2020届高三精准培优专练十七 圆锥曲线的几何性质(理) 学生版

2020届高三精准培优专练十七 圆锥曲线的几何性质(理) 学生版
2020届高三精准培优专练十七 圆锥曲线的几何性质(理) 学生版

2020届高三好教育精准培优专练

例1:已知点P是椭圆221

54

x y

+=上y轴右侧的一点,且以点P及焦点

1

F,

2

F为顶点的三角形的面积等于1,则点P的坐标为________.

例2:如图,已知抛物线24

y x

=的焦点为F,过点F且斜率为1的直线依次交抛物线及圆

()221

1

4

x y

-+=于点A,B,C,D四点,则AB CD

+的值是()

A.6B.7C.8D.9

例3:过双曲线

2

21

15

y

x-=的右支上一点P,分别向圆22

1

:(4)4

C x y

++=和圆22

2

:(4)1

C x y

-+=作切线,切点分别为M,N,则22

PM PN

-的最小值为.

一、选择题

培优点十七圆锥曲线的几何性质

一、椭圆的几何性质

二、抛物线的几何性质

三、双曲线的几何性质

对点增分集训

1.抛物线的焦点为,点是上一点,,则( )

A .

B .

C .

D .

2.设椭圆的左焦点为,直线()与椭圆交于,两点, 则的值是( ) A .

B .

C .

D .

3.已知双曲线2

2:12

x C y -=上任意一点为G ,则G 到双曲线C 的两条渐近线距离之积为( ) A .

13

B .

23

C .1

D .

43

4.已知抛物线的准线与圆相切,则的值为( )

A

B .

C .

18

D .

或 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线

,当其离心率时,对应双曲线的渐近线的夹角的取值范围为( ) A . B . C . D .

6.已知直线l 过点(3,2)P -且与椭圆22

:

12016

x y C +=相交于A ,B 两点,则使得点P 为弦AB 中点的 直线斜率为( ) A .35

- B .65

-

C .

65

D .

35

7.设,是抛物线上的两个不同的点,是坐标原点,若直线与的斜率之积

为,则( ) A .B .以为直径的圆的面积大于 C .直线过抛物线的焦点

D .到直线的距离不大于

8.椭圆与双曲线焦点相同,为左焦点,

2

:2(0)C y px p =>F 0(6,)A y C ||2AF p =p =43212

2:14

x C y +=F :l y kx =0k ≠C A B ||| |AF BF +242

y ax =22670x y y +--=a 14

128

-

14128

-90?22

22:1(0,0)x y E a b a b

-=>>e ∈[0,

]6

π

[

,

]63ππ

[

,

]43ππ

[

,

]32ππ

M N 2y x =O OM ON 1

2

-

||||OM ON +≥MN 4πMN 2

y x =O MN 22222:1(0)x y a b a b Γ+=>>22

22:1(0,0)x y m n m n

Ω-=>>F

曲线

与在第一象限,第三象限的交点分别为,,且,则当这两条曲线的离心率

之积最小时,双曲线有一条渐近线方程是( ) A . B .

C .

D

二、填空题

9.已知抛物线2

4x y =的焦点为F ,点A 在x 轴的正半轴上,过AF 的直线与抛物线在第一象限交于点

B ,与抛物线的准线l 交于点

C ,若2AB BF =,则FC = .

10.已知椭圆()的离心率,为椭圆上的一个动点,则与定点连线距离的最大值为 .

三、解答题

11.已知抛物线C 的方程22(0)px p y =>,焦点为F ,已知点P 在C 上,且点P 到点F 的距离比它到

y 轴的距离大1.

(1)试求出抛物线C 的方程;

(2)若抛物线C 上存在两动点,M N (,M N 在对称轴两侧),满足OM ON ⊥(O 为坐标原点),过点

F 作直线交C 于,A B 两点,若AB MN ∥,线段MN 上是否存在定点E ,使得

||||

4||

EM EN AB ?=恒成立?

若存在,请求出E 的坐标,若不存在,请说明理由.

ΓΩA B 23

AFB π

∠=20x y -=20x y +=0x =0y +=22

21y x a

+=1a >e =P P (1,0)

B -

12.设椭圆的左、右焦点分别为,,下顶点为,为坐标原点,

点到直线

,为等腰直角三角形. (1)求椭圆的标准方程;

(2)直线与椭圆交于,两点,若直线与直线的斜率之和为,证明:直线恒过定点,并求出该定点的坐标.

22

22:1(0)x y C a b a b

+=>>1F 2F A O O 2AF 12AF F ?C l C M N AM AN 2l

例1:【答案】(

15

,12

)或(15,2)1- 【解析】1F ,2F 是椭圆22154

x y +=的左、右焦点,541c =-=, 则1(1,0)F -,2(1,0)F ,

设(,)(0)P x y x >是椭圆上的一点, 由三角形的面积公式可知1

212

S c y =

??=,即1y =, 将1y =代入椭圆方程得21154

x +=,解得15x =,

∴点P 的坐标为(15

,12

),(15,2)1-. 例2:【答案】B

【解析】设()11,A x y ,()22,D x y ,代入抛物线方程消去y , 得2610x x -+=,∴126x x +=,

则121212222117AB CD AF r DF r x x r x x x x +=-+-=++-=++-=++=. 例3:【答案】13

【解析】圆22

1:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆22

2:(4)1C x y -+=的圆心为(4,0),半径为21r =,

设双曲线2

2

115

y x -=的左右焦点为1(4,0)F -,2(4,0)F ,

连接1PF ,2PF ,1F M ,2F N ,可得2

2

2222

1122|(())

|||PM PN PF r PF r -=---2212(4)(1)PF PF =---22

123PF PF =--1212(())3

PF PF PF PF =-+-122()322313a PF PF c =+-≥?-=.

当且仅当P 为右顶点时,取得等号,即最小值13.

培优点十七 圆锥曲线的几何性质 答案

一、选择题 1.【答案】A

【解析】根据抛物线焦半径公式可得:,所以. 2.【答案】C

【解析】设椭圆的右焦点为,连接,,

因为,,所以四边形是平行四边形, 所以,所以. 3.【答案】B

【解析】

渐近线方程为y =, 设点(,)G x y

,则1d =

2d =,∴2212|2|233x y d d -=

=. 4.【答案】D

【解析】抛物线,即,准线方程为, 因为抛物线的准线与圆相切, 当时,,解得; 当时,,解得. 5.【答案】D

【解析】由题意可得:,∴,

||622

p

AF p =+=4p =2F 2AF 2BF OA OB =2OF OF =2AFBF 2||||BF AF =2||||||||4AF BF AF AF +=+=2

y ax =21x y a =1

4y a

=-2

1

x y a

=

22(3)16x y +-=0a >1344a +=14

a =0a <1344a --=128

a =-222

221[2,4]c b e a a ==+∈2

2[1,3]b a

设双曲线的渐近线与轴的夹角为,双曲线的渐近线为,则. 结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为.

6.【答案】C

【解析】设11(,)A x y ,22(,)B x y ,则

221112016x y +=,22

2212016

x y +=, 两式相减

12121212()()()()

02016

x x x x y y y y -+-++=.

又由点(3,2)P -为弦AB 的中点,∴126x x +=,124y y +=-, ∴121265

y y k x x -=

=-.

7.【答案】D

【解析】当直线的斜率不存在时,

设,,由斜率之积为,可得,即,

∴的直线方程为,

当直线的斜率存在时,设直线方程为,联立,

可得,

此时设,,则,,

∴,即, ∴直线方程为,

则直线过定点,则到直线的距离不大于.

x θb y x a =±

[,]43

ππθ∈[,

]32ππ

MN 200(),M y y 2

00(,)N y y -12

-

20112y -=-2

02y =MN 2x =y kx m =+2y kx m

y x =+??=?

20ky y m -+=11(,)M x y 22(,)N x y 12m y y k =2

122m

x x k

=12121

2

OM ON y y k k k x x m ?=

==-2m k =-2(2)y kx k k x =-=-MN (2,0)O MN 2

8.【答案】C

【解析】设双曲线的右焦点为,由题意点与点关于原点对称,

因此, 又,所以, 由椭圆与双曲线定义可得,,

所以,, 根据余弦定理可得,

即,

化简得,

所以离心率乘积为,当且仅当①时,取等号,

由,所以,所以②, 再将①②代入可得, 所以双曲线的渐近线方程为或.

二、填空题 9.【答案】10

【解析】由题可知(0,1)F ,设点(,0)A a ,00(,)B x y ,则0000(,)2(,1)x a y x y -=--, 解得03a x =

,023

y =, 代入抛物线2

4x y =,得

28

93

a =

,解得a =

1F A B 1||||AF BF =23AFB π∠=

13

FAF π∠=1||||2AF AF a +=1||||2AF AF m -=||AF a m =+1||AF a m =-2

221111||

||||2||||cos FF AF AF AF AF F AF =+-∠2224()()2()()cos 3

c a m a m a m a m π

=++--+

-2

2243c

m a =+≥

=22

c c c a m am ?=≥223m a =2222a b m n -=+2222243c m b m n --=+223b n =2222a b m n -=+222m n

=0x

=0x +=

故A ,可得5AF =,根据对称性得,5AC =,所以10FC FA AC =+=. 10.【答案】

【解析】椭圆()的离心率

解得,椭圆方程为, 设,则与定点

, 当时,取得最大值

三、解答题

11.【答案】(1)24y x =;(2)存在,(4,0)E .

【解析】(1)因为P

到点F 的距离比它到y 轴的距离大1, 由题意和抛物线定义,

12

p

=,所以抛物线C 的方程为24y x =, (2)由题意,0MN k ≠,

设211(,)4y M y ,2

2

221(,)()4

y N y y y >,由OM ON ⊥,得1216y y =-,

①若直线MN 斜率存在,设斜率为k ,直线12

4

:M k y y N =

+,

112

124()4y y y x y y -=-+,整理可得12

4(4)y x y y =-+, 直线:AB (1)y k x =-,与C 联立得2440ky y k --=,故可得2

1

||4(1)AB k =+, 若点E 存在,设点E 坐标为00(,)x y ,

))012

0||||y EM E y N y y ?=--2

00214(1)(16)y y k k =+-+, 52

22

21y x a

+=1a >5e ==a =2

215

y x +=(cos )P θθP (1,0)B -=

52

==

1cos 4θ=5

2

||||4||EM EN AB ?=时,2

0041616y y k -+=,解得00y =或04y k

=(不是定点,舍去),

则点E 为(4,0),经检验,此点满足24y x <,所以在线段MN 上,

②若斜率不存在,则||4AB =,||||4416EM EN ?=?=,此时点(4,0)E 满足题意, 综上所述,定点E 为(4,0).

12.【答案】(1);(2)见解析. 【解析】(1)由题意可知:直线的方程为,即,

, 因为为等腰直角三角形,所以,

又,可解得

,,

所以椭圆的标准方程为. (2)证明:由(1)知,

当直线的斜率存在时,设直线的方程为,

代入,得. 所以,即,

设,,则,,

因为直线与直线的斜率之和为, 所以 ,整理得, 所以直线的方程为, 显然直线经过定点,

2

212

x y +=2AF 1x y c b

+=-0bx cy bc -++=bc a =

=

12AF F ?b c =2

2

2

a b c =+a =

1b =1c =C 2

212

x y +=(0,1)A -l l (1)y kx t t =+≠±2212

x y +=222

(12)4220k x ktx t +++-=2222

164(12)(22)0k t k t ?=-+->22

21t k -<11(,)M x y 22(,)N x y 122

412kt

x x k +=-+21222212t x x k -=+AM AN 212121212

1111

AM AN y y kx t kx t k k x x x x +++++++=

+=+()122

12(1)(1)422222

t x x t kt k k x x t +++?=+

=-=-1t k =-l 1(1)1y kx t kx k k x =+=+-=-+(1)1y k x =-+(1,1)

当直线的斜率不存在时,设直线的方程为, 因为直线与直线的斜率之和为, 设,则, 所以,解得, 此时直线的方程为,显然直线也经过该定点, 综上,直线恒过点.

l l x m =AM AN 2(,)M m n (,)N m n -112

2AM AN n n k k m m m

+-++=

+==1m =l 1x =1x =(1,1)l (1,1)

圆锥曲线的几何性质及其解题应用

圆锥曲线的几何性质及其解题应用 一、正确掌握圆锥曲线的几何性质,提高解题效率 1、椭圆中一些线段的长度及其关系如: ①椭圆上的点到焦点最近的距离为AF a c =-,最近的距离为BF a c =+; ②Rt OFC ?中,2 2 2 a b c =+; ④△F PQ '的周长与菱形F CFD '的周长相等,为4a . 例题1、如下图,椭圆中心为O ,F 是焦点,A 、C ,P Q 在椭圆上且PD l ⊥于D ,QF OA ⊥于F ① PF PD ② QF BF ③ AO BO ④ AF BA ⑤ FO AO ⑥ OF FC 能作为椭圆的离心率的是 (填正确的序号)2① 12OB OB b ==;12OA OA a ==. ② 焦点F 向渐近线引垂线,垂足为P ,则 bc PF b c = = =, 又因为OF c =,故有OP a = ③ 由②可知2Rt OA Q Rt OPF ???. ⑥ A A B B ③当PQ x ⊥轴时,2 2b PQ a =?,叫椭圆的通径.

例题2.已知双曲线22 214x y b -=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的 焦点到其渐近线的距离等于 . 【解析】双曲线的焦点到其渐近线的距离等于b ,由抛物线方程x y 122 =易知其焦点坐标 为)0,3(,又根据双曲线的几何性质可知2234=+b ,所以5= b . 【点评】平时如果能理解并记住一些有用的结论,可以在考试中节省许多宝贵的时间. 3、抛物线中一些线段的长度及其关系如: ① 通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段AB 叫做抛物线的通径,且2AB p =. ② 2DF p =,几何意义知道吗? ③ 由①②易知Rt ADF ? ④ 题目中涉及到焦点F 虑定义PF PQ =这个性质.

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

圆锥曲线综合应用及光学性质

圆锥曲线综合应用及光学性质(通用) 一、选择题(本大题共12小题,每小题5分,共60分) 1.二次曲线142 2=+m y x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是 ( ) A .]2 3,22[ B .]2 5,23[ C .]2 6,25[ D .]2 6,23[ 2.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面为m 千米,远地点B 距地面为n 千米,地球半径为R 千米,则飞船运行轨道的短轴长为 ( ) A .))((2R n R m ++ B .))((R n R m ++ C .mn D .2mn 3.已知椭圆1252 22=+y a x )5(>a 的两个焦点为1F 、2F ,且8||21=F F ,弦AB 过点1F ,则△2ABF 的周长为 ( ) A .10 B .20 C .241 D . 414 4.已知椭圆的中心在原点,离心率2 1 =e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为 ( ) A .1342 2=+y x B .1682 2=+y x C .12 22 =+y x D .14 22 =+y x 5.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围 ( ) A .[- 21,2 1 ] B .[-2,2] C .[-1,1] D .[-4,4] 6.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是 ( ) A .22 2 =-y x B .22 2 =-x y C .42 2 =-y x 或42 2 =-x y D .22 2 =-y x 或22 2 =-x y 7.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 ( ) A .4a B .2()a c - C .2()a c + D .以上答案均有可能

第五讲 圆锥曲线及其几何性质

回顾复习五:圆锥曲线及其几何性质 ☆考点梳理 1.圆锥曲线的轨迹定义与统一定义. 2.圆锥曲线的标准方程及其推导. 3.圆锥曲线的几何性质:范围、对称性、焦点、离心率、准线、渐近线.☆基础演练 1.如图,椭圆中心为O,A、B为左右顶点,F为左焦点, 左准线l交x轴于C,点P、Q在椭圆上,PD⊥l于D, QF⊥OA于F.给出下列比值: 其中为离心率的有_________________. 2.若 12 ,F F为椭圆 22 1 25 x y m +=的焦点,且 12 8 F F=,则m的 值为. 3.过抛物线的焦点F作直线交其于A、B两点,A、B在抛物线准线上的射影分别为A1、 B1,则 11 A FB ∠=____________. 4.经过两点() 143 ,, ?? - ? ? ?? 的圆锥曲线的标准方程是________________. 5.过双曲线 22 22 1 x y a b -=的右焦点F作一条渐近线的垂线分别交于A、B两点,O为坐标 原点,若OA、AB、OB成等差数列,且BF,FA u u u r u u u r 同向,则离心率e=_________. 6.椭圆 22 1 2516 x y +=的两个焦点为F1、F2,弦AB过F1,若 2 ABF ?的内切圆周长为π, ()() 1122 A x,y, B x,y,则 12 y y -=____________. ☆典型例题 1.椭圆的定义 例1.如图,已知E,F为平面上的两个定点,G为动点, 610 EF,FG, ==点P为线段EG的中垂线与GF的交点. ⑴建立适当的平面直角坐标系求出点P的轨迹方程; ⑵若点P的轨迹上存在两个不同的点A、B,且线段AB 的中垂线与EF(或EF的延长线)相交于一点C,线段EF 的中点为O,证明: 9 5 OC<. 2.中点弦问题 例3.直线l交椭圆 22 1 2016 x y +=于M,N两点,点() 04 B,,若⊿BMN的重心恰为椭圆 右焦点,则直线l的方程是_________________. 3.椭圆的几何性质 例2.已知 1 F、 2 F分别是椭圆() 22 22 10 x y a b a b +=>>的左右焦点,右准线l,离心率e. ⑴若P为椭圆上的一点,且 12 F PF ∠=θ,则 12 PF F S ? =_____________. ⑵若椭圆上存在一点P,使得 12 PF PF ⊥,则e的范围是_____________. ⑶若椭圆上存在一点P,使得 12 PF ePF =,则e的范围是_____________. ⑷若在l上存在一点P,使得线段 1 PF的中垂线经过 2 F,则e的范围是___________. ⑸若P为椭圆上的一点,线段 2 PF与圆222 x y b +=相切于中点Q,则e=________. ⑹过F且斜率为k的直线交椭圆于A、B两点,且3 AF FB = u u u r u u u r ,若 2 e=,则k=___. 4.最值问题 例4.已知动点P在椭圆 22 1 1612 x y +=上,(,(2,0) A B. ⑴若2 PA PB +取最小值,则点P的坐标为____________; ⑵若动点M满足||1 BM= u u u u r ,且0 PM BM= u u u u r u u u u r g,则| |的最小值是; ⑶PA PB +的取值范围是________________________. 例5.椭圆W的中心在原点,焦点在x轴上,离心率为 3 两条准线间的距离为6.椭 圆W的左焦点为F,过左准线与x轴的交点M任作一条斜率不为零的直线l与椭圆W 交于不同的两点A、B,点A关于x轴的对称点为C. ⑴求椭圆W的方程;⑵求证:CF FB λ = u u u r u u u r ;⑶求MBC ?面积S的最大值. ☆方法提炼 1.椭圆的标准方程有两种形式,有时需要就焦点位置进行讨论. 2.椭圆有两种定义方式,解题时要学会“回到定义去”. 3.椭圆有两个焦点、两条准线,解题时建议联系起来考虑. 4.解解析几何问题,“画个图”是个好建议;中点弦问题利用“点差法”可简化运算. 5.在处理直线与椭圆相结合的问题时,要学会利用韦达定理整体处理. P H E F G 第 1 页

高二数学 圆锥曲线的几何性质练习

圆锥曲线的几何性质 一、选择题(' ' 6636?=) 1. .设22221(0)x y a b a b +=>>为 黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,120 2.已知双曲线22 221(0,0)x y a b a b -=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R 点,则( ) A ,PFR QFR ∠>∠ B ,PFR QFR ∠=∠ C ,PFR QFR ∠<∠ D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( ) A ,(,0][4,)-∞+∞ B ,(,0]-∞ C ,[4,)+∞ D ,[0,4,] 4.设椭圆方程2 213 x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1] 5.已知12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任 意一点,若 2 12 PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( ) A ,(1,)+∞ B ,(1,2] C , D ,(1,3] 6.已知P 为抛物线2 4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线的光学性质

圆锥曲线光学性质的证明及应用初探 一、 圆锥曲线的光学性质 1.1 椭圆的光学性质: 从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另 一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在1F 处放置一个热源,那么红外线也能聚焦于2F 处,对2F 处的物体加热。电影放映机的反光镜也是这个原理。 证明:由导数可得切线l 的斜率0 20 20x x b x k y a y =-' ==, 而1PF 的斜率010 y k x c =+,2PF 的斜率020y k x c =- ∴l 到1PF 所成的角α'满足()()200 2 2222 2000001222 2 001000 2 00 tan 11y b x x c a y a y b x b cx k k b x y kk a b x y a cy x c a y α++++-'===+-+-+, ()00,P x y 在椭圆上,∴20tan b cy α'=,同理,2PF 到l 所成的角β'满足2 220 tan 1k k b kk cy β-'==+, ∴tan tan αβ''=,而,0, 2παβ?? ''∈ ?? ? ,∴αβ''= 1.2双曲线的光学性质 :从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2). 双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用. 1.3 抛物线的光学性质 : 从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图1.3 图1.2 图1.1

圆锥曲线的概念与几何性质

第十六单元圆锥曲线的概念与几何性质 考点一椭圆的标准方程和几何性质 1.(2017年全国Ⅰ卷)设A,B是椭圆C:+=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是(). A.(0,1]∪[9,+∞) B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞) D.(0,∪[4,+∞) 【解析】当03时,焦点在y轴上, 要使C上存在点M满足∠AMB=120°, 则≥tan 60°=,即≥,解得m≥9. 故m的取值范围为(0,1]∪[9,+∞). 故选A. 【答案】A 2.(2014年大纲卷)已知椭圆C:+=1(a>b>0)的左,右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为(). A.+=1 B.+y2=1 C.+=1 D.+=1 【解析】因为△AF1B的周长为4,所以|AF1|+|AB|+|BF1|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4,所以a=.又因为椭圆的离心率e==,所以c=1,所以b2=a2-c2=3-1=2,所以椭圆C的方程为+=1,故选A. 【答案】A 3.(2013年全国Ⅱ卷)设椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为(). A. B. C. D.

【解析】(法一)由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=====. (法二)由PF2⊥F1F2可知点P的横坐标为c,将x=c代入椭圆方程可解得y=±,所以|PF2|=.又由∠PF1F2=30°可得 |F1F2|=|PF2|,故2c=·,变形可得(a2-c2)=2ac,等式两边同除以a2,得(1-e2)=2e,解得e=或e=-(舍去). 【答案】D 4.(2017年全国Ⅲ卷)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为(). A.B.C.D. 【解析】由题意知以A1A2为直径的圆的圆心坐标为(0,0),半径为a. ∵直线bx-ay+2ab=0与圆相切, ∴圆心到直线的距离d==a,解得a=b, ∴=, ∴e==- =-= -=.故选A. 【答案】A 考点二双曲线的标准方程和几何性质 5.(2016年全国Ⅰ卷)已知方程- - =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(). A.(-1,3) B.(-1,) C.(0,3) D.(0,) 【解析】若已知方程表示双曲线,则(m2+n)(3m2-n)>0,解得-m20,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为(). A.-=1 B.-=1 C.-=1 D.-=1 【解析】因为双曲线C的渐近线方程为y=±x,所以=.又因为椭圆与双曲线的焦点为(±3,0),即c=3,且c2=a2+b2,所以a2=4,b2=5,故双曲线C的方程为-=1. 【答案】B 7.(2017年全国Ⅱ卷)若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为().

圆锥曲线光学性质的证明及应用初探

圆锥曲线光学性质及生活中的应用 杭州高级中学高二(12):汪愈超、汤凯楠、王小川学习完圆锥曲线的方程和性质后,课本上有几条未证明的性质引起了我们的兴趣,在反复查找资料,推理演算下,总算是确定了三条待证命题,大致地完成了其证明,并且找到了一些圆锥曲线在实际中的神奇应用。一、圆锥曲线的光学性质 首先说明一下我们要证明的东西,总共有三样: 1 椭圆的光学性质:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上; (见图1.1) 椭圆的这种光学特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 2双曲线的光学性质:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上;(见图1.2).双曲线这种性质,在天文望远镜的设计等方面,有重大的贡献 3 抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴(如图1.3) 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对

称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 当然,在证明之前,需要把这个物理问题转化为数学问题才行。 二、问题转化及证明 在证明前,如果不知道这三点,是很麻烦的 因为其光学性质的证明都与圆锥曲线上某一点的切线方程有关,所以这三个公式先提前列出 1若点00(,)P x y 是椭圆22 221x y a b +=上任一点,则椭圆过该点的切线方程为: 00221x x y y a b +=。 2若点00(,)P x y 是双曲线22 221x y a b -=上任一点,则双曲线过该点的切线方 程为:00221x x y y a b -= ? 图1.3 F 2 ? ? F 1 图1.2 ? ? A F 1 F 2 D O 图1.1 B

圆锥曲线几何性质总汇

圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即2 4ABF C a = 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在 12AF F 中 ∵ 2 2 21212 4cos 2PF PF c PF PF θ+-=? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?∴ 2 1221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= (3 ()()() 2 2 22 2 2 22 12002 2222 2 212 00 4444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---= = =-?-+ 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM x x x

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

圆锥曲线光学性质几何证明法

利用反证法证明圆锥曲线的 光学性质 迤山中学数学组 贾浩 2014.1.1

利用反证法证明圆锥曲线的光学性质 反证法又称归谬法,是高中数学证明中常用的一种方法。利用反证法证明问题的思路为:首先在原命题的条件下,假设结论的反面成立,然后推理出明显矛盾的结果,从而说明假设不成立,则原命题得证。 在光的折射定律中,从点P 发出的光经过直线l 折射后,反射光线的反向延长线经过点P 关于直线l 的对称点。 下面结合光的折射定律,利用反证法证明圆锥曲线的光学性质。 一、椭圆的光学性质 从椭圆的一个焦点出发的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点上。 该命题证明如下: 已知椭圆的两个焦点分别为1F 、2F ,P 为椭圆上的一个点,过点P 作椭圆的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。 证明 假设'2F 不在1F 、P 所在的直线上,连接1F 、'2F ,交椭圆于M 。 则'' 1212F F MF MF =+, ''1212F F PF PF <+ 由122PF PF a +=,'22PF PF =得 '122PF PF a +=,则'122F F a < 又由122MF MF a +=, '22MF MF < 得 '122MF MF a +>,则 '122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。

二、双曲线的光学性质 从双曲线的一个焦点出发的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点。 该命题证明如下: 已知双曲线的两个焦点分别为1F 、2F ,P 为双曲线右支上的一个点,过点P 作双曲线的切线l ,2F 关于切线l 的对称点为'2F ,证明:1F 、P 、'2F 三点共线。 证明 假设' 2F 不在1F 、P 所在的直线上,连接1F 、'2F ,交椭圆于M 。 则''1212F F MF MF =-, ''1212F F PF PF >- 由'122PF PF a -=得 '122F F a >。 又由122MF MF a -=,'22MF MF < 得 '122MF MF a -<,则'122F F a <。这与上式矛盾。因此,1F 、P 、'2F 三点共线。 三、抛物线的光学性质 从抛物线的焦点出发的光线,经过抛物线反射后,反射光线平行于抛物线的轴。 该命题证明如下: 已知抛物线焦点分别为F ,直线m 为抛物线的准线, P 为抛物线上的一个点,过点P 作直线m 的垂线,垂足为'P 。过点P 作抛物线的切线l ,F 关于切线l 的对称点为'F ,证明:'F 、P 、'P 三点共线。

圆锥曲线的定义及几何性质

圆锥曲线的定义及几何性质 1. 椭圆 222 2 1x y a b + =和 222 2 x y k a b + =(0)k >一定具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长轴长 2. 已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2 ABF ?是正三角形,则这个椭圆的离心率是( ) A . 2 B . 3 C 2 D 3 3. 已知1F 、2F 是椭圆的两个焦点,满足120M F M F ?= 的点M 总在椭圆内部,则椭圆离心率的 取值范围是( )A .(01), B .1(0]2 , C .(02 D .1)2 4. 过椭圆 222 2 1(0) x y a b a b + =>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若 1260F PF ∠=°,则椭圆的离心率为( ) A . 2 B . 3 C .12 D .1 3 5. 已知椭圆 2222 1x y a b +=的左、 右焦点分别为1F 、2F ,且12||2F F c =,点A 在椭圆上,1120AF F F ?= ,2 12AF AF c ?= ,则椭圆的离心率e = ( ) A . 3 B . 2 C 2 D 2 6. 已知P 是以12F F ,为焦点的椭圆 222 2 1(0)x y a b a b + =>>上的一点,若 120 PF PF ?= , 121tan 2 PF F ∠= ,则此椭圆的的离心率为( ) A . 12 B . 23 C .1 3 D 3 7. 已知椭圆 2 2 15 x y m + = 的离心率e 5 =m 的值为( ) A .3 B . 253 或3 C . D 8. 椭圆的长轴为12A A ,B 为短轴的一个端点,若∠012120A BA =,则椭圆的离心率为( ) A . 12 B 3 C 3 D 2 9. 椭圆 222 2 1(0)x y a b a b + =>>的四个顶点为A 、B 、C 、D ,若四边形ABC D 的内切圆恰好过椭 圆的焦点,则椭圆的离心率是( ) A . 2 B . 4 C 2 D 4 10. 设12F F ,分别是椭圆 222 2 1x y a b + =(0a b >>)的左、右焦点,若在直线2 :a l x c = 上存在P (其 中c =),使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( ) A .0, 2? ?? B .0, 3? ? ? C .,12????? D .,13? ???? 11. 椭圆上一点A 看两焦点的视角为直角,设1AF 的延长线交椭圆于B ,又2||||AB AF =,则椭圆的 离心率e =( ) A .2-+ B . C 1- D 12. 椭圆() 222 2 10x y a b a b + =>>的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点满足线 段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) 13. A .02? ? ? B .102? ? ?? ?, C .)11 , D .112 ???? ??, 14. 已知椭圆() 222 2 10x y a b a b + =>>,A 是椭圆长轴的一个端点,B 是椭圆短轴的一个端点,F 为 椭圆的一个焦点. 若AB BF ⊥,则该椭圆的离心率为 ( ) 224416. 在ABC △中,A B B C =,7cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离 心率e = . 17. 在平面直角坐标系xOy 中,设椭圆 222 2 1(0) x y a b a b +=>>的焦距为2c ,以点O 为圆心,a 为 半径作圆M .若过点20a P c ?? ? ?? ,作圆M 的两条切线互相垂直,则椭圆的离心率为 . 18. 直线:220l x y -+=过椭圆的左焦点1F 和一个顶点B ,该椭圆的离心率为_________. 19. 设12(0)(0)F c F c -,,,是椭圆 222 2 1(0) x y a b a b + =>>的两个焦点,P 是以12F F 为直径的圆与椭 圆的一个交点,若12 21 2PF F PF F ∠=∠,则椭圆的离心率等于________. 20. 椭圆 222 2 1(0)x y a b a b + =>>的半焦距为c ,若直线2y x =与椭圆一个交点的横坐标恰为c ,椭圆 的离心率为_________ 21. 已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A B ,两点,若 2ABF △是正三角形,则这个椭圆的离心率是_________.

圆锥曲线几何性质总汇

,. 圆锥曲线的几何性质 一、椭圆的几何性质 (以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义 12121212242AF AF a AF AF BF BF a BF BF a +=?? ?+++=?+=?? 即24ABF C a =< 2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F <中 ∵ 2 2 2 1212 4cos 2PF PF c PF PF θ+-= ? ∴ () 2 1212 122cos 2PF PF PF PF PF PF θ?=+-?- ∴ 21221cos b PF PF θ ?=+ ∴ 12 22112sin cos tan 21cos 2 PF F b S b θθθθ-=??=?+ (2)(S ⊿PF1F2)max = max 1 22 c h bc ??= ()()2 2 2 2 2222 12004444PF PF c a ex a ex c a c +-++---x x

,. 当0x =0时 cos θ有最小值22 2 2a c a - 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F ,连接OM 由已知有 1PF FP = M 为1 F F 中点 ∴ 212OM FF = =()121 2 PF PF +=a 所以M 的轨迹方程为 2 2 2 x y a += 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 证明:取1PF 的中点M ,连接OM 。令圆M 的直径1PF ,半径为∵ OM =()211111 2222 PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切 ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e 证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵ 1212121222F R F R F R F R IR c e PI PF PF PF PF a +=====+ x x y x

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及 其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的光学性质及其应用 尹建堂 一、圆锥曲线的光学性质 圆锥曲线的光学性质源于它的切线和法线的性质,因而为正确理解与掌握其光学性质,就要掌握其切线、法线方程的求法及性质。 设P()为圆锥曲线(A、B、C不同时为零)上一定点,则在该点处的切线方程为: 。(该方程与已知曲线方程本身相比,得到的规律就是通常所说的“替换法则”,可直接用此法则写出切线方程)。 该方程的推导,原则上用“△法”求出在点P处的切线斜率,进而用点斜式写出切线方程,则在点P处的法线方程为 。 1、抛物线的切线、法线性质 经过抛物线上一点作一条直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这一点的焦半径的夹角。如图1中。 事实上,设为抛物线上一点,则切线MT的方程可由替换法则,得,即,斜率为,于是得在点M处的法线方程为 令,得法线与x轴的交点N的坐标为,

所以 又焦半径 所以,从而得即 当点M与顶点O重合时,法线为x轴,结论仍成立。 所以过M的法线平分这条直线和这一点的焦半径的夹角。 也可以利用点M处的切线方程求出,则,又 故,从而得 也可以利用到角公式来证明 抛物线的这个性质的光学意义是:“从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴”。 2、椭圆的切线、法线性质 经过椭圆上一点的法线,平分这一点的两条焦点半径的夹角。如图2中 证明也不难,分别求出,然后用到角公式即可获证。 椭圆的这个性质的光学意义是:“从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上”。 3、双曲线的切线、法线性质 经过双曲线上一点的切线,平分这一点的两条焦点半径的夹角,如图3中。仍可利用到角公式获证。 这个性质的光学意义是:“从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是散开的,它们就好像是从另一个焦点射出的一样”。

圆锥曲线经典性质总结证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

圆锥曲线的几何性质

圆锥曲线的几何性质 西安 刘康宁 一、选择题(' ' 6636?=) 1. 的椭圆称之为“黄金椭圆”.设22 221(0)x y a b a b +=>>为 黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D , 120 2.已知双曲线22 221(0,0)x y a b a b -=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R 点,则( ) A ,PFR QFR ∠>∠ B ,PFR QFR ∠=∠ C ,PFR QFR ∠<∠ D ,PFR ∠与QFR ∠的大小不确定 3.已知点A(0,2)和抛物线2 4y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( ) A ,(,0][4,)-∞+∞ B ,(,0]-∞ C ,[4,)+∞ D ,[0,4,] 4.设椭圆方程2 213 x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。若总存在以MN 为底边的等腰AMN ?,则直线MN 的斜率k 的取值范围是 ( ) A ,(1,1)- B ,[1,1]- C ,(1,0]- D ,[0,1] 5.已知12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线右支上的任 意一点,若 2 12 PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( ) A ,(1,)+∞ B ,(1,2] C , D ,(1,3] 6.已知P 为抛物线2 4y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( )

相关文档
最新文档