复式断面河道过水能力计算的修正垂直分割法

复式断面河道过水能力计算的修正垂直分割法
复式断面河道过水能力计算的修正垂直分割法

水闸过流能力及稳定计算

水闸过流能力及结构计算计算说明书 审查 校核 计算 ***市水利电力勘测设计院 2011 年 08 月 29日

1、水闸过流能力复核计算 水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式: 23 02H g b m Q s εσ= 22 '02?g bh Q h H c c ? ?? ? ??+= 40 01171.01s s b b b b ???? ? ? - -=ε 式中:B 0—— 闸孔总净宽,(m ); Q ——过闸流量,(m 3/s ); H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m ); b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; h c 进口断面处的水深,m ; s σ——淹没系数,按自由出流考虑,采用1.0; ?——流速系数,采用0.95; 已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得: 综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。

2、结构计算 **堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。 (1)抗滑稳定计 1)计算工况及荷载组合 工况一:施工完建期,荷载组合为自重+土压力 工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力 2)荷载计算 计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。 闸门重 2.352×9.81=23.07 KN; 闸底板重25×4.0×0.7×4.1=287 KN; 闸墩重25×0.8×4×2*2=320 KN; 平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN; 柱25×2.82×0.4×0.4×4=45.12 KN; 启闭力-100 KN; 启闭机重0.56×9.81=5.49 KN; 启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN; 工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN; 25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN; 启闭房砖墙22×0.864×4.1×4=311.73 KN; ∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340 =1016.98KN; 水重10×2.0×2.0×2.5=100 KN;

宽浅型河道纳污能力计算方法

收稿日期:2001Ο03Ο20 作者简介:韩龙喜(1964— ),男,江苏扬州人,副教授,博士,主要从事水力学及水环境科学研究.宽浅型河道纳污能力计算方法 韩龙喜1,朱党生2,姚 琪1 (1.河海大学水文水资源及环境学院,江苏南京 210098;2.水利部水利水电规划设计总院,北京 100001) 摘要:对于宽浅型河道,排放到水体中的污染物质在功能区相应的距离内不能达到横向均匀混合,常用的环境容量计算方法不再适用.针对这一情况,从水资源保护规划出发,对进入河段的污染源沿河长进行了概化.在此基础上,提出了纳污能力的计算方法及公式,并给出宽浅河道不同功能区组合情况下纳污能力的计算方法,为大范围水资源保护规划提供了一种简单、实用的工具. 关键词:功能区划;宽浅型河道;污染源概化;纳污能力 中图分类号:X522 文献标识码:A 文章编号:1000Ο1980(2001)04Ο0072Ο04 对于宽浅型河道,污染物质在排放到水体中后,因宽深比较大,污染物沿流程在很长距离的河段内不能达到断面内均匀混合,污染物浓度在断面上沿横向变化较大,常用的环境容量计算公式不再适用.为考虑浓度在平面上的变化情况,可用二维水质数学模型模拟污染物沿河流纵向、横向的迁移转化规律.因此,不同功能区的纳污能力应以功能区相应的水质目标为依据,以二维水质数学模型数值解或解析解为工具,考虑功能区间的相互衔接关系进行计算.本文采用水质平面二维解析解,导得纳污能力的计算公式. 1 宽浅河道二维水质解析解 对宽浅型河道,若水深沿纵向、横向变化较小,在水流恒定的情况下,河道内水流可近似地看成均匀流,若排入河道的污染源源强为恒定,则在下游形成恒定的浓度场.设某宽浅河道污染源岸边排放,强度为S ,因河道较宽,可不考虑对岸反射的影响,在下游位置(x ,z )处产生的浓度为[1] C (x ,z )=S/H 4πE z ux exp -uz 24E z x -K x u (1) 式中:x ———纵向坐标,代表计算点至排放口的纵向距离;z ———横向坐标,代表计算点至排放口的横向距离;H ———断面平均水深;u ———断面平均流速;K ———污染物的自净系数;E z ———横向紊动扩散系数,可用下式求解: E z =αz HU 3 (2)式中:αz — ——经验系数;U 3———摩阻流速.2 宽浅河道纳污能力计算方法 211 宽浅河道纳污能力定义 对宽浅河道,在一定的水量条件下,在保障河道水质满足功能区要求的水质标准情况下,排污口所能容纳的污染物的最大数量称为纳污能力.据此定义可知,在水流条件及水域环境功能确定的情况下,纳污能力与排污口位置有关.由于假定污染物从某一空间点排入水体,即使排污量很小,在排污口的下游水域也存在着一定范围的污染带.因此,与排污口相应的纳污能力允许存在污染带.但污染带范围大小与排污源强有关.因此,要确定纳污能力,必须首先确定允许的污染带的范围.排污口位置、污染带范围一旦给定,纳污能力也就唯一确定. 设宽阔水域纳污能力为W ,从理论上讲水域中任一点的水质浓度应为两岸排污的叠加.对宽深比足够第29卷第4期2001年7月河海大学学报JOURNA L OF H OH AI UNI VERSITY V ol.29N o.4Jul.2001

最新河道断面测量要求及控制原则

河道断面测量要求及控制原则 1、断面间距控制在300米以内,若遇断面变化较大(如河道缩窄处、弯道较大或支流入汇处),应在此处增加测量断面; 2、断面编号从下游起编,各支流或分汊应单独编号; 3、若遇过河建筑物(如滚水坝、桥等),应测量3个断面:过河建筑下游断面、过河建筑上游断面及过河建筑物本身的横剖面断面,前两个断面参与河道断面编号,过河建筑物单独编号,桥(或滚水坝)的名称要标明。 4、遇桥梁或居民集中区,应进行洪痕调查(最好有两处以上或两场洪水以上)。查明洪痕发生的时间,并测出洪痕点的高程,洪痕位置应测量断面。 5、位于两整治河段之间的河道,若有滚水坝或其他控制断面,则只需测出控制断面的横剖面及其下游处横断面,否则,应增加测量该河段的横断面,使整治河道断面保持连续性。 6、河道带状图测量应在整治河段范围的基础上适当往上、下游延伸测量100-200m 范围。 7、测量成果应包含以下内容:测量带状图、河道横断面图(含过河建筑物剖面图)、河道纵断面图、断面数据(EXCEL 形式)和断面间 距等相关内容。算术平方根的双重非负性 一般地,如果一个正数x 的平方根等于 a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。0的算术平方根是0。其中算术平方根有一个非常重要的性质,就是它的双重非负性,即①被开方数0≥a ;②0≥a 。这一性质在解题中有着极其广泛应用,以下举例说明。 一、利用非负性①被开方数0≥a

例1 x 为何值时,下列各式有意义。 ⑴x -; ⑵x x +-1; ⑶ 14+x ; ⑷12+x ; ⑸11 2--x 解:⑴当0≥-x ,即0≤x ,x -有意义; ⑵当01≥-x 且0≥x ,即10≤≤x 时,x x +-1有意义; ⑶当01>+x ,即1->x 时,14 +x 有意义 ; ⑷当012≥+x ,即x 取任意实数时,12+x 有意义; ⑸当012>--x ,即(),012>+-x 012<+x 时,11 2--x 有意义,但 无论x 取任何数,12+x 都不会是负数,故原式无意义。 评注:对于⑶、⑸这样的式子,除了应用被开方数0≥a 的性质外,还要注意分母不能为0。 例2 若x 、y 满足42112=+-+-y x x ,则xy 的值为 。 解:由被开方数0≥a 得, 021,012≥-≥-x x 2 1,21≤≥ x x 所以2 1=x 把2 1=x 代入等式得4=y 故2421=?=xy ,应填2。

环境水体纳污能力判别值及其应用研究

万方数据

万方数据

万方数据

万方数据

万方数据

环境水体纳污能力判别值及其应用研究 作者:齐青青, 沈冰, 张泽中, 徐建新, 张运鑫, 王义民, QI Qingqing, SHEN Bing,ZHANG Zezhong, XU Jianxin, ZHANG Yunxin, WANG Yimin 作者单位:齐青青,QI Qingqing(西安理工大学西北水资源与环境生态教育部重点实验室,陕西西安,710048;华北水利水电学院,河南郑州,450045), 沈冰,王义民,SHEN Bing,WANG Yimin(西 安理工大学西北水资源与环境生态教育部重点实验室,陕西西安,710048), 张泽中,徐建新 ,ZHANG Zezhong,XU Jianxin(华北水利水电学院,河南郑州,450045), 张运鑫,ZHANG Yunxin(河北工程大学水电学院,河北邯郸,056021) 刊名: 西安理工大学学报 英文刊名:JOURNAL OF XI'AN UNIVERSITY OF TECHNOLOGY 年,卷(期):2011,27(1) 参考文献(6条) 1.杨杰军;王琳;王成见中国北方河流环境容量核算方法研究 2009(02) 2.国家环境保护总局GB3838-2002地表水环境质量标准 2003 3.王西琴;刘昌明;张远基于二元水循环的河流生态需水水量与水质综合评价方法--以辽河流域为例 2006(11) 4.黄强;张泽中;王宽改进污径比计算方法及应用 2008(01) 5.莫淑红;孙新新;沈冰基于系统动力学的区域水环境动态承载力研究 2007(03) 6.宋庆辉;杨志峰对我国城市河流综合管理的思考 2002(03) 本文读者也读过(9条) 1.谷军方.陈新美浅谈滏阳河邯郸段纳污能力计算问题[会议论文]-2007 2.邱爱军.訾香梅.QIU Ai-jun.ZI Xiang-mei渭河污染物总量控制方案研究[期刊论文]-水资源与水工程学报2006,17(2) 3.苏茂林.SU Mao-lin枯水流量演进方法及其应用[期刊论文]-河海大学学报(自然科学版)2006,34(3) 4.周洋.周孝德.冯民权.ZHOU Yang.ZHOU Xiaode.FENG Minquan渭河陕西段水环境容量研究[期刊论文]-西安理工大学学报2011,27(1) 5.吴建红.朱积军HEC-HMS模型及其应用比较研究[期刊论文]-科技创新导报2010(4) 6.严伏朝.解建仓.汪雅梅.秦涛.YAN Fu-chao.XIE Jian-cang.WANG Ya-mei.QIN Tao渭河下游小流量演进规律研究[期刊论文]-西安理工大学学报2010,26(3) 7.刘凌.崔广柏湖泊水库水体氮、磷允许纳污量定量研究[期刊论文]-环境科学学报2004,24(6) 8.陈南祥.姜新慧基于GIS与层次分析法的地下水资源分区研究[期刊论文]-人民黄河2010,32(11) 9.吴纪宏黄河干流河段污染物降解系数分析研究[期刊论文]-人民黄河2006,28(8) 本文链接:https://www.360docs.net/doc/ed3579095.html,/Periodical_xalgdxxb201101008.aspx

建桥对望虞河行洪及引水能力影响的计算分析

建桥对望虞河行洪及引水能力影响的计算分析 曲红玲,高祥宇,夏益民 (南京水利科学研究院,江苏 南京 210024 ) 摘要:沿江开发高等级公路跨越望虞河,通过平面二维水流数学模型计算分析拟建大桥对望虞河行洪和引水时流量、水位、流速的影响。结果表明:大桥修建后对河道行洪及引水能力的影响较小,桥墩周围水位略有变化,河道内流速影响范围不大。 关键词:行洪;引水;跨河大桥;数值模拟 望虞河是太湖流域骨干泄洪引水通道,对流域防洪、水资源配置和水环境保护有举足轻重的作用。新一轮太湖流域防洪规划,将进一步扩大望虞河行洪和引水能力,建成太湖行洪的高速通道和引江“清水走廊”[1]。沿江开发高等级公路在常熟海虞镇境内跨越望虞河,大桥对其行洪和引水能力影响研究十分必要。 1 工程概况 1.1建设项目概况[2] 沿江开发高等级公路望虞河大桥位于常熟市海虞镇境内,大桥距下游常熟枢纽节制闸约1 265 m ,距上游虞王桥约1 250 m 。桥轴线与水流方向交角为90°。图1为望虞河现状示意图和拟建大桥工程位置。 图1 望虞河现状示意图和拟建大桥工程位置 拟建大桥桥型为7×30+(55+85+55)+6×30预应力混凝土连续箱梁结构,主桥下部结构采用薄壁式墩,钻孔灌注桩基础。桥梁全长592.2 m 。大桥主墩左右各1排2个,顺流排列,长12 m 、宽2.5 m ,两端迎水面和背水面均为半圆形。 1.2工程所在河道情况[3] 望虞河通航等级五级,通航要求净宽50 m ,净高5 m 。桥位处河口宽约150 m ,河道断面标准为:底高程-3.0 m (吴淞高程)、底宽82 m 、坡比1:3~1:5(即高程-1.0 m 以上1:3,以下1:5);东西岸堤防标准为:顶高程分别为6.0 m 、5.5 m ,顶宽分别为11.5 m 、4 m ,坡比1:2,青坎高程4.5 m ,青坎宽度分别为5 m 、2 m 。 2 平面二维水流数学模型 2.1控制方程及其离散求解 在流体力学中,浅水流动是对实流动的一种简化和概化的数学模型。本模型采用基于圣维南方程基本假设的浅水方程组: ()()()()E U G U U U F U S U t t x y ????+?=++=???? (1) 式中:h U hu hv ????=??????,F Ei Gj =+v v ,222hu gh E hu huv ??????=+??????,222hv G huv gh hv ??????=??????+??,0()()ox fx oy fy S gh S S gh S S ????=????????,h 为水深;u 为x 方向流速; 联系方式:xygao@https://www.360docs.net/doc/ed3579095.html,

河道水面线推求及参数选取方法

设计洪水水面线推算 根据沿程比降、流量、建筑物及支流汇入情况,水面线分段进行推算。 (1)水面线推算的基本公式 水面线计算按明渠恒定非均匀渐变流能量方程,在相邻断面之间建立方程,采用逐段试算法从下游往上游进行推算。 具体如下: 式中: 1Z 、1V ——上游断面的水位和平均流速; 2Z 、2V ——下游断面的水位和平均流速; j f w h h h +=——上、下游断面之间的能量损失; l R C V h f 22=——上、下游断面之间的沿程水头损失; )22(2221g V g V h j -=ζ——上、下游断面之间的局部水头损失; ζ——局部水头损失系数,根据《水力计算手册》,由于断面逐渐扩大的ζ取 值0.333,桥渡处ζ取值0.05~0. 1。 C ——谢才系数; R ——水力半径; α——动能修正系数。 (2)河道糙率 河道的粗糙系数受到河床组成床面特性、平面形态及水流流态、植物、岸壁特性等影响,情况复杂,不易估计,本工程河道基本顺直,床面平整,经过整治的河床粗糙系 数可以采用《水工设计手册》第一卷P1-404介绍的当量粗糙系数x N xn n ∑=1当 ;设总湿周x 的各组成部分1x ,2x ,……N x 及所对应的粗糙系数分别为n 1,n 2……n N 。 1糙率的选取 河道糙率影响因素有河槽方面也有水流方面。河槽边壁及河床粗糙程度,滩地植被,河槽纵横形态的变化是主要因素。大洪水糙率小于小洪水糙率,若附近有大洪水资料时可采用河段附近现状河道纵横断面资料反推综合糙率;若河道纵横断面于大洪水有较大变化时应在河道原貌的基础上反推糙率;反推糙率实际上小于实际糙率。无资料时可根据经验参照水力计算手册确定,偏重于安全考虑,在河道整治工作中糙率适当选小些,在防洪规划中适当大一些。 2起推断面与起推水位的确定

5、河道断面设计

5、河道断面设计

目录 1、综合说明 (3) 1.1天府镇概况 (3) 1.2天府镇场镇河堤现状 (3) 1.3水文气象 (6) 1.3 水文气象 (6) 1.3.1 气象 (6) 1.4工程地质 (7) 1.3.1地形地貌 (7) 1.3.2地质构造及地震 (7) 1.3.3地层岩性 (8) 1.3.4水文地质条件 (9) 1.5河道断面设计 (10) 1.6河道整治建筑物设计 (10) 2、编制依据 (10) 2.1技术依据 (10) 3.4洪水 (11) 3.4.1洪水特性 (11) 3.4.3设计洪水 (11) 4工程地质 (13) 4.1整治河段工程地质条件 (13) 4.2工程主要地址问题 (14)

5、河道断面设计 (14) 5.1河道现状 (14) 5.2河道断面设计 (15) 6.河道整治建筑物设计 (16) 6.1工程等级及建筑物级别 (16) 6.2工程设计 (16) 6.2.1堤身设计 (16) 6.2.2附属设计 (16) 7施工组织设计 (17) 7.1工程业主 (17) 7.2工程材料 (17) 7.3施工顺序 (17) 8投资概算 (18) 8.1编制原则和依据 (18) 8.2 工程总投资 (19) 附:1、天府镇石佛村刘家沟河堤整治工程施工设计图纸。 2、天府镇石佛村刘家沟河堤整治工程工程概算表。

天府镇石佛村刘家沟河堤整治工程

1、综合说明 1.1天府镇概况 天府镇位居川东平行岭谷区,华蓥山脉观音峡背斜中上部份。海拔高度在175米至830米之间。耕地集中在175米至800米地带。山脉为北东—南西走向,南端被嘉陵江切断,海拔低至175米,幅员面积54平方公里。天府镇粮食作物大春以玉米、稻谷、红苕为主;小春以小麦、胡豆为主。多经作物以蔬菜、水果、蚕桑、茶叶为主。镇域的煤矿资源比较丰富,是华莹山煤田的组成部分。辖区内的煤炭开采虽有上百年的历史,但煤炭生产仍是地区经济的重要组成部份,是天府镇的支柱企业。辖区内除有大型国有企业天府矿务局外,乡镇企业的小煤矿也有较快的发展。近年来随着重庆市改革开放的不断深化,经济的迅猛发展。 1.2天府镇场镇河堤现状 根据我公司设计人员与天府镇人民政府的技术人员进行现场勘察河道整治工程位于石佛村杨家沟社。流域形状呈长条形,全流域面积约22km2,主河道长6km,河道平均比降26‰。刘家沟工程河段由于常年淤积,加上河道多处出现垮塌,一到汛期,洪水便会淹没河道周围农田。为了提高该河段的防洪标准,治理水污染,保护国家和生命财产安全,受项目业主的委托,重庆龙禹水利勘察设计有限公司承担了该河道整治工程施工设计方案的编制工作。(河堤现状如下图)

纳污能力计算

水体纳污能力是指在设计流量条件下,满足水功能区水质目标要求和水体自然净化能力,核定的水功能区污染物最大允许负荷量。项目取水后对河段的水体纳污能力将会产生一定影响,本次论证对项目建设前后取水影响范围内的河流纳污能力进行计算,以分析其影响程度。 溪口水库位于平江河上游,平江河属寨蒿河右岸一级支流,根据《黔东南州地表水域水环境功能区划分方案》,取水影响范围内的河流水环境功能区划见表5.3.3-1。 根据贵州黔水科研试验测试检测工程有限公司及珠江流域水环境监测中心对工程区地表水环境现状监测结果表明,坝址上游6km至榕江县取水口上游100m (三角井大坝上游30m)河段地表水为Ⅱ类水。根据《全国水资源综合规划技术细则》,取水影响范围内的河流纳污能力计算选择CODcr、氨氮作为控制性指标。根据《地表水环境质量标准》(GB3838-2002),CODcr、氨氮的标准限值为15mg/L 及0.5mg/L。CODcr、氨氮现状见表5.3.3-2。 由于建库后,坝址以上河道将形成水库面积(正常蓄水位)0.569km2,回水长度6km,经水库调节后下泄流量(0.569 m3/s)比90%保证率最枯月平均流量(0.445 m3/s)大,本次选择河道影响较大的溪口水库坝址以上6km至坝址(坝址上游影响区)及坝址处至怎冷河支流汇入口段(坝址下游影响区)作为计算河段。

根据表5.3.3-2表明,CODcr 及氨氮在计算河段上均匀混合,河段纳污能力计算采用零维模型。而流入和流出水库的水量平衡,水库纳污能力计算采用湖(库)均匀混合模型。其公式为: Q C C M S ?-=)(0 (5-1) Q C C V C K M S S ?-+??=)(0 (5-2) 式中: M --水域纳污能力,g/s ; S C --水质目标浓度值,mg/L ,计算采用现状浓度值均值; 0C --水质初始浓度值,mg/L ,计算采用标准限值; Q --入流流量,m 3/s ,建库前入(出)库采用90%保证率最枯月平均流量 0.445m 3/s ,建库后出库采用生态基流0.569 m 3/s ; V --湖(库)容积,m 3,计算采用死库容90.05万m 3; K --污染物综合衰减系数,(1/d ),据《西江流域水质保护规划》CODcr 为0.1,氨氮为0.07。 影响区纳污能力计算结果见表5.3.3-3及5.3.3-4。 计算结果表明,水库建成后,水库蓄水后使库区水位抬升,水体体积大幅增加,河流流速减慢,水体容量增大,水体沉降作用加强,坝址上游河段纳污能力大幅加强;经水库调节后下泄流量(0.569 m 3/s )比90%保证率最枯月平均流量

水利工程设计常用计算公式

水利常用专业计算公式 一、枢纽建筑物计算 1、进水闸进水流量计算:Q=B0δεm(2gH03)1/2 式中:m —堰流流量系数 ε—堰流侧收缩系数 2、明渠恒定均匀流的基本公式如下: 流速公式: u=Ri C 流量公式 Q=Au=A Ri C 流量模数 K=A R C 式中:C—谢才系数,对于平方摩阻区宜按曼宁公式确定,即

C = 6/1n 1R R —水力半径(m ); i —渠道纵坡; A —过水断面面积(m 2); n —曼宁粗糙系数,其值按SL 18确定。 3、水电站引水渠道中的水流为缓流。水面线以a1型壅水曲线和b1型落水曲线最为常见。求解明渠恒定缓变流水面曲线,宜采用逐段试算法,对棱柱体和非棱柱渠道均可应用。逐段试算法的基本公式为 △x=f 21112222i -i 2g v a h 2g v a h ???? ??+-???? ??+ 式中:△x ——流段长度(m );

g ——重力加速度(m/s 2); h 1、h 2——分别为流段上游和下游断面的水深(m ); v 1、v 2——分别为流段上游和下游断面的平均流速(m/s ); a 1、a 2——分别为流段上游和下游断面的动能修正系数; f i ——流段的平均水里坡降,一般可采用 ??? ??+=-2f 1f -f i i 21i 或??? ? ??+=?=3/4222 224/312121f f v n R v n 21x h i R 式中:h f ——△x 段的水头损失(m ) ; n 1、n 2——分别为上、下游断面的曼宁粗糙系数,当壁面条件相同时,则n 1=n 2=n ; R 1、R 2——分别为上、下游断面的水力半径(m ); A 1、A 2——分别为上、下游断面的过水断面面积(㎡); 4、各项水头损失的计算如下: (1)沿程水头损失的计算公式为

重庆市水域纳污能力计算和提出限制排污总量意见-有用的

附件: 重庆市水域纳污能力计算和提出限制排污总量意见 技术细则 重庆市水利局 重庆市水文水资源勘测局 二○○八年五月

一、基本要求 1.本次工作的重点是进行水功能区纳污能力计算和提出限制排污总量意见。水功能区纳污能力计算应严格按照《水域纳污能力计算规程》(SL348-2006)的要求进行计算;限制排污总量意见的提出应充分结合区(县)经济社会发展和水资源保护的需要,提出合理的水功能区限制排污总量意见。 2.本次工作范围应为各区县水功能区划成果和区县重要河流和湖(库)。 3.水功能区水质标准采用《地表水环境质量标准》(GB3838-2002),并参照《渔业水质标准》(GB 11607-89),《景观娱乐用水水质标准》(GB 12941-91)等。 4.江河、湖库的污染物控制指标,全国统一采用化学需氧量(COD)和氨氮;湖库增加总磷和总氮指标,以分析其富营养化情况。 5.市级水功能区纳污能力计算成果应与重庆市水功能区纳污能力计算成果相协调。 6.各区(县)需完成的成果如下: (1)《区(县)水域纳污能力及限制排污总量报告》 (2)区(县)水功能区纳污能力计算成果表 (3)区(县)水功能区限制排污总量成果表 二、水功能区划 各区县先后开展了水功能区划,并报区县政府审批。根据水功能区划要求,水功能区划分为两级区划,一级区分为保护区、缓冲区、开发利用区和保留区。二级区分为饮用水源区、工业用水区、农业用水区、渔业用水区、景观娱乐用水区、过渡区和排污控制区。水功能区水质标准采用《地表水环境质量标准》(GB 3838—2002)。 水功能区的复核、补充与调整应以重庆市人民政府批准的水功能区划和区县划定的水功能区为基础进行,根据规划确定需要复核或补充水功能区划工作的水域,补充水功能区划成果,对区划成果的合理性进行检验,必要时可对水功能区类型、长度等进行局部调整。 (一)水功能区复核 1.水功能一级区复核 首先复核保护区,然后缓冲区和开发利用区,最后复核保留区。具体方法如下: (1)保护区:将国家级和省级自然保护区水域全部划为保护区;对于地(市)级、县级自然保护区,则根据区内水域范围的大小,及其对水质有无严格要求等方面确定是否将其划为保护区。 对于已经建设或在规划水平年内将会实施的大型调水工程水源地、调蓄水库及其主要输水线路,划为保护区;对于在规划水平年内不会实施的,则划为保留区。 重要河流的源头一般划为源头水保护区,大型集中式饮用水源地应划为保护区。 (2)缓冲区:省界(际)水域或用水矛盾突出的地区水域划为缓冲区。 用水矛盾突出的地区是指上下游地区间或部门间矛盾比较突出、存在争议的水域。如上游开发利用区与下游保护区相接时,两区之间应以缓冲区连接。 (3)开发利用区:将水资源开发利用程度高,对水域有各种用水和排水要求的城市江(河)段划为开发利用区。水资源开发利用程度采用可采用“三项指标法”衡量,即以工业总产值、非农业人口和城镇生产生活用水量等三项指标的排序来衡量开发利用程度。对于指标排序结果虽然靠后,但现状排污量大,水质污染严重、现状水质劣于Ⅳ类的,或在规划水平年内有大规模开发计划的城镇河段也可划为开发利用区。 (4)保留区:划定保护区、缓冲区和开发利用区后,其余的水域均划为保留区。保留区是指目前开发利用程度比较低,为将来可持续发展预留的后备资源水域。国界河流的出、入境河段划为保留区。 2.水功能二级区复核 首先,确定区划具体范围,包括城市现状水域范围以及城市涉及的水域范围。同时,收集划分功能区的资料:水质资料;取水口和排污口资料;特殊用水要求,如鱼类产卵场、越冬场,水上运动场等;收集陆域和水域有关规划资料,如城区的发展规划,码头规划等。然后,对各功能区的位置和长度进行协调和平衡,避免出现低功能到高功能跃变等情况。最后,考虑与规划衔接,进行合理性检查,对不合理的水功能区进行调整。具体方法如下:(1)饮用水源区,主要根据已建生活取水口的布局状况,结合规划水平年内生活用水发展要求,将取水口相对集中的水域划为饮用水源区。划区时,尽可能选择上游或受其他开发利用影响较小的水域。 (2)工业用水区,根据工业取水口的分布现状,结合规划水平年内工业用水发展要求,将工业取水口较为集中的水域划为工业用水区。

有植被河道水流特性研究进展

王莹莹赵振兴 (河海大学 环境科学与工程学院 南京 210098) 摘要:近年来,生态修复一直是学者探讨的热门课题,河岸种植植被能固滩固岸,保护岸坡不受侵蚀,但也有专家提出植被会降低河道的泄洪能力。如何布置,使植被更大限度地发挥“固滩护堤”的作用,是生产实际中提出的新问题。于是研究植被对水流特性的影响越来越重要。本文详细回顾了前人对有植被河道水流特性问题的研究状况,综合评述了已有研究的局限性,提出今后研究的重点与方向。 关键词:生态护岸河道 刚性植被 柔性植被 1. 背景 河流的开发利用带来了一定的经济效益,为经济的繁荣做出了很大的贡献。但与此同时,也带来了不少负面影响,许多河道的岸坡受到不同程度的破坏,生态也严重受损,导致了河流的行洪能力大大降低,洪灾总体风险不断增加,城市洪涝灾害的发生日渐频繁且强度加甚。 这种人为造成的自然灾害不得不越来越引起人们的广泛关注,于是乎近年来河道的生态修复已提上日程并在许多实际工程中得到应用,也已经普遍得到专家人士的认可。其中,植物护坡技术在国内外堤防工程中更是被广泛采用。河岸种植植被,植被的根系可以保护土壤,防止水土流失,能切实可行地做到“固滩固岸”,保护岸坡不受侵蚀。采用种植植被护坡技术投资少,技术简单,又可以绿化自然,美化环境,有利于生态的良性循环。此又可谓之“生态护岸工程”,生态护岸能达到加固河岸,防止河道淤积、侵蚀和下切的目的。然而,另一方面,我们还不得不考虑到,水中种植植被增大了河流的阻力,减缓了河流的流速,导致河道水位的攀升,甚至引起部分泥沙的淤积;另外,河道水流部分能量被迫转换成植被附近产生的紊流脉动动能,使水流动能得到消耗。从这方面考虑,种植植被则降低了河道的泄洪能力。因此,我们要从各方面综合考虑这种植物护坡技术的可行性,分析其利弊,因地制宜,找出最合理的种植植被的方案,使其扬利除弊,更好地发挥作用,保证行洪的安全,并能起到保护生态环境的作用。这正是生产实际中面临的新问题,因此,弄清河道中种植植被对水流的阻力影响、水流的紊动结构等是非常有必要的。 2. 国内外研究进展 有植被的河道水流问题是一门多学科交叉问题,该项目涉及到水流、植被、泥沙、地貌、河道演变、水土流失以及环境生态等诸多领域。研究有植被水流的紊流结构,对河道中泥沙的输运与沉降、河床的淤积与堤岸的侵蚀、河道中污染物的扩散以及生态环境的优化都有很重要的现实意义及其广阔的应用前景。因此,对种植植被的河道水流特性的研究 1

城市化建设对河道行洪能力影响分析及对策研究

城市化建设对河道行洪能力影响分析及对策研究[摘要]对海河现状行洪能力进行复核计算,评价其安全性;分析河道行洪能力变化原因,阐述城市化建设对其产生的影响性,提出相应的建议措施。 [关键字] 行洪能力安全性城市化建设 1 天津市海河情况简介 1.1 海河基本情况 天津市海河干流是天津城区一条骨干行洪河道,始于子牙河与北运河交汇处,止于海河防潮闸,河道全长72km,流经中心市区、环城新区、贯穿滨海新区塘沽区于大沽口汇入渤海[1]。海河以防洪、承担两岸排涝沥水为主要任务,同时具备供水、蓄水、航运、旅游等多项功能。二道闸、防潮闸作为海河上两个重点防洪控制工程,起到了联合调度运用、泄洪、排涝、挡潮等作用。 1.2 河道建设工程 随着城市化建设的快速发展,加大了对海河的综合治理及两岸的开发改造,海河功能也随之发生了较大的变化。2003年,对海河上游段两岸40公里的堤岸进行全面改造,重新确定了两岸沿线和堤岸断面结构形式;并且背依古文化街中心新地带,以连续亲水空间为主线,设置了亲水平台和下沉式道路,平台距离水面仅0.5米,充分发挥了两岸的人文景观效果。 2 海河行洪能力计算 按照《海河流域综合规划》设计要求,天津市海河干流设计行洪能力为800m3/s,由于多年来的河道淤积、地面沉降自然因素以及堤防建设等人为因素,导致海河行洪能力不断下降。 以海河河底高程、断面形式、堤防布置等实际情况为基础,建立一维水动力模型,对海河现状行洪能力进行模拟计算。模型计算范围从耳闸(桩号0+000)至海河防潮闸(桩号71+500);考虑河道整体行洪及小洪水行洪两种情况,分别进行演算。 2.1 河道整体行洪能力 根据《天津市海河干流治理工程初步设计报告》相关内容,堤防超高设计标准为1.25-1.9m,具体为:耳闸-海洋公司(桩号0+000-13+061)堤防超高1.25m、海洋公司-市航道处码头(桩号13+061-15+221)超高1.6m、市航道处码头-新河油库(桩号15+221-59+513)超高 1.9m、新河油库-海河防潮闸(桩号59+513-71+500)超高1.7m。据此标准,对海河整体行洪能力进行计算,绘制相

商丘市水功能区纳污能力计算与分析

商丘市水功能区纳污能力计算与分析 【摘要】从水体纳污能力的概念出发,建立纳污能力计算模型,并对模型参数进行估算,选取适合商丘市河流状况的水质模型,计算出各水功能区现有纳污能力,从而为水资源保护与规划提供科学依据。 【关键词】水功能区纳污能力计算分析 水体纳污能力是指对确定的水功能区,在满足水域功能要求的前提下,在给定的水功能区酥誓勘曛怠⑸杓扑俊⑴盼劭谖恢眉芭盼鄯绞较?功能区水体所能容纳的最大污染物量,以吨/年表示。 受污染的水体在水中经过物理、化学和生物作用,污染物浓度和毒性随着时间的推移或在流动的过程中自然降低,这就是水体的自净作用。影响水体自净过程的因素很多,其中主要因素是:受纳水体的水文条件,微生物种类与数量,水温、复氧能力,以及水体和污染物的组成与污染物浓度等。河流的污染物自净作用是形成河流纳污能力的重要组成部分。因此,计算河流的纳污能力时,必须综合考虑河流水量、水质目标、污染物降解能力等方面的影响,并在此基础上建立河流纳污能力的计算模型。 1 计算范围与内容 1.1 计算范围

本次纳污能力计算对商丘市水功能区划的20个重点功能区进行纳污能力计算。 1.2 计算指标 根据区域水质现状和水污染的特点,纳污能力计算控制指标确定为CODcr、NH3-N。 1.3 计算内容 本次水域纳污能力计算是以功能区为单元,综合水文水资源状况、入河排污状况及水资源开发利用状况,运用水质模型分析得出的,直接反映了水域的水环境承载能力。 2 计算条件 2.1 初始断面背景浓度(C0) 源头水水质:若计算河段为河源段,C0取源头水水质。根据我省水质监测资料,河流源头水CODcr、NH3-N取Ⅰ、Ⅱ类标准值。 上断面来水水质:取上游功能区水质目标值。 2.2 水质控制目标浓度Cs 水质目标Cs值为本功能区的水质目标值。 2.3 设计水文条件 2.3.1 设计流量的计算 设计流量的大小对纳污能力的计算结果影响很大,流量资料系列太短则无法反映水文规律,资料太长则无法反映人类活动对水资源造成的影响,特别是对枯水期小流量的影

CORS系统在河道行洪能力分析测量中的应用

CORS系统在河道行洪能力分析测量中的应用 发表时间:2017-06-26T14:47:36.163Z 来源:《基层建设》2017年5期作者:孙翠轻 [导读] 摘要:简述CORS 系统的定位原理,结合具体工程项目详细叙述了CORS 系统在项目实施各个环节的应用,并与传统GPS测量方法进行了比较。 河北省水利水电第二勘测设计研究院河北石家庄 050021 摘要:简述CORS 系统的定位原理,结合具体工程项目详细叙述了CORS 系统在项目实施各个环节的应用,并与传统GPS测量方法进行了比较。 关键词:CORS 系统;控制点测量;横断面测量; CORS 系统是利用多个基站网络技术建立的连续进行卫星追踪定位服务综合系统。该系统是利用全球导航卫星系统、计算机、数据通讯和互联网等技术,在一个城市、一个地区、一个国家范围内,根据需求按照一定的距离间隔,建立长年连续运行的若干个固定GNSS参考站的网络系统。 CORS定位的基本原理是由基准站实时的将测量的载波相位观测值、伪距观测值、基准站坐标等数据通过无线电传送给数据处理中心,数据处理中心把接收的基准站数据通过无线电传送给流动站,流动站将载波相位观测值实时的进行差分处理,得到基准站和流动站之间的坐标差,计算出流动站的坐标。 本文通过具体的工程项目,详细叙述了CORS 系统在项目实施各个环节的应用。 任务来源 按照《冀汛办[2016]1号文关于进一步补充完善山洪灾害调查评价成果的通知》要求,需对相关河道进行横断面测量,用以推算水库下游河段不同标准洪水河道水面线,分析现状河道行洪能力。 项目执行情况 针对工程项目特点,共分为6个步骤实施:⑴技术设计和作业准备;⑵选点埋石;⑶基准网控制点测量;⑷横断面测量;⑸数据处理和资料整理;⑹内外业检查。 1 技术设计和作业准备 收集测区已有控制点资料和地形图,根据项目特点和相关规范做好技术设计。 2 选点埋石 首先将收集到的控制点展绘在1:50000地形图上,根据河道分布情况,整体布设覆盖整个测区的基准网。基准网控制点采用钢钉或刻石,布设于主要干线公路交叉口等交通便利、点位稳固可靠,易于长期保存和观测的地方。 3 基准网控制点测量 基准网控制点测量采用河北省已经建成的连续运行参考站系统(简称CORS站系统)对各点进行GNSS RTK控制点测量。外业观测时按照SL197-2013中五等(一级)RTK平面控制点测量和RTK高程控制点测量主要技术要求观测,采用三脚架对中、整平,每个控制点观测不少于4次,取其中最稳定的4次的测量中数作为了最终结果。将获取的2000国家大地坐标,经河北省测绘资料档案馆采用区域似大地水准面精化的方法,得到各控制点的85高程。 坐标系统为2000国家大地坐标系,采用3°分带,中央子午线均为114°。高程系统采用正常高系统,按1985国家高程基准起算。 五等RTK平面控制点测量主要技术规格见表1。 RTK高程控制点测量主要技术规格见表2。 4 横断面测量 横断面测量采用河北省CORS站系统网络GNSS RTK测量。 4.1GNSS RTK主要作业要求 1)正确设置与基准站(网络控制服务中心)的通信,正确设置流动站基准参数(椭球参数、投影参数、坐标转换参数等)、天线高等。 2)手簿设置,碎部点的平面收敛精度≤±3cm,高程收敛精度≤±6cm。数据采样率设置为1s。 3)流动站没有在隐蔽地带、成片水域和强电磁波干扰源附近观测。 4)观测开始前对仪器进行初始化,并得到固定解,当长时间不能获得固定解时,断开通信链路,再次进行初始化操作。 5)开始作业前均进行了已知点检测,平面位置较差不大于0.1m,高程较差不大于0.1m。 4.2横断面施测 将1:50000地形图上布设好的横断面线两端点提取坐标,导入手簿,实地利用线放样功能,确定断面线位置,测量横断面特征点。按1:2000精度施测,横断面点的密度能准确反映地形剖面特征。 5 数据处理和资料整理 横断面成果表采用EXCEL表格编制。 横断面成果表由序号、基点距、1985高程、点属性、2000平面直角坐标、2000国家大地坐标等组成,横断面自下游向上游顺序编排,每条横断面均面向下游分左右,以左侧第一个点(基点)为起始点,左起累距依次顺序排列。 6 内外业检查 严格执行“两级检查、一级验收”制度,确保测绘产品质量。 结束语 较传统的GPS作业方法,CORS系统有以下优点:⑴改进了初始化时间,扩大了工作覆盖范围。⑵采用连续运行基站,可以全天候作业,使用方便,提高了工作效率。⑶拥有完善的数据监控系统,可以有效地消除系统误差和周跳,增强差分作业的可靠性等。随着CORS 系统建设趋于完善,在系统的支持下,GNSS用户实现了实时、快速、高精度的三维定位作业,体现了测绘新技术、新作业模式的跨越式发展,具有显著的经济效益和社会意义,CORS系统将应用到更广泛的领域。 参考文献 [1]《水利水电工程测量规范》SL 197-2013,中国水利水电出版社,2013年11月; [2]《全球定位系统实时动态测量(RTK)技术规范》CH/T 2009-2010,测绘出版社,2010年7月 [3]《全球导航卫星系统连续运行参考站网建设规范》CH/T 2008-2005,测绘出版社,2006年1月

拦河闸设计计算书

目录 1 基本资料错误!未定义书签。 工程概况错误!未定义书签。 地质资料错误!未定义书签。 水文气象错误!未定义书签。 建筑材料错误!未定义书签。 批准的规划成果错误!未定义书签。 2 闸孔设计错误!未定义书签。 闸址的选择错误!未定义书签。 闸型确定错误!未定义书签。 拟定闸孔尺寸及闸墩厚度错误!未定义书签。校核泄洪能力错误!未定义书签。 3消能设计错误!未定义书签。 消能防冲设计的控制情况错误!未定义书签。消力池尺寸及构造错误!未定义书签。 海漫设计错误!未定义书签。 防冲槽设计错误!未定义书签。 上下游岸坡防护错误!未定义书签。 4防渗排水设计错误!未定义书签。 闸底地下轮廓线的布置错误!未定义书签。 排水设备的细部构造错误!未定义书签。 防渗计算错误!未定义书签。

5闸室布置错误!未定义书签。 底板和闸墩错误!未定义书签。 闸门与启闭机错误!未定义书签。 上部结构错误!未定义书签。 闸室的分缝与止水错误!未定义书签。 6闸室稳定计算错误!未定义书签。 设计情况及荷载组合错误!未定义书签。 完建无水期地基承载力验算错误!未定义书签。 正常挡水期闸室抗滑稳定验算错误!未定义书签。7上下游连接建筑物错误!未定义书签。 上下游连接建筑物的作用错误!未定义书签。 上游连接建筑物错误!未定义书签。 下游连接建筑物错误!未定义书签。 8 附图错误!未定义书签。 水闸半平面布置图错误!未定义书签。 水闸纵剖面图错误!未定义书签。 9.结束语错误!未定义书签。

1 基本资料 工程概况 某拦河闸闸址以上流域面积2234平方公里,流域内耕地面积288万亩,河流平均纵坡1/6200。本工程属三级建筑物。 本工程投入使用后,在正常高水位时,可蓄水2230万立米。上游5个县25个乡已建成提灌站42处,有效灌溉面积25万亩。闸上游开南、北两干渠,配支干23条,修建各种建筑物1230座,可自流灌溉下游三县21万农田,效益巨大,是解决某河流域农田的灌溉动脉,同时,也是解决地区浅层地下贫水区的重要水源。地质资料 (一)根据地质钻探资料,闸址附近地层中粉质壤土,厚度约25m,其下为不透水层,其物理力学性质如下: 1、湿重度r湿=m3 =/m3 土壤干重度r 干 饱和重度r =/m3 饱 =/m3 浮重度r 浮 2.自然含水量时,内摩擦角φ=230 饱和含水量时,内摩擦角φ=200 土壤的凝聚力C=/m2 3.地基允许承载力[P地基]=150KPa 4.混凝土、砌石与土基摩擦系数f= 5.地基应力的不均匀系数[η]=~ 6.渗透系数K=×10-3cm/s (二)本地区地震烈度为60以下 水文气象 (一)气温:本地区年最高气温42度,最低气温为-18度。 (二)风速:最大风速V=20m/s,吹程D=0.6Km。 (三)降雨量:非汛期(1~6月及10~12月)9个月河流平均最大流量为10m3/s;汛期(7~9月)3个月河流平均最大流量为130m3/s。年平均最大流量36.1 m3/s,最大年径流总量为亿m3。年平均最小流量15.6 m3/s,最小年径流总量为亿m3。 (四)冰冻:颖河流域冰冻时间短,冻土很薄,不影响施工。 (五)上下游河道断面 建筑材料 本工程位于平原地区、山丘少,石料需从外地供给,距京广线很近,交通条件较好。经调查本地区附近有较丰富的粘土材料。闸址处有足够多的砂料。 批准的规划成果

相关文档
最新文档