不等式放缩技巧十法

不等式放缩技巧十法
不等式放缩技巧十法

第六章 不等式

第二节不等式放缩技巧十法

证明不等式,其基本方法参阅 <数学是怎样学好的 >(下册)有关章节?这里以数列型不等式 的证明为例说明证明不等式的一个关键问题 :不等式的放缩技巧。

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性 和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各 类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的 结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下十种:

一利用重要不等式放缩

1?均值不等式法

②根据所证不等式的结构特征来选取所需要的重要不等式,这里

n

a 1 a n

a 1 a n

其中,n

2,3等的各式及其变式公式均可供选用。 例2已知函数

f(x)

1 7-

,若f(1)-,且f(x)在[0,1]上的最小值为丄,求证: 1 a 2 5 2

例 1 设 S n

J 2 ,2 3

;n(n 1).求证

n(n 2 1)

S n

(n 1)2 2

解析 此数列的通项为

a k

,k(k 1),k 1,2, ,n.

k

k(k

1)

k k

1

k

1

2

2

n

k S n

n

(k

2)

k 1

k

1

2

即n(n 1)

S n

n(n

1)

n (n 1)2 2

2

2

2

注:①应注意把握放缩的 “度

” : 上述不等式右边放缩用的是均值不等式

ab 宁,若

放成.... k(k —1)

k 1 则得 s n

(k 1)

k 1

(n 1)(n 3)

2

,就放过“度”

了!

2

n

a 1

a n

n

f(1) f(2) f(n)

1 2* 1

[简析]f (x)

1 1 4X

1

2?2X

(x 0) f(1) L f(n)

(1

克) (1

(1

1

1(1

例3求证c :

n C

n

n 1

2~(n

简析不等式左边 C 1 故原结论成立 【例4】已知a 2 2 22 1, n

C ;=2n 1

2n 1 =n

n 1

2V

2 a 2

a : 1 , X 2 x ; L 求证:a 1X 1 a 2X 2

a n X n W 1. 【解析】使用均值不等式即可: 因为

2

X xy a 1X 1 a 2X 2 L a n X n 2 a 1 2 X 1 2 2 X

1

其实,上述证明完全可以改述成求

2 2

右 a 1 a 2 2

L

a n

2

p

,X 1

试求a 1x 1

a 2x 2

请分析下述求法: 因为 xy

a 1x 1 a 2x 2 L

a n X n

洛)

N).

2n

2 2

a 2 X 2

2

a 1x 1 2

X

2

22

2° 1

2

-(x, y R),

所以有

1.

a ?X 2

2

L

X n a n x n 的最大

值。

2

2

.

2

a 1

a 2

L a n

2

2 x

1

2 2

a n X n

2

a n x n 的最大

值。

q(p,q 0)

本题还可以推广为:

2

匕(x, y R),所以有 2

2 2 2 a

〔 X 1

a 2

2 2 2 X 2

L X n

2

x 2 2 a

n

2

2 X n

_q 2 ,且此时有a k x k (k

上述解题过程貌似完美,其实细细推敲,是大有问题的:取的条件是

故 a 1x 1 a 2x 2

_p

a n x n 的最大值为 1,2,L , n)。

n

n

X k (k 1,2,L ,n),即必须有

那么,p q 呢?其实例6的方法

照样可用,只需做稍稍变形转化:

a k

(4X 1 a 2X 2 L a n X n )max 、PQ ,当且仅当.P

ir r

结合其结构特征,还可构造向量求解:设

m ⑻住,L , a n ), n (咅冬,L ,x n ),则

a k

2 2

k 1

a k

k

1兀,即只有p=q 时才成立!

2

a2

L

2

(J p)2

cP)2

2 2

a n 1

X

1

2

(屈)

2

鳥2)2 L

2 X

n 1

(,q)

a X 1 a ?X 2

则有 2 2

a n X n

..pq a1X1

a ?X 2

a n X n

2 a

2 2

( . P)2 ( . P)

2

an

)( (、P)2)(

2 2 _X1_ _x

「q)2 苛 2

(爲2)]

x k -y=(k

1,2,L ,n).

|?X 1 a 2X 2 L a n X n |

a 2 a ; L

x ; L

2 X

n

、? pq.

且取“=”的充要条件是:

X 1 a 1 理L a 2

Xn a n 。

特别提醒:上述题目可是我们课本上的原题啊 !只是我们做了少许的推广而已

2 ?利用有用结论 例 5 求证(1

1)(1 〔)(1 1) (1

1

)

3 5

2n 1

简析 本题可以利用的有用结论主要有:

2n 1.

1

由| m n | | m || n |立刻得解:

法1利用假分数的一个性质

b m

(b a m

0, m 0)可得

2n 2n 1

2n 1 2n

2n 1

(2n 1)

即(1 (-- 1 3 1

1)(1 -)(1

2n )2 2n 1)

i) (1

2n 1 2n

1)

2n 1.

法2利用贝努利不等式

(1 \n

X) n x(n ,n 2, x 1, x 0)的一个特例

(1

右2 1

2

右(此处

2,x

1

注:例5是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成 高考文科试题;进行升维处理并加参数而成理科姊妹题。如理科题的主干是:

1

1 1 3, ------------

证明(1 1)(1 -)(1 -)

(1

)

3

3n 1.

4

7

3n 2

(可考虑用贝努利不等式

n 3的特例)

1 2x 3X (n 1) x a n X

例6已知函数 f (x) lg ------------------------------------------------- ,0 a 1,给定n N ,n 2.

n

1 2k 1

,2k 1

k1(1

n

2k 1 k 1

2k 1

2n 1.

1998年全国

1

求证:f (2x) 2 f (x)(x 0)对任意n N且n 2恒成立。

[简析]本题可用数学归纳法证明,详参高考评分标准; 这里给出运用柯西( Cauchy )不

n 等式[(a i b i)]2

i 1 n n

a: b2的简捷证法: i 1 i 1

f (2x) 2f(x)

2x 2x 2 x

lg1 2

3 (n 1)

n

2x

a n x x

(n 1) an n

[1 2x3x(n 1)x a n x]2n?[1 2x 2x 1

(n 1) an] 而由Cauchy不等式得(1 1 1 2x3x 1 (n 1)x X\ 2

n )

(1212)?[1 ?2x 32x

(n 1) 2x 2x

n ](0时取等号)

n?[1 22x32x(n 1)2x2x q

n ] 1),得证!

例7 已知a1 1,a n 1 (1 1_ n ?

(I)用数学归纳法证明a n 2(n 2);

(II)对ln(1 x) x对x 0都成立,证明a n (无理数 e 2.71828-)[解析](II)结合第(I)问结论及所给题设条件ln(1x) x(x 0)的结构特征,可得放缩思路:a n 1(1 2n)a n ln a n 1ln(1

lna n

1

n2 n

2n。

于是In a n 1In a n

11 2 n n 2n '

n 1

(In a i 1 In a i i 1

n 1

)

i 1

(丄

i

1r) In a n

i 2i In a11

1 (l)n 1

1 (2)

2 1 12

n 1 1 n ?

2

即In a n In a12a n 2 e .

【注】:题目所给条件l n(1x)x( x 0 )为有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论2n

a n 1

( 1 _1

n(n

1

n(n 1)

1

a n1 1 (1寸)(a n 1)

In (a n 1) In

(a n 1) ln(1 n(n 1))

1

n(n 1)

n 1

[ln(a i 1 i 2 1) In (a i 1)]

11

2 i(i 1)

In (a n 1) In(a2 1)

即In (a n 1) 1 In 3 a n 3e 1 e2.

1

【例8】已知不等式一

2

1L 1 2(Iog2 n],n N ,n 2。[log 2 n]表示不超过Iog 2 n

的最大整数。设正数数列{ a n}满足:a1 b(b 0),a n 叫n 2.

1 a n 1

求证a n

2b

2 b[log 2n],n

3.

【简析】当n2时a n na n 1

a

n 1 a n

a

n 1

a

n 1

即—

a n 于是当n a n 1 3时有

注:①本题涉及的和式

—)

a k a k 1

a n a1

2[log2n]

a n

2b

2 b[Iog 2 n]

为调和级数,是发散的,不能求和;但是可以利用

n(n 1)( n 2)来放缩:

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高得放缩技巧而充满思考性与挑战性,能全面而综合地考查学生得潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题得极好素材。这类问题得求解策略往往就是:通过多角度观察所给数列通项得结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:; ⑷二项式放缩:,, (5)利用常用结论: Ⅰ、得放缩 : Ⅱ、得放缩(1) : (程度大) Ⅲ、得放缩(2):(程度小) Ⅳ、得放缩(3):(程度更小) Ⅴ、分式放缩还可利用真(假)分数得性质:与 记忆口诀“小者小,大者大”。解释:瞧b,若b小,则不等号就是小于号,反之亦然、 Ⅵ、构造函数法构造单调函数实现放缩。例:,从而实现利用函数单调性质得放缩:。 一.先求与再放缩 例1、,前n项与为S n ,求证: 例2、 , 前n项与为S n ,求证: 二.先放缩再求与 (一)放缩后裂项相消 例3.数列,,其前项与为 ,求证: (二)放缩后转化为等比数列。 例4、满足: (1)用数学归纳法证明: (2),求证: 三、裂项放缩 例5、(1)求得值; (2)求证:、 例6、(1)求证: (2)求证: (3)求证: 例7、求证: 例8、已知,,求证:、 四、分式放缩 姐妹不等式:与 记忆口诀”小者小,大者大” 解释:瞧b,若b小,则不等号就是小于号,反之亦然、 例9、姐妹不等式:与 也可以表示成为 与 例10、证明: 五、均值不等式放缩 例11、设求证 例12、已知函数,a>0,b>0,若,且在[0,1]上得最大值为, 求证: 六、二项式放缩 ,, 例13、设,求证、 例14、 , 试证明:、

数列不等式(放缩法)

用放缩法证明不等式的方法与技巧 一.常用公式 1. )1(11)1(12-<<+k k k k k 2. 1 21 12-+<<++k k k k k 3.22 k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211 6.b a b a +≤+ 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111 n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111 123222222n n n n n n n n n +++???+≥++???+==+++ (8 )1???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N *∈),数列2{}n n b b +的前n 项和为n T ,求证:34 n T <

典型例题:用放缩法证明不等式

用放缩法证明不等式 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab +b 2=a +b ,又a +b >0,得a +b >1,又ab <14(a +b )2,而(a +b )2=a +b +ab <a +b +14(a +b )2,即34(a +b )2<a +b ,所以 a + b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() 证明:因为a ab b a b b a b a b a b 222 22 234 2 22++=+++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。 所以a ab b b bc c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++>,b a c b a b c +++>,c a b c a b c +++>,所以

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg (5lg 3lg 2=<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 21k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):221 4112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

数列型不等式放缩技巧

数列型不等式放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一 利用重要不等式放缩 1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证.2 )1(2)1(2 +<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+= 2121)1(+ =++<+ ++= +<∑=n n n k S n k n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里 n a a n a a a a a a n n n n n n 2 2111111++≤ ++≤≤++ΛΛΛΛ 其中,3,2=n 等的各式及其变式公式均可供选用。 例 2 已知函数bx a x f 211)(?+= ,若5 4)1(= f ,且)(x f 在[0,1]上的最小值为21,求证:.21 2 1)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题) 简析 )221 1()()1()0(2 2114111414)(?->++?≠?->+-=+=n f f x x f x x x x Λ .21 2 1)21211(41)2211()2211(1 12-+=+++-=?-++?-++-n n n n n ΛΛ 例3 已知b a ,为正数,且11 1=+b a ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .(88年全国联赛题) 简析 由 111=+b a 得b a ab +=,又42)11)((≥++=++a b b a b a b a ,故4≥+=b a ab ,而n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(, 令n n n b a b a n f --+=)()(,则)(n f =111 1 ----++++n n n r r n r n n n ab C b a C b a C ΛΛ,因为i n n i n C C -=,倒序相加得 )(2n f =)()()(111 111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ΛΛ, 而12 1 1 1 1 2422+------=?≥≥+==+==+n n n n n n r n r r r n n n b a b a ab b a b a ab b a ΛΛ,则 )(2n f =))(22())((1 1r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ?-≥)22(n 12+n ,所以 )(n f ?-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 例4 求证),1(2 2 1321N n n n C C C C n n n n n n ∈>?>++++-Λ. 简析 不等式左边=++++n n n n n C C C C Λ32112222112-++++=-n n Λ n n n 122221-?????>Λ=2 1 2 -?n n ,原结论成立. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n Λ 简析 本题可以利用的有用结论主要有: 法1 利用假分数的一个性质)0,0(>>>++>m a b m a m b a b 可得 >-??122563412n n Λ=+??n n 212674523Λ)12(212654321+?-??n n n Λ

不等式解法(放缩法)

用放缩法证明数列不等式的几种类型和途径 不等式的证明,尤其是使用放缩法证明不等式,很多学生觉得无从下手,老师也觉得教学效果不理想.这里仅就用放缩法证明数列不等式谈谈自己的看法,不妥之处请同行指教. 根据建构主义的观点,学生在学习时可将知识分成若干模块,再对若干模块进行学习,经过同化和顺应,将知识变成自己的一部分. 常见的放缩方法有:增加(减少)某些项,增大(减少)分子(分母),增大(减小)被开方数,增大(减小)底数(指数),利用二项式定理,利用不等式的性质或重要不等式,利用函数的性质等. 对于“和式”数列不等式,若能够直接求和,则考虑先求和,再证不等式;若不能或甚难求和,则可考虑使用放缩法证明不等式. 而对于“和式”数列不等式,放缩的最主要目的是通过放缩,把原数列变为可求和、易求和的数列. 下面根据实施的途径分为以下五类进行讨论: 途径1:放缩为等差 等差?1类. 例1.求证:2131211222<++++n 同类不等式还有: ⑴ 8 11131211333<++++n ⑵ ()() 12216712151311222+->-++++n n (n>1)

⑶ 33322 1222<++++n n (n>1) 途径2:放缩为等比类. 例2.求证:3 512112112112132<-++-+-+-n 同类不等式还有: ⑴ 5 412112112112132<++++++++n ⑵ 3 4131213513313132<--++-+-+-n n 途径4:增大(减小)分子(分母)或被开方数放缩类. 例5.求证:()()2 2)1(322121+<+++?+?<+n n n n n n

导数应用于不等式证明之放缩法一例

导数应用于不等式证明之放缩法一例 的单调区间; 求轴垂直,处的切线与,在点(曲线是自然对数的底数),为常数,已知函数)()1())1(1)(...718.2(),2(ln )(.21x f y f x f y e k k x e x f x ==-=- 2)()1(,0)1(ln 1)(2-+<+>+-=x x x e e x g x x e x x x g 证明:,对任意)设( ()()()】式成立。证毕。恒成立,【所以所以)递增 ,)递减,在(,在(划分单调区间如下:解得令】 【只需证再用放缩法 , )即证明()(】,只需证 ,要证【)() (),所以(放缩,由于以下对】 【证明:结论20)(011132 ln 2)(0)(,,0ln 3)(,ln 31ln 2)(2),0(,0ln 2x )(,0ln 2x ln 1x 1 )]1(ln 1[)1(1)], 1(ln 1[1)1(11)1(1)1()(111),1()()]1(ln 1[1)0(,)1(ln 11323232332 3333min 33322222222222222222>>-=+-=+-=+-=++==∞+>>+='+=? ++='>>++=>+++?-->+++?+->+++-?+>++++≥++≥+≥+<+-?+?>+<+-?+?------------------------x h e e e e e e e e e e e e e e h h e e x h e x x x h x x x x x h x e x x x h x e e x x x x x x e e x x e x x x x e x e x e e x e x e e e e x x x x e e e x x x x x x x x x x x

大学中常用不等式 放缩技巧

大学中常用不等式,放缩技巧 一:一些重要恒等式 ⅰ:12+22+…+n2=n(n+1)(2n+1)/6 ⅱ: 13+23+…+n3=(1+2+…+n)2 Ⅲ:cosa+cos2a+…+cos2n a=sin2n+1a/2n+1sina ⅳ:e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0

二重要不等式 1:绝对值不等式 ︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用) 2:伯努利不等式 (1+x1)(1+x2)…(1+x n)≥1+x1+x2+…+x n(x i符号相同且大于-1) 3:柯西不等式 (∑ a i b i)2≤∑a i2∑b i2 4:︱sin nx︱≤n︱sin x︱ 5; (a+b)p≤2p max(︱a p︱,︱b p︱) (a+b)p≤a p+ b p (01) 6:(1+x)n≥1+nx (x>-1) 7:切比雪夫不等式 若a1≤a2≤…≤a n, b1≤b2≤…≤b n ∑a i b i≥(1/n)∑a i∑b i 若a1≤a2≤…≤a n, b1≥b2≥…≥b n ∑a i b i≤(1/n)∑a i∑b i 三:常见的放缩(√是根号)(均用数学归纳法证) 1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1); 2:1+1/√2+1/√3+…+1/√n>√n; 3:n!<【(n+1/2)】n

证明数列不等式之放缩技巧及缩放在数列中的应用大全

证明数列不等式之放缩技巧以及不等式缩放在数列中应用 大全 证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时, (2) 12 n n n +<. 证法一:令)6(2) 2(≥+=n n n c n n ,则0232)2(2)3)(1(1211<-=+-++= -+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683 1.644 n c c ?≤==< 于是当6n ≥时, 2 (2) 1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时, 66(62)483 12644 ?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2) 1.2 k k k +< 则当n =k +1时, 1(1)(3)(2)(1)(3)(1)(3) 1.222(2)(2)2k k k k k k k k k k k k k k ++++++++=?<<++ 由(1)、(2)所述,当n≥6时,2 (1) 12 n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明: ()23 11112 3 n n N a a a *++++ <∈. 证明:n n n n n a a 121121************?=-?=-<-=+++ , ∴3 2])21(1[321)21(...12111112122132<-?=?++?+<+++= -+n n n a a a a a a S . 例3. 已知函数f(x)=52168x x +-,设正项数列{}n a 满足1a =l,()1n n a f a +=. (1) 试比较n a 与 5 4 的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n=1 n i i b =∑.证明:当n≥2时,Sn <14(2n -1). 分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。 解:(1) 因为10,0,n n a a +>>所以1680,0 2.n n a a -><<

不等式放缩法

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 点评: 关键是将12(21)(21) n n n +--裂项成111 2121n n +---,然后再求和,即可达到目标。

(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥。 点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成 1122 112222n n n n S S S S S S S ----+-+ +-+的和,从而找到了解题的突破口。

2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。用于解决积式问题。 例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。 若 3 *3log 2(),n n c a n N =-∈证明对任意的* n ∈N ,不等 式 12111 (1)(1+)(1+)n c c c +??>恒成立. 点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。33 131(1+ )()32 n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131 ()323231332 n n n n n n n n n n --++>??=----,而通项式为31 { }32 n n +-的数列在迭乘时刚好相消,从而达到目标。

常用不等式-放缩技巧

一:一些重要恒等式 ⅰ:12+22+…+n2=n(n+1)(2n+1)/6 ⅱ: 13+23+…+n3=(1+2+…+n)2 Ⅲ:cosa+cos2a+…+cos2n a=sin2n+1a/2n+1sina ⅳ:e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0

1:绝对值不等式 ︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用) 2:伯努利不等式 (1+x1)(1+x2)…(1+x n)≥1+x1+x2+…+x n(x i符号相同且大于-1) 3:柯西不等式 (∑ a i b i)2≤∑a i2∑b i2 4:︱sin nx︱≤n︱sin x︱ 5; (a+b)p≤2p max(︱a p︱,︱b p︱) (a+b)p≤a p+ b p (01) 6:(1+x)n≥1+nx (x>-1) 7:切比雪夫不等式 若a1≤a2≤…≤a n, b1≤b2≤…≤b n ∑a i b i≥(1/n)∑a i∑b i 若a1≤a2≤…≤a n, b1≥b2≥…≥b n ∑a i b i≤(1/n)∑a i∑b i 三:常见的放缩(√是根号)(均用数学归纳法证) 1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1); 2:1+1/√2+1/√3+…+1/√n>√n; 3:n!<【(n+1/2)】n

用放缩法证明不等式Word版

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法 主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333 n n n S a +=-?+,1,2,3, n =。设2n n n T S =,1,2,3, n =,证明: 1 3 2 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 1 1 131131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S , 2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12n +≥ 。 证明:(I )111 111 1()23 2212 2n n T T n n n n n n +-= +++ -++++++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II ) 112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++ 由(I )可知n T 递增,从而12222n n T T T --≥≥ ≥,又11217 ,1,212T S T ===, 12211222n n n S T T T T S --∴=+++++21171711 (1)(1)112212 n n T T S n +≥-++=-++= 即当2n ≥时,2n S 711 12 n +≥。

证明数列不等式的常用放缩方法技巧(含答案)

证明数列不等式的常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12; n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg ( 5lg 3lg 2 =<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 2 1k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):2 2 111111()1(1)(1)211 k k k k k k < ==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):2214112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

不等式证明放缩法.doc

不等式的证明(放缩法) 1.设x 0, y 0 , A x y , B x x y ,则 A, B 的大小关系是() 1 x y 1 1 y A. A B B. A B C. A B D. A B 2.已知三角形的三边长分别为a, b, c ,设 M a b , N c , Q a b , 1 a 1 b 1 c 1 a b 则M,N与Q的大小关系是() A.MNQ B. MQN C. QNM D. N Q M 3.设不等的两个正数a, b 满足a3 b3 a2 b2,则a b 的取值范围是() A. (1, ) B. (1, 4 C. [1, 4 D. (0,1] ) ] 1 1 1 3 1 3 4.设A L ,则 A 与1的大小关系是. 210 210 1 210 2 211 1 5.设S 1 1 1 L 1 ,则 S 的整数部分为. 2 3 100 6.已知a,b,c均为正数,且a2 b2 c2 ,求证:c3 a3 b3 c3 . 2 7.设n N 1 1 1 1 . ,求证:L (2n 1)2 4 9 25 8.设n N 1 1 1 L 1 1 . ,求证: n 1 n 2 2n 2 9.设n N 1 1 L 1 1. ,求证: 42 (2 n)2 22 10.设S n 1 2 2 3 L n ( n 1) ,求证:不等式n( n 1) S n (n 1)2 2 2 对 所有的正整数n 都成立.

简答: 1. B 提示: A x y x y x y B 1 x y 1 x y 1 x y 1 x 1 y 2. D 提示:由 a b c ,得 1 1 , 1 a 1 a b 1 c 1 1 1 a b c b a b c c 3. B 提示:由条件得 a 2 ab b 2 a b ,所以 (a b)2 a 2 a b b 2 a b ,故 a b 1 . 又 ( a b) 2 0 ,可得 3(a 2 ab b 2 ) 4( a 2 ab b 2 ) ,从而 3( a b)2 4( a b) ,所以 a b 4 ,故 1 a b 4 . 3 3 4. A<1 5. 18 提示:因为 n 2 时, n n 1 2 n n n 1 ,所以 2 1 2 ,即 2( n 1 n ) 1 n 1) n n 1 n n n 2( n 1 n 故18 1 2( 101 2) 1 1 1 L 1 1 2( 100 1) 19 2 3 100 所以所求整数部分为 18. 6.解:由已知可知, 0 a c,0 b c, a b a 2 b 2 c 2 c, ab 2 ,所以 2 3 3 2 2 2 2 3 3 3 2 ab 2 2 c 2 ) c 3 a b aga bgb c(a b ) c ,a b (a b)(a b ) c(c 2 2 所以原不等式得证 . 7.提示:由 1 4k 2 1 1 4k 1 (1 1 ) ,累加即得 . (2 k 1)2 4k 1 4k 2 4 k k 1 8.提示: 1n 1 1 L 1 1 1 L 1 1 1 L 1 n 1. 2 2n 2n 2n 2n n 1 n 2 2n n n n n 9.提示: 1 1 1 1) 1 1 ,累加即得 . (2 n)2 n 2 n(n n 1 n

证明数列不等式的常用放缩方法技巧精减版

证明数列不等式的常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3lg 2=<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 21k 的放缩(1) : 2111(1)(1)k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):221 4112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

相关文档
最新文档