mA输出的设定值,其设定是:a、按住(MENU)键,直至EC20出现;b、松开(EENU)键,少待一会会出现一个数值,按(▲)键或按(▼)键,调整至为止548.6cm(逆程设为20.3cm);c、按(SET)键存储设定值. (4) MAXR值是显示最大距离(理论值是548.6cm),其设定是:a、按住(MENU)键,直至MAXR出现;b、继续按住(MENU)键,直至出现一个数值为止,如果数值合适(既548.6cm),按(SET)键存储;c、若数据不合适,按(▲)键或按(▼)键修改,直至548.6cm为止,然后按(SET)键存储设定值。 (5) MINR值是显示最大距离(理论值是15.5cm),其设定是:a、按住(MENU)键,直至MINR出现;b、继需按住(MENU)键,直至出现一个数值为止,如果数值合适(既20.3cm),按(SET)键存储;c、若数据不合适,按(▲)键或按(▼)键修改,直至20.3cm为止,然后按(SET)键存储设定值。 (6) FAST/FLOW光声波速度设定,其设定是a、按住(MENU)键,直至FAST/FLOW 出现;b、松开(MENU)键,然后按(SET)键,直至需要的选项为止,产品出厂前已设定为(FAST)。 (7) ALIN设定(OFF为测量,ON为调试)a、按住(MENU)键,直至FAST/FLOW 出现;b、松开(MENU)键,然后按(SET)键,直至需要的选项为止,产品出厂前已设定为OFF。 (8) SAF1/SAF2SAF3是LU20的错误安全输出设定,其设定是a、按住(MENU)键,直至SAF1/SAF2SAF3出现。b、松开(MENU)键,然后按住(SET)键不放,直至需要的选项为止,存储器会存储该设定,如果要更改,则需从第一项开始。 其中:SAF1:22mA; SAF2:4mA; SAF3:保持发生错误的输出值。

相关文档
最新文档