基础量子化学练习

基础量子化学练习
基础量子化学练习

基础量子化学练习 Prepared on 22 November 2020

2010基础量子化学练习(1)

一、 判断正误

( )1、

一个态函数总是等于时间的函数乘以坐标的函数。 ( )2、 态函数总是Hamiltonian 算符的本征函数。

( )3、 Hamiltonian 算符的本征函数的任意线性组合是Hamiltonian 算符的本征函

数。

( )4、 如果态函数不是算符?A

的本征函数,则性质A 的一次测量可给出一个不是?A

的本征值的值。 ( )5、

几率密度与时间无关。 ( )6、

如果两个算符具有共同的本征函数,那么这两个算符可对易。 ( )7、

算符?x 与d i dx -可对易。 ( )8、

氢原子Hamiltonian 算符的束缚态的本征函数构成完备集。 ( )9、

厄米算符的本征函数是正交的。 ( )10、 描述电子轨道运动的波函数必须是奇函数。

二、已知:2???,A

d dx B x ==,计算2????,()A B A B ??+??及 三、已知:11223344

????,,,,A a A b A a A d ????????====如果任意状态可以表示为12343253,ψ????=+++那么当我们对该状态进行测量时,获得a 和d 的几率各是多少求任意状态 的性质A 的平均值。

2010基础量子化学练习(2)

一、 判断正误

( )11、 算符???,,A B C 满足????,0,,0A B A C ????==????

,则三个算符存在共同的本征函数集。

( )12、 不能对易的算符不可能具有共同的本征函数。

( )13、 当对本征态的性质A 进行测量时,能够得到的唯一仅有的值是算符?A

的本征值。

( )14、 如果一个算符的平方等于单位算符,那么这个算符的本征值等于+1或者-

1。

( )15、 所有品优的奇函数和偶函数都是宇称算符的本征函数。

( )16、 满足[]1212

???()()()()A c f x c g x c Af x c Ag x +=+的算符称为线性算符。 ( )17、 所有的量子力学算符都可以通过经典力学中对应的关系式,并代入动量和坐

标的量子力学算符而获得。

( )18、 一维势箱中,由于箱壁上势能的无限跳跃,粒子的波函数在箱壁上是不连续

的。

( )19、 氢原子的波函数以及自由粒子的波函数不是平方可积的。

二、边长分别为a 、b 、c 的三维势箱,当三个量子数取值分别是1、2、3时,能量的简

并度为 ,如果三个量子数分别为2、2、3,则能量的简并度是 ; 若势箱边长分别为a 、2a 、a ,当三个量子数取值分别是1、2、1时,能量的简并度

为 ,如果三个量子数分别为4、2、4,则能量的简并度是 。

三、(1)证明:2??,0z p p ??=??;(2)22??,2y y p y

???=???是否正确若不正确,给出正确结果。

2010基础量子化学练习(3)

一、 判断正误

( )20、 一维势箱中,粒子位置的平均值为l /2,表示粒子在势箱中间出现的几率最

大。

( )21、 若体系受中心力作用,22??????,0,,0,0z z H L L L H L ??????==?=??????

( )22、 对氢原子的某本征态(),m l Y θφ进行观测,可得到z p 的观测值为m ,而

22??x y L L +的观测值为()221l l m ??+-??

( )23、 一维势箱中,0x p <>=, 那么0x p =。

( )24、 一维势箱中,粒子出现的几率处处相等。

( )25、 对于氢原子,复数形式的函数是?z p

的本征函数。实函数解是由具有不同本征值的本征函数线性组合得到,因此所有实函数解都不是?z p

的本征函数。 ( )26、 氢原子角度部分的能量解表明,其最小能量为0。这与不确定度关系是矛盾

的。

( )27、 一维势箱中,粒子波函数的一阶导数处处连续。

( )28、 对于氢原子,自旋的引入使得其能量发生分裂。

( )29、 氢原子1s 态的平均半径=a 0/2。

( )30、 能量相等的不同状态叫做能量简并态

( )31、 方程的复函数解与实函数解一一对应。

( )32、 1122,p p ψψ+-是?z L 的本征函数,2x p ψ是由11

22,p p ψψ+-线性组合成的,因此也是?z L 的本征函数。

二、证明:?H

为厄米算符。 2010基础量子化学练习(4)

填空及判断正误

( )1、

如果c 是常数,什么条件下,??

m n m n cf A f f A c f =。 ( )2、 在什么条件下,2??,0H L ??=??

( )3、 球坐标下,满足什么条件时,22??????,0,,0,0

z z H L L L H L ??????==?=?????? 是正确的 ( )4、 在什么条件下,??,0

H ??∏=??

( )5、 什么条件下,某一算符的本征函数的任意线性组合仍然是该算符的本征函数

简并

( )6、

什么情况下,??f Agd gA f d ττ***=?? A 是厄米 ( )7、

什么情况下,氢原子函数的实函数解是?z p 的本征函数 ( )8、 一维势箱中粒子波函数的一阶导数在何处不连续 ;氢原子的基态波函数

的一阶导数在何处不连续

( )9、

在空间区域d 找到电子的几率为 ( )10、 在什么条件下,我们可以用一维势箱中粒子能量算符的本征函数完备集去

展开一个品优函数

( )11、 请写出Cartesian 坐标下,动量及动量平方的算符

( )12、 基态氢原子,其最可几半径为a 0/2,则在0-a 0范围内电子出现几率最大。 ( )13、

描述单个电子运动状态的波函数nml 称为原子轨道。 ( )14、

对于处于基态的氢原子,在离核任意有限距离处都有可能找到其电子。 ( )15、 1122,p p ψψ+-是2?L 的本征函数,2x p ψ是由11

22,p p ψψ+-线性组合成的,因此也是2?L

的本征函数。 ( )16、 110

222,,p p p ψψψ+-是?z L 的正交归一的函数,由于具有不同的本征值,由它们线性组合成的222,,z x y p p p ψψψ不是正交归一的。

( )17、

氢原子l =1的状态,在外加磁场的作用下,其能量是2l +1重简并的。 ( )18、 对常数c ,()??A

cf cAf = 2010基础量子化学练习(5)

一,下列函数中,哪个满足作为波函数的全部要求:(a )ix e (b )2x xe -(c )2x e -

二,考虑一个量子数为n在长为l的一维势箱中运动的粒子。(a)求在箱中左端1/4处找到粒子的几率,(b)n为何值时此几率最大(c)当n 趋近于无穷大时此几率会怎么变化说明了什么

三,对于在长l的一维势箱中的粒子,如果将坐标原点设在势箱的重点,请求出此时的波函数和能级.

四,线性算符必须同时满足如下两个表达式:

???

[()()]()()

A f x g x Af x Ag x

+=+(1)

??

()()

Acf x cAf x

=(2)

(1)(2)两式并不等价,请举出一个例子a) 满足1式而不满足2式的算符;b)满足2式,而不满足1式的算符

五,下列哪些函数是

2

2

d

dx算符的本征函数如果是,请给出本征

值:(a)x e,(b)2x,(c)sin x,(d)3cos x,(e)sin cos

x x

+

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

基础量子化学练习定稿版

基础量子化学练习精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

2010基础量子化学练习(1) 一、 判断正误 ( )1、 一个态函数总是等于时间的函数乘以坐标的函数。 ( )2、 态函数总是Hamiltonian 算符的本征函数。 ( )3、 Hamiltonian 算符的本征函数的任意线性组合是Hamiltonian 算符的本征函 数。 ( )4、 如果态函数不是算符?A 的本征函数,则性质A 的一次测量可给出一个不是?A 的本征值的值。 ( )5、 几率密度与时间无关。 ( )6、 如果两个算符具有共同的本征函数,那么这两个算符可对易。 ( )7、 算符?x 与d i dx -可对易。 ( )8、 氢原子Hamiltonian 算符的束缚态的本征函数构成完备集。 ( )9、 厄米算符的本征函数是正交的。 ( )10、 描述电子轨道运动的波函数必须是奇函数。 二、已知:2???,A d dx B x ==,计算2????,()A B A B ??+?? 及 三、已知:11223344 ????,,,,A a A b A a A d ????????====如果任意状态可以表示为12343253,ψ????=+++那么当我们对该状态进行测量时,获得a 和d 的几率各是多少?求任意状态 的性质A 的平均值。

2010基础量子化学练习(2) 一、 判断正误 ( )11、 算符???,,A B C 满足????,0,,0 A B A C ????==????,则三个算符存在共同的本征函数集。 ( )12、 不能对易的算符不可能具有共同的本征函数。 ( )13、 当对本征态的性质A 进行测量时,能够得到的唯一仅有的值是算符?A 的本征值。 ( )14、 如果一个算符的平方等于单位算符,那么这个算符的本征值等于+1或者-1。 ( )15、 所有品优的奇函数和偶函数都是宇称算符的本征函数。 ( )16、 满足[]1212 ???()()()()A c f x c g x c Af x c Ag x +=+的算符称为线性算符。 ( )17、 所有的量子力学算符都可以通过经典力学中对应的关系式,并代入动量和坐标 的量子力学算符而获得。 ( )18、 一维势箱中,由于箱壁上势能的无限跳跃,粒子的波函数在箱壁上是不连续 的。 ( )19、 氢原子的波函数以及自由粒子的波函数不是平方可积的。 二、边长分别为a 、b 、c 的三维势箱,当三个量子数取值分别是1、2、3时,能量的简并 度为 ,如果三个量子数分别为2、2、3,则能量的简并度是 ; 若势箱边长分别为a 、2a 、a ,当三个量子数取值分别是1、2、1时,能量的简并度 为 ,如果三个量子数分别为4、2、4,则能量的简并度是 。

量子化学习题及答案

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题

《量子化学基础》习题课

《量子化学基础》习题课 1. 波粒二象性: λh P =, 测不准关系x ?·x ?P ≧η 习题1.一粒微尘m=10-8kg,运动速度01.0=υm/s,若速度的不确定程度为810-=?υm/s 可谓很精确,试计算位 置的不确定程度.(h=6.626×10-34J.s) (答案:181063.6-?=?x m) 习题2.原子直径约为10A (10-10 m),核外电子运动速度大约是光速的1%,计算速度的不确定度. (答案:6107?=?υm) 例1.已知光学光栅窄缝宽度为10-4cm,电子动能为105eV,试用测不准关系证明:用光学光栅观测不到电子衍射. 解:单缝衍射如下图 αsin P =P =?P x x ① 按干涉原理,图中电子射向屏中第一暗区,说明物质波相互抵消,上下两束电子波的光程差应为d/2.

λαα=??=?=sin sin x d BC ② 这里410-=?=x d cm, meV h mE h h 22==P = λ (=m 9.11×10-31kg ;=e 1.602×10-19C) 510 25.1225.12==V λ=3.87×10-12m 661210101087.3sin ---=?==m m d λ α 0≈α 证毕. 习题3.计算动能为3000eV 的电子的de Brogle 波长 (1eV=1.602×10-19J, V 3000C 10602.1J 10602.130001919=???=--V ) (答案: 0A 2237.03000 25.1225.12===V λ.) 2 .一维势箱: 22 28ml h n E =,),2,1(Λ=n x l n C x πsin )(2=ψ 习题4.计算箱宽为5×10-10m 的一维势箱中粒子n=1、2时的能量.及粒子从n=2跃迁到n=1时辐射的波长. (答案:E 1=2.41×10-19J,E 2=9.64×10-19J 191023.7-?=?E J 71075.2-?=λm) 习题5.可将原子中的电子粗略的模拟为一维箱中粒子,箱的宽度为原子的尺度.计算在长度10 A 的箱中电子两个最低能级之差(eV)和在此两能级间跃迁的光子波 长(cm). (答案:21013.1?=?E eV , 8101.1-?=λm)

量子化学计算

物理化学专业博士研究生课程 教学大纲 课程名称:量子化学计算(Computational Quantum Chemistry) 课程编号:B07030411 学分:3 总学时数:72 开课学期:第2学期 考核方式:学习论文 课程说明:(课程性质、地位及要求的描述)。 《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。 如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。 本课程计划安排72个学时。采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。 教学内容、要求及学时分配: 第一章绪论 内容: 1.1量子力学历史背景 1.221世纪的理论化学计算机模拟

要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:4 第二章从头计算法的基本原理和概念 内容: 2.1量子力学基本假设2.2定态近似 2.3从头计算法的“头” 2.4自洽场方法2.5变分法和LCAO-MO近似 2.6量子化学中的一些基本原理和 概念 2.7量子化学中的基本近似 要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似。 学时:12 第三章布居分析和基组专题 内容: 3.1布居分析 3.2基组专题 要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。 学时:6 第四章计算方法简介 内容: 4.1半经验方法 4.2HF方法 4.3Post-HF方法 4.4DFT方法 4.5SCF-X 方法 4.6精确模型化学理论方法——Gn 和CBS 4.7赝势价轨道从头计算法 4.8激发态的计算——CIS和CAS 4.9溶剂效应 4.10分子力学和分子动力学基础 要求:了解一些常用计算方法的基本原理及优缺点,重点掌握AM1、INDO、MNDO/PM3、HF、MP、CI、CC、DFT、CAS、溶剂效应等方法的原理,掌握选择计算方法的思路和原则。

量子化学理论与软件介绍

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理与量子化学的标准之一。 主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论);③密度泛函理论。以下只介绍分子轨道法。 ①分子轨道法:分子体系中的电子用单电子波函数满足Pauli不相容原理的直积(如Slater 行列式)来描述,其中每个单电子波函数通常由原子轨道线性组合得到(类似于原子体系中的原子轨道),被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。 o HF方法:它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。分子轨道法的核心是哈特里-福克-罗特汉方程,简称HFR方程,它是以三个在分子轨道法发展过程中做出卓著贡献的人的姓命名的方程。1928年D.R. 哈特里提出了n个将电子体系中的每一个电子都看成是在由其余的n-1个电子所提 供的平均势场中运动的假设。这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为哈特里方程。使用自洽场迭代方式求解这个方程(见自洽场分子轨道法),就可得到体系的电子结构和性质。哈特里方程未考虑由于电子自旋而需要遵守的泡利原理。1930年,B.A.福克和J.C.斯莱特分别提出了考虑泡利原理的自洽场迭代方程,称为哈特里-福克方程。它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而斯莱特行列式波函数正是满足反对称化要求的波函数。将哈特里-福克方程用于计算多原子分子,会遇到计算上的困难。C.C.J.罗 特汉提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。使用LCAO-MO,原来积分微分形式的哈特里-福克方程就变为易于求解的代数方程,称为哈特里-福克-罗特汉方程,简称HFR 方程。 o CI方法:组态相互作用(Configuration Interaction)方法。用HF自洽场方法计算获得的波函数和各级激发的波函数为基展开体系波函数。完全的组态相互作用(Full-CI)是指定基组下最精确的方法,但其计算量约以基函数的阶乘规模增加,目前仅限于对小分子作为Benchmark以检测其他方法的可靠性,在实际应用中常采用截断CI方法,如

量子化学-重要概念

(1)开壳层,闭壳层 指电子的自旋状态,对于闭壳层,采用限制性计算方法,在方法关键词前面加R 对于开壳层,采用非限制性计算方法,在方法关键词前面加U.比如开壳层的HF就是UHF.对于不加的,程序默认为是闭壳层. 一般采用开壳层的可能性是 1. 存在奇数个电子,如自由基,一些离子 2. 激发态 3. 有多个单电子的体系 4. 描述键的分裂过程 (2) 核磁是单点能计算中另外一个可以提供的数据,在计算的工作设置部分,就是以#开头的一行里,加入NMR关键词就可以了,如 #T RHF/6-31G(d) NMR Test 在输出文件中,寻找如下信息 GIAO Magnetic shielding tensor (ppm) 1 C Isotropic = Anisotropy = 这是采用上面的设置计算的甲烷的核磁结果,所采用的甲烷构形是用B3LYP密度泛函方法优化得到的. 一般的,核磁数据是以TMS为零点的,下面是用同样的方法计算的TMS(四甲基硅烷)的结果1 C Isotropic = Anisotropy = 这样,计算所得的甲烷的核磁共振数据就是,与实验值相比,还是很接近的. (3) 标准几何坐标. 找到输出文件中Standard Orientation一行,下面的坐标值就是输入分子的标准几何坐标. (4) stable 本例中采用SCF方法分析分子的稳定性.对于未知的体系,SCF稳定性是必须要做的.当分子本身不稳定的时候,所得到的SCF结果以及波函数等信息就没有

化学意义. (5)势能面 分子几何构型的变化对能量有很大的影响.由于分子几何构型而产生的能量的变化,被称为势能面.势能面是连接几何构型和能量的数学关系.对于双原子分子,能量的变化与两原子间的距离相关,这样得到势能曲线,对于大的体系,势能面是多维的,其维数取决与分子的自由度. (6)opt Opt=ReadFC 从频率分析(往往是采用低等级的计算得到的)所得到的heckpoint文件中读取初始力矩阵,这一选项需要在设置行之前加入%Chk= filename 一句,说明文件的名称. Opt=CalCFC 采用优化方法同样的基组来计算力矩阵的初始值. Opt=CalcAll 在优化的每一步都计算力矩阵.这是非常昂贵的计算方法,只在非常极端的条件下使用. 有时候,优化往往只需要更多的次数就可以达到好的结果,这可以通过设置MaxCycle来实现.如果在优化中保存了Checkpoint文件,那么使用Opt=Restart可以继续所进行的优化.当优化没有达到效果的时候,不要盲目的加大优化次数.这是注意观察每一步优化的区别,寻找没有得到优化结果的原因,判断体系是否收敛,如果体系能量有越来越小的趋势,那么增加优化次数是可能得到结果的,如果体系能量变化没有什么规律,或者,离最小点越来越远,那么就要改变优化的方法. (7) 频率分析的计算要采用能量对原子位置的二阶导数.HF方法,密度泛函方法(如B3LYP),二阶Moller-Plesset方法(MP2)和CASSCF方法(CASSCF)都可以提供解析二阶导数.对于其他方法,可以提供数值二阶导数. 一般的,对于HF方法,采用计算的频率乘以矫正因子, 方法频率矫正因子零点能矫正因子 HF/3-21G HF/6-31G(d) MP2(Full)/6-31G(d) MP2(FC)/6-31G(d) SVWN/6-31G(d)

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题方面获得较为突出的成果。 4. 试用前线轨道理论说明下列反应在没有催化剂的条件下不能发生。

量子化学

量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法,研究化学问题的一门基础科学。 1927年海特勒和伦敦用量子力学基本原理讨论氢分子结构问题,说明了两个氢原子能够结合成一个稳定的氢分子的原因,并且利用相当近似的计算方法,算出其结合能。由此,使人们认识到可以用量子力学原理讨论分子结构问题,从而逐渐形成了量子化学这一分支学科。 量子化学的发展历史可分两个阶段:第一个阶段是1927年到20世纪50年代末,为创建时期。其主要标志是三种化学键理论的建立和发展,分子间相互作用的量子化学研究。在三种化学键理论中,价键理论是由鲍林在海特勒和伦敦的氢分子结构工作的基础上发展而成,其图象与经典原子价理论接近,为化学家所普遍接受。 分子轨道理论是在1928年由马利肯等首先提出,1931年休克尔提出的简单分子轨道理论,对早期处理共轭分子体系起重要作用。分子轨道理论计算较简便,又得到光电子能谱实验的支持,使它在化学键理论中占主导地位。 配位场理论由贝特等在1929年提出,最先用于讨论过渡金属离子在晶体场中的能级分裂,后来又与分子轨道理论结合,发展成为现代的配位场理论。 第二个阶段是20世纪60年代以后。主要标志是量子化学计算方法的研究,其中严格计算的从头算方法、半经验计算的全略微分重叠和间略微分重叠等方法的出现,扩大了量子化学的应用范围,提高了计算精度。 1928~1930年,许莱拉斯计算氦原子,1933年詹姆斯和库利奇计算氢分子,得到了接近实验值的结果。70年代又对它们进行更精确的计算,得到了与实验值几乎完全相同的结果。计算量子化学的发展,使定量的计算扩大到原子数较多的分子,并加速了量子化学向其他学科的渗透。 量子化学的研究范围包括稳定和不稳定分子的结构、性能,及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。 量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。应用研究是利用量子化学方法处理化学问题,用量子化学的结果解释化学现象。 量子化学的研究结果在其他化学分支学科的直接应用,导致了量子化学对这些学科的渗透,并建立了一些边缘学科,主要有量子有机化学、量子无机化学、量子生物和药物化学、表面吸附和催化中的量子理论、分子间相互作用的量子化学理论和分子反应动力学的量子理论等。 三种化学键理论建立较早,至今仍在不断发展、丰富和提高,它与结构化学和合成化学的发展紧密相联、互相促进。合成化学的研究提供了新型化合物的类型,丰富了化学键理论的内容;同时,化学键理论也指导和预言一些可能的新化合物的合成;结构化学的测定则是理论和实验联系的桥梁。

第一章,量子化学积分一Slater函数

绪论 1.什么是量子化学 量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学问题的一门基础学科。 化学是研究物质的组成、结构、性质及其变化规律的一门学科。我们主要在原子-分子这个层次上研究物质的化学性质和化学反应。电子、原子核这些微观物体的相互作用使原子组成了分子、形成了晶体、液体等形态的物质。所以,化学学科的研究对象归根结底是电子、原子核等微观物体的相互作用。而微观物体的运动规律,我们已经了解清楚,这就是在1925到1926年间,发展起来的量子力学。量子化学就是用量子力学的理论和方法来研究化学问题。由于量子力学是微观化学物质所遵循的根本规律,所以,量子化学是整个化学学科的理论基础。实际上,量子化学的研究成果也已经深入到化学学科的各个分支。 2.量子化学的发展简况 1927年,W.Heitler和F.London用量子力学方法研究了氢分子,人们往往把这作为量子化学的开端。 近80年来,量子化学的发展可以分为两个阶段。 第一阶段是1960年代以前。量子化学的主要成果在形成概念和理论方面,其中有Pauling的价键理论,Hunt,Slater及Mulliken分子轨道理论,配位场理论,Eyring的过渡态理论;在具体计算方面则有即Hartree对原子轨道能量的计算。 第二阶段,1960年代至今。在这个阶段,由于电子计算机技术的飞速发展,人们可以把分子轨道理论的计算应用于几乎所有的各类分子,计算它们的性质,分析它们的反应。另一方面,新的理论(如密度泛函理论)和新的计算方法也得到了广泛的应用。

现在,量子化学的理论和计算已经深入到化学的各个分支学科。在物理化学中,量子化学被用于计算分子的各种热力学函数(例如熵,焓和自由能等等);计算分子的结构性质(如键长、键角、电偶极矩、转动势垒、异构化能等等);计算化学反应的速率常数;解释分子间相互作用以及分子和固体中的成键情况。有机化学家可以用量子化学估计分子的相对稳定性;研究化学反应的中间体;计算反应势垒、研究反应机理等。分析化学家可以用量子化学了解和解释各种光谱,计算各种光谱的频率和强度。无机化学家可以用量子化学预测过渡金属络合物和晶体等各种体系的性质。生物化学家可以用量子化学研究生物分子,计算生物大分子的构型和构象,研究生物分子的相互作用(例如酶和底物的相互作用)等等。 随着计算机计算速度和容量的迅速发展,量子化学计算的精度也日益精密。对于较小的体系,量子化学计算的精度已经达到或超过了实验精度。 自从20世纪80年代起,有许多量子化学的计算程序可供化学家使用。早在1983年,Schaefer III 就指出:电子结构理论的大多数应用者并不是专职的理论化学家而是实验化学家,这些人在未来的10年中将飞快的增加,这种现象对量子化学家来说是最大的胜利也是最大的威胁。历史的发展证实了Schaefer III 的预言,现在,全世界数以千计的化学家已经在使用量子化学计算程序研究它们各自的领域,而量子化学的概念则应用于几乎所有的化学文献。 量子化学是化学各领域中发展最迅速的分支学科之一,正如瑞典皇家科学院在1998年诺贝尔化学奖通报的背景材料中指出的:“30年前,量子化学的努力被许多化学家嘲笑为无用的事情,影响很小,当今已完全不同了。毫无疑问,人们已经认识到了量子化学的用处和巨大威力。现已形成了广泛一致的意见。这种突破是最近一、二十年化学中最主要的发展之一。”

量子化学在化学领域中的应用

任课教师: 一、命题部分 量子化学在化学领域(或与各专业学生研究方向相关的领域)的应用。 二、评分标准 1、题目及撰写内容与命题要求一致性评价;格式符合要求评价及论文内容完整性、条理性、严谨性评价。(20%) 2、检索、引用论文的篇数、技术相关性;综述是否调理清晰,观点明确和内容丰富,且有足够的数据支撑及研究关联性。(50%) 3、对论文创新性、技术价值评价。(20%) 4、结论明确、是否为有内涵的评价;对论文原创性、独立性评价。(10%) 三、教师评语 请根据您确定的评分标准详细评分,给定成绩,填入“成绩”部分。

____________________________ 注1:本页由学生填写卷头和“任课教师”部分,其余由教师填写。其中蓝色字体部分请教师在命题时删除。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。 注3:试题、评分标准、评语尽量控制在本页。 注4:不符合规范试卷需修改规范后提交。 量子化学在化学领域中的应用 摘要量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学问题的 一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分 子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。而研究物质的组成 及结构必须借助量子化学方法来计算化合物分子中的电子结构,研究形成化学键的相互作用及 其它有关的微观信息。国内外都有许多化学工作者从事这方面的研究,近年来,随着计算机的 发展和理论上的突破,量子化学在研究化合物结构中的应用越来越广泛。本文介绍了量子化学 的发展,计算方法以及应用。 关键词量子化学结构计算 1.量子化学的发展及历史 自从现代化学成立以来,人们一直认为化学是一门实验学科,因为之前人类认识化学通过两种科学方法,一种是培根创造的实验科学归纳法,而另一种是笛卡尔创造的演绎法。但由于化学界的没能形成统一理论,使演绎法难以在化学研究中得到根本上的广泛应用,即化学研究无法像物理那样通过计算来逻辑地预言和解释化学行为。但是,20世纪30年代量子力学的出现,却给理论化学家带来了一线曙光。 19世纪三十年代,奥地利物理学家薛定谔总结出了实物微粒运动规律的薛定愕方程[1]。之后,德国革丁根大学的两位年青人海特勒和隆多首次借用量子力学处理化学问题,建立和求解了氢分子薛定愕方程,开辟了用量子理论方法研究分子中电子行为的广阔领域,导致了量子化学的产生。

量子化学主要研究方向及使用工具

我整理了一下大家的研究方向和主要工具,编成这个全家福。如果其中有遗漏和错误请告 诉我。现在一共有22位同行加入这个大家庭了,新来的朋友和还没跟贴的朋友请跟贴说明。 这个全家福将会不定期增补。 (按跟贴顺序) 1. gobin34, 主要研究方向:分子间弱相互作用. 工具: ADF, Turbomole, Gaussian, G amess. email: fan@chemie.uni-siegen.de 2. O0O0O0O0,研究方向:激光光谱学。计算主要集中在IIIA族单卤化物双原子分子 激发态的相对论量化计算上。 现在主要用GAMESS,DALTON。ADF,DIRAC,MOLFDIR偶尔用。 初学量化的时候,也用过盗版HyperChem和Gaussian。 本来还准备用MOLCAS或NOLPRO的,无奈老板是实验派。 3. spinsight, 研究方向:固体NMR及其在分子筛研究中的应用。量化计算是 一个辅助手段,主要想计算化学位移,以及研究分子筛的结构,催化反应机理 等等。现在主要是用Gaussian。 4. elizerbeth,主要研究方向纳米尺度上的电阻(conductance on the nanoscale system ) 主要用工具:Gaussian,V ASP,DFT++ email:站内信箱 (注:该版斑竹及创版人) 5. Chemis,主要研究领域催化反应机理,粒子-分子反应机理,金属簇;使用软件有gauss ian,NWChem,ADF,Gamss等,尽力拓展。 email:chjwang@https://www.360docs.net/doc/ed4205174.html, 6. silali, 本人感兴趣的是含离子的分子体系,优化用GA(自造的东东),然后再GAUSS IAN一下,作些性质计算。一直在WIN下作,目前正向LINUX平台过度。 7. Alwens,曾做过计算材料的东西,使用ADF,Gaussian,Gamess。现主要集中于 从事ab initio Molecular Dynamics,同时将来开展QM/MM的研究。

量子化学基础习题课

《量子化学基础》习题课 1. 波粒二象性: λh P =, 测不准关系x ?·x ?P ≧ 习题1.一粒微尘m=10-8kg,运动速度01.0=υm/s,若速度的不确定程度为810-=?υm/s 可谓很精确,试计算位置的不确定程度.(h=6.626×10-34 J.s) (答案:181063.6-?=?x m) 习题2.原子直径约为10 A (10-10m),核外电子运动速度大约是光速的1%,计算速度的不确定度. (答案:6107?=?υm) 例1.已知光学光栅窄缝宽度为10-4cm,电子动能为105 eV,试用测不准关系证明:用光学光栅观测不到电子衍射. 解:单缝衍射如下图 αsin P =P =?P x x ① 按干涉原理,图中电子射向屏中第一暗区,说明物质波相互抵消,上下两束电子波的光程差应为d/2.

λαα=??=?=sin sin x d BC ② 这里410-=?=x d cm, meV h mE h h 22= =P =λ (=m 9.11×10-31kg ;=e 1.602×10-19 C) 510 25.1225.12== V λ=3.87×10-12 m 6 6 1210101087.3sin ---=?==m m d λ α 0≈α 证毕. 习题3.计算动能为3000eV 的电子的de Brogle 波长 (1eV=1.602×10-19 J, V 3000C 10602.1J 10602.1300019 19 =???=--V ) (答案: 0A 2237.03000 25 .1225.12===V λ.) 2 .一维势箱: 22 28ml h n E =,),2,1( =n x l n C x πsin )(2=ψ 习题4.计算箱宽为5×10-10m 的一维势箱中粒子n=1、2时的能量.及粒子从n=2跃迁到n=1时辐射的波长. (答案:E 1=2.41×10-19J,E 2=9.64×10-19 J 191023.7-?=?E J 7 1075.2-?=λm) 习题 5.可将原子中的电子粗略的模拟为一维箱中粒子,箱的宽度为原子的尺度.计算在长度10 A 的箱中电子两个最低能级之差(eV)和在此两能级间跃迁的光子 波长(cm). (答案:2 1013.1?=?E eV, 8 101.1-?=λm)

量子化学理论方法

量子化学理论方法 分子轨道理论:分子体系中的电子用统一的波函数来描述,这种统一的波函数类似于原子体系中的原子轨道,被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。 HF自洽场方法:用迭代法解HF方程,是其他高级分子轨道理论方法的基础 CI方法:即组态相互作用方法,是一种考虑了组态间相互作用的理论方法,用HFSCF方法计算获得的多电子体系基态波函数和各级激发态波函数为基组展开体系波函数,但是计算量巨大,应用较不广泛,在实际应用中场采用截断CI 方法,如DCI、SDCI等方法 MP方法:即多体微扰方法,将多电子体系电子间的相互作用看做是体系哈密顿算子的微扰项,应用MP微扰理论进行处理,一级微扰可以达到HFSCF方法的精度水平,二级微扰可以达到甚至超过DCI方法的精度水平,但计算量远远小于DCI。 多组态自洽场方法:将HF方程的求解方法用于多电子基函数展开的电子波函数中,本质上是CI方法的一个变种。 半经验计算方法:在计算过程中根据实验数据,将一些波函数积分用经验常数替代,可以上千倍地减少计算量,采用的经验常数不同,半经验算法的应用范围也不同,应用时需要根据研究体系的具体情况进行选择。 价键理论方法 密度泛函理论方法:当分子体系各原子核空间位置确定后,电子密度在空间中的分布也确定,可以将体系的能量表示为电子密度的泛函,密度泛函分析变分法求出能量最低时的电子密度分布和体系能量。 量子化学中的基组

量子化学中的基组是在量子化学中用于描述体系波函数的若干具有一定性质的函数,基组是量子化学从头计算的基础,在量子化学中有着非常重要的意义。基组的概念最早脱胎于原子轨道,随着量子化学的发展,现在量子化学中基组的概念已经大大扩展,不局限于原子轨道的原始概念了。在量子化学计算中,根据体系的不同,需要选择不同的基组,构成基组的函数越多,基组便越大,对计算的限制就越小,计算的精度也越高,同时计算量也会随基组的增大而剧增。 压缩高斯型基组 压缩高斯基组是用压缩高斯型函数构成的量子化学基组。为了弥补高斯型函数与***处行为的巨大差异,量子化学家使用多个高斯型函数进行线性组合,以组合获得的新函数作为基函数参与量子化学计算,这样获得的基组一方面可以较好地模拟原子轨道波函数的形态,另一方面可以利用高斯型函数在数学上的良好性质,简化计算。压缩高斯型基组是目前应用最多的基组,根据研究体系的不同性质,量子化学家会选择不同形式的的压缩高斯型基组进行计算。 最小基组 最小基组又叫STO-3G基组,STO是斯莱特型原子轨道的缩写,3G表示每个斯莱特型原子轨道是由三个高斯型函数线性组合获得。STO-3G基组是规模最小的压缩高斯型基组。STO-3G基组用三个高斯型函数的线性组合来描述一个原子轨道,对原子轨道列出HF方程进行自洽场计算,以获得高斯型函数的指数和组合系数。STO-3G基组规模小,计算精度相对差,但是计算量最小,适合较大分子体系的计算。 劈裂价键基组 根据量子化学理论,基组规模越大,量化计算的精度就越高,当基组规模趋于无限大时,量化计算的结果也就逼近真实值,为了提高量子化学计算精度,需要加大基组的规模,即增加基组中基函数的数量,增大基组规模的一个方法是劈裂原子轨道,即使用多于一个基函数来表示一个原子轨道。

量子化学计算方法及应用

量子化学计算方法及应用 马建华 华侨大学材料学院2009级研究生班学号0900202003 摘要:文章概括地介绍了从头算法及一些半经验的量子化学计算方法, 同时简要介绍了国际理论界近年发展起来的组合方法、遗传算法、神经网络等计算方法及其在材料学、生物学、药物学以及配位化学中的应用。 关键词:量子化学;计算方法;应用 1、量子化学计算方法简介 量子力学是20世纪最重要的科学发现之一。在量子力学基础上发展起来的理论物理、量子化学及相关的计算, 为我们开辟了通向微观世界的又一个途径。 量子化学研究的电子- 原子核体系可用相应的Schrdinger 方程解的波函数来描述。原则上,Schrdinger方程的全部解保证了多电子体系中电子结构与相互作用的全面描述。然而, 由于数学处理的复杂性, 在实践中, 总希望发展和运用量子力学的近似方法, 从而无需进行很繁杂的计算就可以说明复杂原子体系的主要特性, 这就必须在原始量子化学方程中引进一些重要的简化, 以便得到一定程度的近似解。量子化学发展到现在, 根据为解Schrdinger方程而引入近似程度的不同,大致可分为以下几种方法: 1.1、从头计算方法(ab initio calculation)[1- 2] 从头计算方法, 即进行全电子体系非相对论的量子力学方程计算。这种方法仅仅在非相对论近似、Born-Oppenheimer近似、轨道近似这三个基本近似的基础上利用Planck常数、电子质量和电量三个基本物理常数以及元素的原子序数, 对分子的全部积分严格进行计算,不借助任何经验或半经验参数,达到求解量子力学Schrdinger方程的目的。Roothaan方程是多电子体系Schrdinger方程引入三个基本近似后的基本表达。原则上,只要合适地选择基函数,自洽迭代的次数足够多,Roothaan方程就一定能得到接近自洽场极限的精确解。因此这种计算方法在理论和方法上都是比较严格的, 其计算结果的精确性和可靠性都大大优于半经

相关文档
最新文档