论金属有机化合物在合成中应用

论金属有机化合物在合成中应用
论金属有机化合物在合成中应用

论金属有机化合物在合成中应用

摘要:金属有机化合物是各类烷基和芳香基,如苯基等所形成的烃基与金属原子相结合而形成的化合物,或是碳元素与金属原子直接结合形成的化合物。随着人类对金属有机化合物认识的日益拓展,针对金属有机化首先简要介绍了金属有机化合物的发展历程,然后论述了金属有机化合物的几种自备方法,最后分析了有机锂化合物在合成中的几个主要应用。

关键词:金属有机化合物有机锂化合物化学合成

一、引言

金属有机化合物是指分子中至少含有一个金属—碳键的化合物,可以看作是一类特殊的混合物。大体上,金属有机化合物可以分为烷基金属化合物和芳香基金属化合物两种,而烷氧基与金属的化合物以及碳酸盐等不属于金属有机化合物的范畴,这些化合物虽然含有金属-碳键,但是仍然属于典型的无机物。金属化合物的发展历史比较久远,1827年至1950年是金属有机化学的萌芽期,在这期间丹麦化学家第一次制出了金属有机化合物Zeise盐,但是由于当时条件限制以及相关认识的匮乏,人们还没能发现Zeise盐所具有的不同寻常的性能。而后,Frankland也成功研制出了乙基和锌相结合的金属有机化合物。到二十世纪中叶,化学家相继发现了二茂铁,并成功测定了二茂铁的结构,这在很大程度上成为了金属有机化学发展史上的里程碑。而后随着人们环境保护意识的增强,从侧面催生了有机合成化学中对于催化不对称合成反应的研究。1966年,日本化学家研制出了以希夫碱和铜合成的催化剂,并进行了首例不对称催化反应。上个世纪七十年代,人们开始将研究指向金属有机化合物的潜在应用价值,如研究配位分子,将金属有机化合物当做试剂来合成其他有机化合物,Grignard制成的亲核性有机镁化合物就是一个典型的例子,这也就是人们熟知的格氏试剂。

二、有机锂化合物的制备方法

1.卤代烷和金属锂反应

金属锂元素和卤代烷在无水乙醚、苯等非极性溶剂中进行化学反应可生成有机锂化合物。反应过程如式(1)所示:

RX + 2Li——RLi + LiX (1)

在实际应用中,常用溴代烷或是氯代烷来制取RLi。由于锂的化学活性要高于镁,而烷基锂的活性也要高于烷基卤化镁,这就在一定程度上造成了有机锂在有机合成中所具有的非常重要的地位。由于有机锂中的碳—锂键离子性过强,很容易被氧化或者是和氢相结合,所以在制备有机锂时,要特别注意气体保护作用以及无水环境的设置。下面以丁基锂的制备为例,来说明有机锂化合物的制备方法和过程:首先是准备好1/3无水乙醚和2/3溴代正丁烷,将温度设置成10摄氏

茂金属聚乙烯的性能及加工

茂金属聚乙烯的性能及加工 塑料2007-04-18 22:18:10 阅读106 评论0 字号:大中小 茂金属聚乙烯的性能及加工 作者:周祥兴 茂金属聚乙烯是二十世纪90年代工业化生产的一种新颖热产性塑料,由于它是使用茂金属(MAO)为聚合催化剂生产出来的聚乙烯,因此,在性能上与传统的Ziegler-Natta催化剂聚合而成的PE有显著的不同,所谓茂金属催化剂是甲基铝氧化物催化剂的缩写MAO,其化学成分为: 茂金属催化剂的特点是活性中心单一,活性相同,可以制备分子量分布很窄和高度立体规整的聚合物,对聚合物分子量、分子量分布、立体规整结构、共聚单体含量及分布,都可以实现精密的控制,从而生产出性能优异的聚烯烃树脂,这是传统的Ziegler-Natta催化剂所做不到的。 mPE的发展有赖于茂金属催化剂的改进和大规模工业化生产,1951年就有人合成了过渡金属环戊二烯基络合物和甲基铝氧烷或离子活化剂组成的茂金属催化剂,这是有机金属的配位化合物,其中的过渡金属是锆、铪、钒、钛、钻、铁等,但是,由于1951年合成的茂金属催化剂催化活性低,聚合反应的一次转化率很低,且催化剂的制备很复杂,价格非常贵,实际上没有实用的价值,直到八十年代初期,德国汉堡大学Kaminsky教授合成了以双环戊二烯二氯化钴和铝氧烷(MAO)组成的茂金属催化剂后,由于其聚合反应论活性极高,才引起人们极大的兴趣,并进入工业化生产mPE树脂的实践。1991年美国EXXON 公司首先工业化生产mPE,接着DOW化学公司、Hoechst公司、Fina、BASF等公司都实现了茂金属催化剂工业聚合聚烯烃的生产。表1是世界工业化生产茂金属聚烯烃的公司及产品。 mPE有以下特性:(一)mPE有比平常的Zieglor-Natta催化剂生产的PE高度的分子结构规整性,因而有更高的结晶度,强度高、韧性好、刚性好;(二)mPE比普通PE的透明性好,结晶度虽高,透明性也好,而且树脂清洁度高;(三)mPE的分子量分布相当地窄,/MN为2,而一般的聚乙烯的/MN为3~5,甚至更高;(四)mPE的树脂嗅味比普通PE低,起始热封温度比普通PE低,而热封强度高,随mPE 中辛烯-1或乙烯-1含量的提高,密度降低,当辛烯-1含量在10~20%时,mPE密度在0.865~0.915g/cm3;(五)mPE树脂的耐应力开裂性优,可超过1000h,常常用作其它聚烯烃的耐应力改性剂使用,例如:在高分子量高密度聚乙烯炮气管道中,常用mPE来提高HDPE的耐应力开裂性;(六)mPE中的长支链聚合物,熔体温度较好,加工性可以,但是短支链化的mPE由于熔体粘度大,而熔体强度低,因而吹膜比较困难,容易发生膜泡破裂或产生鲨鱼皮纹,因而在吹膜mPE时,口模间隙应在1.5~2.8mm宽,比普通PE吹膜时稍宽,吹胀比应小一点,一般在1 5左右较佳,虽然mPE同LLDPE一样,可以用提高剪切速率的方法来降低高度的熔体粘度,但是,过大的吹膜速度会引起熔体破裂,同样,过高的熔体温度也是不合宜的,mPE同LLDPE不同的是,mPE的熔体粘度同温度和剪切速率都很敏感,而LLDPE熔体粘度仅对剪切速率敏感,对温度的敏感性很小。mPE的熔点随品片的不同在94~121℃之间,加工时的熔体最大温度在210℃,使用加工LDPE或加工LLDPE的设备均能顺利地加工mPE。为了更好地加工mPE,可以在mPE中适当添加氟弹性体、油酸酰胺、滑石粉或硅藻土等添加剂,添加量仅0.3~0.5%, 就可显著提高mPE的成型性。 表2是DOW化学公司生产的mPE牌号和性能。 上表中,PL1880、PL1840、FM1570是吹膜级mPE,FW1650、PL1845、HF1030为流涎薄膜级mPE,PP1140是流涎和吹膜二用牌号。Affinity PT1450是单层或共挤复合用牌号。Affinity 1450具有强度好韧性大加工性好的优点,但缩颈大,挤出流涎复合或挤出流涎膜生产时,推荐使用低挤出负荷,288~310℃的挤复温度,可减小缩颈,提高复合时的热粘结强度。Affinity PT1450有良好的低温热封性,

茂金属聚丙烯_mPP_催化剂的研究开发

茂金属聚丙烯(mPP)催化剂的研究开发 GaUmZ3S$- ?7t11.文章摘要:关键词:茂金属,聚丙烯,催化剂,负载化,工业化 背景14_TC-`Fq聚烯烃是目前世界上最重要的商品聚合物材料之一。在聚烯烃中,聚丙烯(PP)尤为引人注目。PP的性能价格比决定了它具有很强的市场竞争力,它的密度低,成本低,加工性能好,且有利于环境保护,使得PP树脂近年来一直是增长最快的通用塑料。2004年,全球PP的总生产能力比2003年增长约6.0%,预计到...... 1. 背景 聚烯烃是目前世界上最重要的商品聚合物材料之一。在聚烯烃中,聚丙烯(PP)尤为引人注目。PP的性能价格比决定了它具有很强的市场竞争力,它的密度低,成本低,加工性能好,且有利于环境保护,使得PP树脂近年来一直是增长最快的通用塑料。2004年,全球PP 的总生产能力比2003年增长约6.0%,预计到2010年,世界PP的总生产能力将达到约54Mt/a,其中亚洲(不包括日本)将是增长速度最快的地区,年均增长率将达到9.5%。中国是PP需求增长最快的国家,年均增长率将达到10%,需求量将从2004年的7.10Mt增加到2010年的10.80Mt,而产量将从4.70Mt增加到7.50Mt。中国仍将是世界最主要的PP消费国家之一。[1] PP树脂的高速增长主要分布于以下几个方面:(1)经济的一般性增长和开辟新的应用领域;(2)替代其它热塑性塑料;(3)替代其它材料(如玻璃、纸、金属材料)。 2. 均相茂金属催化剂概述 催化剂是推动PP技术发展的主要动力。以往生产聚丙烯的催化体系为Ziegler - Natta催化体系,近二十多年来出现了高活性茂金属催化丙烯聚合体系。在助催化剂MAO存在下,几乎所有IV族的茂金属催化剂都对丙烯聚合有活性,催化剂结构不同,聚合行为和产物聚丙烯的结构也不相同。 具有C2v对称结构的非桥联茂金属(如Cp2ZrCl2)产生无规聚丙烯,聚合活性和聚丙烯的分子量很低;[5] 而桥联C2v对称茂金属催化剂(如Me2Si(9-Flu)2ZrCl2)可以产生高分子量的无规聚丙烯,这种聚合物可用作弹性体。[6] 桥联rac-C2对称茂金属(即为外消旋催化剂,如rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2)可产生等规聚丙烯,通过对配体的修饰,可以提高聚合活性、聚丙烯的等规度和分子量。[7-10] 桥联meso-Cs对称茂金属(即为内消旋催化剂,如meso-Me2SiInd2ZrCl2)产生无规聚丙烯,聚合产物高度无规,并具有高度的方向规整性。 [11] 桥联Cs对称茂金属(如Me2Si(Cp)(9-Flu)ZrCl2)在苛刻条件下可得到间规聚丙烯。[12] 桥联C1对称茂金属(如Me2Si(RCp)(9-Flu)ZrCl2)则可得到半等规的聚丙烯。[13] 一种非桥联茂金属被报道可以用来生产全同-无规立体嵌段聚丙烯(如(PhInd)2ZrCl2)。[14,15]

金属有机化学的产生

金属有机化学的产生、发展及应用 ——一门交叉学科的兴起 著名的物理学家普朗克曾说过:“科学是内在的整体。它被分解为单独的部门不是取决于物质的本质,而是取决于人类认识的局限性。”作为“中心的,实用的和创造性的科学”的化学,其发展过程中由于客观条件所限制而形成的认识上的局限性同样理所当然地导致了其内部学科的分化。但是人类认识的进步是必然的历史趋势,同时,科学技术的高度分化和高度综合的整体化趋势也促成了当初分化了的学科之间的交叉和渗透。金属有机化学作为化学中无机化学和有机化学两大学科的交叉从产生到发展直到今天逐渐地现代化,它始终处于化学学科和化工学科的最前线,生机勃勃,硕果累累。 化学主要是研究物质地组成、结构和性质;研究物质在各种不同聚集态下,在分子与原子水平上的变化和反应规律、结构和各种性质之间的相互关系;以及变化和反应过程中的结构变化,能量关系和对各种性质的影响的科学。金属有机化学所研究的对象一般是指其结构中存在金属-碳键的化合物。在目前为止人类发现的110多种化学元素中,金属元素占绝大部分,而碳元素所衍生出的有机物不仅数量庞大,而且增长速度也很快,将这两类以前人们认为互不相干的物质组合起来形成的金属有机化合物不仅仅是两者简单的加和关系,而应是乘积倍数关系。其中的许多金属有机化合物已经为人类进步和国民生产做出了特殊的贡献,更重要的是,金属有机化学是一门年轻的科学,是一座刚刚开始发掘的宝藏,发展及应用潜力不可估量。下面就按时间顺序来说明金属有机化学产生和发展及其规律以及在实践中的应用,并探讨学科的研究方法。 一. 金属有机化学的产生与基本成形阶段(1823~1950年) 1827年,丹麦药剂师蔡司(W.C.Zeise)在加热PtCl2/KCl的乙醇溶液时无意中得到了一种黄色的沉淀,由于当时的条件所限,他未能表征出这种黄色沉淀物质的结构。现已证明,这个化合物为金属有机化合物。蔡司可能不会想到,他无意中得到的这第一个技术有机化合物标志着的无机化学与有机化学的交叉学科金属

有机金属化合物的研究

摘要:简要的评述了分别以无机物和有机物作载体的表面金属有机化合物,金属有机化合物与固体表面反应的基本规律和表面金属有机化合物的结构。 关键词:金属有机化合物;无机物;有机物;载体 表面金属有机化学(Surface Organometallic Chemistry简称SOMC)是化学、材料学及催化科学等学科的交叉融合而诞生的一门新型学科。该学科主要以分子金属有机化学、表面化学和分子配位化学为基础,以金属有机化合物与固体表面反应为研究对象,目的是通过在固体表面接枝金属有机基团制备表面组成和结构明确的、具有特殊性能的无机-有机杂化材料、表面金属原子簇、表面功能化膜等,是近年来化学和材料学学科中非常活跃的研究领域之一。金属有机化合物在固体材料表面的接枝反应性能是SOMC研究的基础,此类化合物在有机合成、烯烃聚合和氢化异构化等领域表现出卓越的性能。因而一直是当今金属有机化学研究最为活跃的一类化合物。近年来的研究表明,茂金属类催化剂一经与固体表面反应后,其所形成的表面金属有机化合物,不仅可以改善原物种的动力学性能、控制聚合物的形态,而且可以大大减少助催化剂的用量等,因此,有关表面茂锆金属有机化合物的研究已经成为人们备受关注的热点。本文简要的评述了分别以无机物和有机物作载体的表面金属有机化合物。 1 无机物载体表面金属有机化合物 1.1 氧化物载体表面金属有机化合物氧化物表面金属有机化合物分为两种反应形式,一种是金属有机化合物与氧化物表面的羟基发生反应,另一种是金属有机化合物与氧化物表面的≡M-O-M≡发生反应。 在500°C下处理的MCM-41分子筛上存在着大量的硅羟基,这些硅羟基亲电进攻金属有机化合物上的配位体,发生M-C间的断裂。一个典型的例子就是四新戊基锆化合物与MCM-41(500)表面羟基的反应[1],反应用红外光谱检测,且分析气体产物,表面接枝产物用13C NMR和化学探针反应等方法表征,结果表明Zr-C键在表面羟基的进攻下发生断裂,生成烷基锆化合物。 Michelle Jezequel[2]等用Cp*Zr(CH3)3和Cp2Zr(CH3)2分别与处理过的SiO、SiO2-Al2O、Al2O、Al2O发生反应,用红外光谱、元素分析、固态核磁、EXAFS等表征,推断出化合物的结构。这些复合材料可用作烯烃聚合反应催化剂,但发现表面化合物的结构与催化活性有很大的关系。Cp*Zr(CH3)3和Cp2Zr (CH3)2与SiO反应得到的固体无催化活性,而当接枝在SiO2-Al2O、Al2O、Al2O上时则有催化活性。 此外还有王绪绪等用四烷基锡化合物与SiO表面羟基发生反应,新戊基钛化合物与MCM-41表面羟基发生反应;丁基锡化合物分别与MCM-41、MCM-41表面羟基发生反应;四甲基锡化合物与MCM-41表面羟基发生反应。 当SiO2在高温下(>800°C)处理后,其表面羟基发生缩合形成≡Si-O-Si≡桥,可以与金属有机化合物反应并发生断裂,Bu3Sn-O-SnBu3与SiO2(1000)表面的反应是通过≡Si-O-Si≡的开环生成两个 ≡Si-O-SnBu3接枝物种[3]。并且这个反应不仅发生在四元环中的≡Si-O-Si≡上,而且还与六元环,甚至是八元环中的≡Si-O-Si≡反应。https://www.360docs.net/doc/ed7326623.html,lot[4]等人报道了在SiO和Cp*ZrMe3反应,主要生成两种不同的产物。 1.2 非氧化物MgCl2载体表面的金属有机化合物李现忠[5]等报道了以球型MgCl2为载体的 Ziegler-Natta催化剂与含有茂配体的硅烷化合物反应,制备了一种球型MgCl2负载型单茂钛催化剂,利用该类催化剂进行了乙烯与1-己烯共聚,茂金属配体影响催化剂活性的高低顺序为 Me4Ind>Ind>Cp>Me4Cp (其中 Me表示甲基、Ind表示茚基、Cp表示环戊二烯基)。Soga[10]等将Cl2Si(Ind)2ZrCl2负载到MgCl2上,制备了相应的负载型催化剂,该催化剂用于丙烯聚合可以制得全同立构的聚丙烯。 1.3 金属载体表面的金属有机化合物通过金属表面与金属有机化合物的反应可以制备高分散的双金属或多金属催化剂,并且在不同的催化反应中有特定的选择性。 在氢气的氛围下,四丁基锡可以与铑、镍、或铂(负载在SiO2或Al2O3上)反应制备Sn-Rh[6]、Sn-Ni 合金,这种双金属配合物金属相明显,稳定性得到很大改善,可应用到天然气催化合成中。同样,用茂铁或茂镍可以将铁或镍沉积在钯上形成铁钯合金或表面镍钯合金。 2 有机物载体表面金属有机化合物 使用载体催化剂时,无机载体被引入聚合物而影响聚烯烃的性能。和无机载体相比较,有机聚合物载

有机金属化合物

有机金属化合物及其应用 学校:辽宁师范大学 学院:化学化工学院 年级:2010级 班级:3班 姓名:于泳博 学号:20101129010020

有机金属化合物及其应用 于泳博 辽宁师范大学化学化工学院 2010级3班 摘要 近年来,有机金属化合物的设计、合成、结构及其应用的研究十分活跃。有机金属化合物是指分子中有机基团的碳原子和金属原子直接结合的化合物。如果含碳成分是通过某些其它原子(例如:氧、氮或硫)与金属结合,就不属于这类化合物。例如(C3H7O)4Ti 就被认为不是有机金属化合物,而C6H5Ti(OC3H7)3则是,因为后者的金属和碳有一处直接成键。实际上除稀有气体外,有机基团可以通过碳原子来用各种方式与周期表中所有元素相结合。本文仅以金属有机锂化物为例对有机金属化合物及其应用做一初步介绍。 关键词:有机金属化合物、有机锂化合物应用、有机金属化合物性质 前言 1827年丹麦Zeise制得铯的有机化合物,1849年Frankland合成出的金属σ键化合物(二丁乙基和锌结合的化合物),开始了金属有机化合物的发展。Grignard继续研究金属有机化合物,制成亲核性有机镁化合物,如甲基溴化镁等,广泛应用它作为合成其他有机化合物的试剂,称为格利雅试剂(简称格氏试剂)。 20世纪有机合成利用格氏试剂引起了人们对金属有机化合物的注意。20世纪前半叶,主族的非过渡金属有机化学研究的非常广泛,特别是美国Gilnan等人发起了锂有机化学,为研究金属有机化学打下了基础。 所谓金属有机化合物即除金属碳化物以外金属和碳结合的化合物的总称。有机金属是以金属和碳结合是按π结合和σ结合或两者皆有之来划分。把具有π结合的有机化合物叫作有机金属络合体,有不少是镍、钴、钼、钨的羰基化合物。具有σ结合的有机硅化合物主要用于高分子工业和表面加工工业。格利雅试剂和烷基铝主要应用于制药工业作中间原料和聚乙烯的聚合触媒,但是操作复杂。 近年来,对于典型金属元素的有机化合物具有的热力学不稳定、挥发性、光反应等特异性能积极地进行了应用技术研究,尤其在电子工业中取得了引人注目的进展。 正文

常见金属有机化合物的合成及应用

常见金属有机化合物的合成及应用 赵 娜 (西北大学化学系05级化学基地班 西安 710069) 摘要:金属有机化学是连接有机化学和无机化学的纽带。本文介绍了格氏试剂,有机锂化合物,二茂铁和乙酰基二茂铁等金属有机化合物的合成及常见反应。 关键词:金属有机化学 格氏试剂 有机锂 二茂铁 一、引言 近年来有机化学迅速发展,分类庞杂,可分为有机合成、金属有机、元素有机、天然有机、物理有机、有机催化、有机分析、有机立体化学等。其中金属有机化学是有机与无机化学的交叉学科,随着科学理论和实验技术的提高,金属有机化学已成为当今最活跃的化学学科之一。 二、常见有机金属化合物 含有碳-金属键的化合物种类甚多,现列举一些常见有机金属化合物。 (一) 格利雅试剂(格氏试剂) 它的制备方法如下: R X RMgX +干乙醚 它在合成中的主要用途有: 1. 和活泼卤代烷反应生成烷烃。 RMgX ClCH 2CH CH 2RCH 2CH CH 2 + MgBr BrCH 2 CH 2 + 2. 用格氏试剂合成醇。 O + RMgX OMgX R OH R RMgX 与甲醛得增长一个碳链的伯醇: MgCl 2CH 2OH RMgX 与其它醛得增长碳链的仲醇: 232CH 3CH O CH 3CH OH CH(CH 3)2 RMgX 与酮得增长碳链的叔醇: CH 3 CH 3 O 232CH 3C OH CH(CH 3)2CH 3

RMgX 与甲酸酯得仲醇: H C OR' O R MgX H C OR' O MgX R +C O 2H C R OH R (二) 有机锂化合物 它的制备方法如下: R X 2Li 干乙醚+RLi LiX + 合成上的应用如: CH 2 CHLi Et 2O CH CH CH 2OLi CH CH 2 CHO + 在有机锂化合物中用途较广的是二烷基铜锂,它的制备方法如下: 2RLi +CuI R 2CuLi 合成中的应用如: RX +CH 32CuLi R CH 3 二茂铁也属于金属有机化合物,它具有芳香性,常温下为橙色晶体,有樟脑气味,熔点为173~174o C ,沸点为249 o C ,高于100 o C 就易升华,加热至400 o C 亦不分解,对碱和非氧化性酸稳定,能溶于苯、乙醚和石油醚等有机溶剂,在环上能形成多种取代基的衍生物。二茂铁可用作燃料的节能消烟剂、抗爆剂。如用于制作汽油抗爆剂、航天用固体燃料等;可用作催化剂。如用于制作合成氨催化剂;用作辐射吸收剂、热稳定剂、光稳定剂及阻烟剂;可用于生产二茂铁衍生物。 二茂铁的实验室合成方法为: (1)在无水无氧的惰性气氛下,以四氢呋喃为溶剂,用铁粉将三氯化铁还原为二氯化铁。 2FeCl 3+Fe→3FeCl 2 (2)在乙二胺的存在下,二氯化铁与环戊二烯反应生成二茂铁。 C 5H 6+FeCl 2·4H 2O→Fe(C 5H 5)2 (3)乙二胺在反应中作为碱,促使环戊二烯变成环戊二烯阴离子。 C 5H 6+NH(C 2H 5)2→C 5H 5-N +H 2(C 2H 5)2 注:本实验采用KOH 作碱合成二茂铁,反应式为: C 5H 6 + KOH→C 5H 5-K + + H 2O 乙酰基二茂铁的合成方法: 二茂铁在85%的磷酸的催化下二茂铁与乙酐发生Fridle-Crafts 酰基化反应生成二茂铁的衍生物乙酰基二茂铁。反应式如下:

茂金属催化剂专利技术综述

茂金属催化剂专利技术综述 文章主要围绕茂金属催化剂展开讨论,针对茂金属催化剂的性能及结构特点进行了简要分析,并对茂金属催化剂的技术发展过程进行了系统化梳理,除此之外对茂金属催化剂的相关专利申请也进行了简要分析。 标签:茂金属;聚烯烃;催化剂;技术 烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系。茂金属化合物一般指由过渡金属元素(如IVB族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物,常用的配体有环戊二烯基、茚基、芴基等。助催化剂是茂金属催化剂的重要组成部分,主要是指能协助茂金属化合物形成催化活性体的化合物,如烷基铝氧烷或有机硼化合物[1-3]。 茂金属催化剂与一般传统的Ziegler-Natta催化剂比较具有如下特点: (1)活性中心较为单一 活性中心相对单一是茂金属催化剂的主要特性,聚合物单体一般只能进入其受限的金属原子催化剂活性点,由于活性一致,分子量、共聚单体含量以及分子量分布、主链分布、晶体结构等控制相对精密,从而得到的茂金属聚合物的立构规整性相对较高,分子量分布相对较窄。 (2)催化共聚合能力较高 该催化剂的催化共聚合能力相对较高,可以令乙烯同大多数共聚单体发生聚合反应,从而获得新型材料。 (3)可控性较高 在该催化物作用下可以使α-烯烃单体发生聚合反应,得到聚合物立构规整度极高,并且可以对聚合过程进行精确控制,可以进行结构性能均匀聚合物的连续生产,并且由于可控性高,因此可以根据用户要求对产品性能进行精确设计。 由于该催化剂的性能优势,伴随着茂金属催化剂的工业化和石油化工行业的发展,该催化剂对聚合物生产开发的影响力越来越大,逐步成为行业技术研发的主要方向。 经过对茂金属催化剂有关的专利申请进行统计,其随年份的变化趋势如图1所示。从图1中可以看出,茂金属催化剂的发现始于20世纪50年代初期,早期,虽然有关茂金属催化剂的研究一直在进行,但发展缓慢,一直未得到足够重视。而在上世纪八十年代中期,该技术的开发应用才有了突破进展,并得到了一定的

浅谈金属有机化合物载体

浅谈金属有机化合物载体 摘要:简要的评述了分别金属有机化学和金属有机化合物的简要概述,以无机物和有机物作载体的表面金属有机化合物,金属有机化合物与固体表面反应的基本规律和表面金属有机化合物的结构。Abstract: Make a comment on metal organic chemistry and metal organic compound respectively carried by inorganic substance and organic substance and some foundational reaction rules of metal organic compound and solid surface and the structure of organic substance 关键词:金属有机化学,金属有机化合物;无机物;有机物;载体Key words:metal organic chemistry ;metal organic compound; inorganic substance; organic substance;carrier 引言表面金属有机化学(Surface Organometallic Chemistry简称SOMC)是化学、材料学及催化科学等学科的交叉融合而诞 生的一门新型学科。该学科主要研究对象是以分子金属有机 化学、表面化学和分子配位化学为基础,以金属有机化合物 与固体表面反应,目的是通过在固体表面接枝金属有机基团 制备表面组成和结构明确的、具有特殊性能的无机-有机杂化 材料、表面金属原子簇、表面功能化膜等,是近年来中非常 活跃的研究领域之一是化学和材料学学科,金属有机化合物 在固体材料表面的接枝反应性能的基础是SOMC研究,此类化

茂金属聚乙烯

茂金属聚乙烯 茂金属聚乙烯是一种新颖热塑性塑料,是90年代聚烯烃工业最重要的技术进展,是继LLDPE生产技术后的一项重要革新。由于它是使用茂金属(MAO) 为聚合催化剂生产出来的聚乙烯,因此,在性能上与传统的Ziegler-Natta催化剂聚合而成的PE有显著的不同。茂金属催化剂用于合成茂金属聚乙烯独特的优良性能和应用,引起了市场的普遍关注,许多世界著名大型石化公司投入巨大人力、物力竞相开发和研究,成为聚烯烃工业乃至整个塑料工业的热门话题。 早期,茂金属催化剂用于乙烯聚合只能得到分子量为2~3万的蜡状物,而且催化活性不高,没有实用意义,因而没有引起重视和推广。直到1980年,德国汉堡大学Kaminsky教授发现用二茂基氯锆(CP2ZrCl2)和甲基铝氧烷(MAO)组合的共催化剂在甲苯溶液中进行乙烯聚合,催化剂活性能高达106g-PE/g-Zr,反应速度与酶反应速度相当。MAO是二甲基铝和水在聚合体系以外条件下合成的高齐聚度甲基铝氧烷。Kaminsky教授的发现给茂金属催化剂研究注入了活力,吸引了众多公司参与开发和研究,并取得了相当大的进展。1991年美国埃克森(Exxon)公司首次实现了茂金属催化剂用于聚烯烃工业化生产,生产出第一批茂金属聚乙烯(mPE),其商品名是“Exact”。 埃克森美孚化工公司最近推出了一种新的茂金属聚乙烯(mPE)产品—埃能宝TM mPE ,称该产品在帮助生产商在保持优异的薄膜性能的同时,强化薄膜的挤出加工性能。埃克森美孚认为其优良性能引领了更稳定的生产操作、更高的薄膜生产线产量、简化的薄膜原材料配方及实现了薄膜厚度的减薄。 这种单一而独特的树脂—埃能宝mPE将薄膜加工性能与高α烯烃的优良物理性能结合在一起,适用于一系列软包装薄膜应用,包括:收缩包装薄膜、托盘收缩包装薄膜、手工流涎缠绕包装膜、农用温室大棚膜、中型及重型包装袋以及复合包装薄膜等。 “这一新产品创造了优异的薄膜性能,给加工商带来的额外效益表现在配方的简化、挤出能耗的降低、薄膜生产线产量的提升、实现更可持续发展的软包装薄膜方案以及应用的多样化,”埃克森美孚化工聚乙烯全球市场发展经理大卫?麦康威尔(David McConville)说,“这些效益还包括对复杂的LLDPE共混配方的替换以及对以LDPE 为主的共混配方薄膜显著减薄的可能性。” 埃能宝mPE在LLDPE和LDPE设备上都拥有极宽而且稳定的操作窗口,能在更低熔体

茂金属催化剂的合成资料

本科课程论文 《茂金属催化剂的合成简述》 课程名称高等有机化学 姓名梁腾辉 学号 1014122020 专业高分子材料科学与工程 任课教师程琳 开课时间 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:年月日

茂金属催化剂的合成简述 摘要简要介绍了几种茂金属催化剂的有机合成以及其催化机理。 关键词茂金属催化剂合成催化 1 前言 烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系,其催化聚合机理现已基本认同为茂金属与助催化剂相互作用形成阳离子型催化活性中心。茂金属催化剂一般指由过渡金属元素(如IV B 族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物。茂金属催化剂具有极高的活性特别是茂锆催化剂含一克锆的均相茂金属催化剂可以催化100t的乙烯聚合但同时助催化剂的用量也是相当大的甚至Al/Zr>2000这在生产中意义不大。因此必须想法设法得倒活性高助催化剂用量少的茂金属催化剂[1]错误!未找到引用源。。 2 茂金属催化机理 均相茂金属催化剂主要分为非桥联单茂金属催化剂、非桥联双茂金属催化剂、桥联型茂金属催化剂、限制几何构型茂金属催化剂以及双核茂金属催化剂等。若茂金属催化剂以烷基铝氧烷为助催化剂,其催化机理是一个形成单一阳离子活性中心的机理。在茂金属催化体系中,一般要求助催化剂MAO必须达到一定的浓

度,以便能够引发催化反应的进行[2]错误!未找到引用源。。其机理如下图所示:3 茂金属的合成 金属有机化合物的制备和处理操作都采用Schlenk 技术,在氮气氛围条件下进行无水无氧操作,所用玻璃反应容器都进行真空烘烤干燥。四氢呋喃、乙醚、甲苯,在氮气氛围下以钠、钾合金/二苯甲酮回流至溶液变成紫色,并在氮气保护下蒸出,封口备用。二氯甲烷、正已烷、石油醚(60 ~ 90°C),在氮气保护下与CaH粉末混合,搅拌回流两天后,在氮气氛围下蒸入安瓶中封口备用[3]错误!未找到引用源。。 3.1 非桥联五甲基环戊二烯水杨醛亚胺铬化合物的合成(非桥联单茂) 此类催化剂结构特征是有一个茂环作为配体:Cp.MR3(CP.=取代环戊二烯基等;M=Zr,Ti,Hf,Cr等;R=卤素、烷基、Oar、RNAr等)这类催化剂具有较大的配位空间,有利于具有较大位阻的烯烃单体的配位插入,但对于构型的控制一般较差[3]。 3.2二甲基二茂锆化合物(1,2-Phz-4-MeCp)2 ZrMe2的合成 两个茂环与中心金属原子配位,从而形成夹心结构,即所谓的非桥联双茂金属催化剂。该系列催化剂用于催化乙烯聚合,由于乙烯配位插入时不存在潜手性α

茂金属催化剂催化烯烃聚合反应研究的综述

关于“茂金属催化剂催化烯烃聚合反应研究”的文献检索综述 摘要:本文综述了近年来带有给电子配体的单茂金属化合物应用于烯烃聚合的研究。带有给电子配体的单茂金属化合物是目前烯烃配位聚合催化剂的研究热点之一。作为新型的聚合催化剂, 这类催化剂具有合成简单、结构清晰的特点, 用于催化烯烃聚合, 可得到高聚合活性, 同时得到高分子量聚合物。用于共聚时, 具有很好的共聚能力。通过共聚, 可以得到用Ziegler2Natta 催化剂和传统茂金属催化剂不能得到的新的共聚物。通过调整催化剂上茂配体和给电子配体的结构, 可以方便地调节聚合行为, 从而调整聚合物的结构。文中涉及了乙烯、A2烯烃的均聚与共聚, 乙烯与环烯烃共聚合等方面的研究。 关键词单茂金属烯烃聚合给电子配体共聚合 Abstract The present article reviews the recent progress of metallocene with donor ligand( s) as catalyst for olefin polymerization. Metallocene with donor ligand( s) is an important type of catalyst for olefin polymerization, and attracts more and more attentions. As a novel type of polymerization catalyst, the complexwith clear structure could be synthesized in simple procedure. Using as catalyst for olefin polymerization, high activity is available, and affording polymer with high molecular weight. For olefin copolymerization, excellent copolymerization ability could be observed, and some of the obtained copolymers could not be produced by Ziegler2Natta catalyst and traditional metallocene catalyst systems. Polymerization behavior and polymer structure could be adjusted through balancing the structures of cyclopentadienyl ligand and donor ligand. The homo2 and co2polymerization of ethylene and A2olefin, copolymerization of ethylene and cyclic olefin, and styrene polymerization are involved. Key words metallocene; olefin polymerization; copolymerization 聚烯烃是日常生活中最重要的合成聚合物材料,传统材料如聚乙烯(HDPE,LLDPE)、聚丙烯(PP)市场还在不断扩张。近年来,具有新型功能、高附加值的聚烯烃材料逐渐引起研究人员的关注。因为新型材料具有高性能、易于回收、污染小、成本低等特点,如环烯烃共聚物(COC)、乙烯2苯乙烯共聚物等,可取代传统上高成本的材料。过渡金属催化剂可以有效地控制配位聚合。从传统的Ziegler2Natta催化剂到茂金属催化剂,到非茂金属和后过渡金属催化剂来看,烯烃聚合发展的历史就是烯烃聚合催化剂发展的历史。可以说,催化剂技术是聚烯烃工业的命脉。另一方面,烯烃聚合催化剂的发展也促进了催化化学和金属有机化学的基础研究。20世纪80年代以来茂金属催化剂的研究充分说明了这一点。[1]与传统的Ziegler2Natta催化剂相比,茂金属和其他均相催化剂(非茂金属和后过渡金属催化剂)具有更优良的聚合行为,可以赋予聚合材料独特的结构和性能。[1][2]许多高成本和高毒性的材料可以用低成本,环境友好和易于回收的聚烯烃材料代替。 设计新型的有效烯烃聚合过渡金属催化剂必须考虑到一下几点:聚合活性、聚合物分子量及分子量分布、共聚合能力等。配体是设计新型催化剂的关键。配体结构的微小变化可能会引起催化剂性能的巨大变化。一般来说,配体的立体效应、电子效应及其所造成的催化剂构型对催化剂性能有重要影响。所以要精心平衡配体的各种因素,实现烯烃的可控聚合。配体设计主要有以下几个原则:(1)配体与过渡金属作用后,可以形成高效、广谱的烯烃聚合催化剂。(2)配体易于制备。简单的合成路线合和廉价的原料不仅使研究周期短,同时也可以降低研究成本,有利于后期可能的工业应用。更重要的是,简单的和成路线允许方便有效的调整配体上的取代基团,从而平衡络合物中的立体和电子效应,达到可控聚合的目的。(3)

有机锌化合物整理研究

有机锌化合物整理研究 化学一班 20520112201383王清峰 摘要:锌金属有机化合物是金属锌与碳直接相连含有Zn-C键的化合物,其中一些物种比如烷基卤化锌被广泛用在有机合成中,在金属有机化合物的发展过程中具有里程碑式的地位。然而人们似乎对有机锌化合物的应用停留至此,锌金属有机化合物的种类屈指可数。然而作为d轨道充满的Zn元素其形成的有机化合物应该具有理论研究价值,甚至在不久的将来可能会由于金属有机框架的发展得到新一轮研究的热潮。本文就对当前所查到的比较常见的锌金属有机化合物做了一个系统的整理,并尝试对其中的一些性质进行解释,希望能够为将来可能到来的研究热潮做出一份贡献。 关键词:金属有机化合物有机锌化合物新进展 一、锌有机金属化合物简介 金属有机化合物是指含有金属-碳键(M-C)的一类化合物。因此,不含有M-C键的金属烷氧基化合物(其为M-O键)、烷硫基化合物(为M-S键)或羧酸盐(为M-O键)并不属于金属有机化合物的范畴。而通过氮、氧、硫等原子与金属配位形成配位键的化合物也不算金属有机化合物。[1]根据以上定义,对于锌来说,有机锌化合物就是指存在共价C-Zn键的锌化合物,并且在该化合物里如果有机基团通过配位原子如O或N对Zn进行配位而得到的配位化合物是不在有机锌化合物的范畴之内。 金属有机化合物(包涵磷、氟、硅、硼等的类金属有机化合物)按照M-C键的类型大体可以分为三类:第一大类包括碱金属和碱土金属有机化合物,它们一般是以离子性的M+C-形式存在;第二大类包括其他的非过渡金属有机化合物,主要是含有共价性的M-C键化合物;第三大类便是过渡金属有机物。由于Zn形成化合物时充满电子的3d轨道并不参与反应,因此Zn的性质应该是更接近于非过渡金属,被分为第二类。另一方面,Zn的4s电子层有两个电子,所以一般认为金属锌形成的金属有机化合物都是正二价的共价键化合物,而且能形成高于配位数2的化合物。 据记载,最早在有机合成上得到广泛应用的金属有机化合物是弗兰克兰于1894年由碘乙烷与锌粉作用制得的二乙基锌。二乙基锌是一个锌原子与两个乙基的碳原子以共价键的形式结合的金属有机化合物。有机锌化合物为金属有机化合物的研究作出了卓越的贡献,看起来有机锌化合物应该会得到广泛的研究,然而事实并非如此,从结构的角度来看,由于Zn 原子没有空的d轨道,在与有机物成键时不能像过渡金属元素那样丰富多彩,因此实际上人们对其有机物的研究并没有太深入,曾一度陷入冷门。实际上这在一定程度上体现了锌金属有机化合物研究的困难性而且说明过渡金属的金属有机化合物更容易研究,所成键的种类更多因此结构也更加丰富多彩。即便如此,随着纳米材料研究的兴起[2],锌的金属有机框架聚合物的研究逐渐兴起,对其形成机理的研究是个比较困难富有挑战性又十分有意义的过程,这很可能需要一定程度上从锌金属有机化合物的角度来解决。所以本文便希望能够对有机锌化合物做个系统的整理,希望能给为将来可能到来的有机锌化合物研究的热潮做出一点微薄的贡献。 二、有机锌化合物种类介绍[1][3][4] 1.烃基锌 烃基锌包括二烃基锌R2Zn及一烃基锌RZnX(X=卤素、H、OR、SR、NR2等)。 (1)制备:由碘代烃和锌金属反应然后就可以把产物二烃基锌蒸馏出来。利用格氏试

茂金属聚乙烯

茂金属聚乙烯 茂金属聚乙烯是二十世纪90年代工业化生产的一种新颖热产性塑料,由于它是使用茂金属(MAO)为聚合催化剂生产出来的聚乙烯,因此,在性能上与传统的Ziegler-Natta催化剂聚合而成的PE有显著的不同,所谓茂金属催化剂是甲基铝氧化物催化剂的缩写MAO,其化学成分为:茂金属催化剂的特点是活性中心单一,活性相同,可以制备分子量分布很窄和高度立体规整的聚合物,对聚合物分子量、分子量分布、立体规整结构、共聚单体含量及分布,都可以实现精密的控制,从而生产出性能优异的聚烯烃树脂,这是传统的Ziegler-Natta催化剂所做不到的。 mPE的发展有赖于茂金属催化剂的改进和大规模工业化生产,1951年就有人合成了过渡金属环戊二烯基络合物和甲基铝氧烷或离子活化剂组成的茂金属催化剂,这是有机金属的配位化合物,其中的过渡金属是锆、铪、钒、钛、钻、铁等,但是,由于1951年合成的茂金属催化剂催化活性低,聚合反应的一次转化率很低,且催化剂的制备很复杂,价格非常贵,实际上没有实用的价值,直到八十年代初期,德国汉堡大学Kaminsky教授合成了以双环戊二烯二氯化钴和铝氧烷(MAO)组成的茂金属催化剂后,由于其聚合反应论活性极高,才引起人们极大的兴趣,并进入工业化生产mPE树脂的实践。1991年美国EXXON公司首先工业化生产mPE,接着DOW化学公司、Hoechst公司、Fina、BASF等公司都实现了茂金属催化剂工业聚合聚烯烃的生产。表1是世界工业化生产茂金属聚烯烃的公司及产品。 mPE有以下特性: (一)mPE有比平常的Zieglor-Natta催化剂生产的PE高度的分子结构规整性,因而有更高的结晶度,强度高、韧性好、刚性好; (二)mPE比普通PE的透明性好,结晶度虽高,透明性也好,而且树脂清洁度高; (三)mPE的分子量分布相当地窄,/MN为2,而一般的聚乙烯的/MN为3~5,甚至更高; (四)mPE的树脂嗅味比普通PE低,起始热封温度比普通PE低,而热封强度高,随mPE中辛烯-1或乙烯-1含量的提高,密度降低,当辛烯-1含量在10~20%时,mPE密度在0.865~0.915g/cm3; (五)mPE树脂的耐应力开裂性优,可超过1000h,常常用作其它聚烯烃的耐应力改性剂使用,例如:在高分子量高密度聚乙烯炮气管道中,常用mPE来提高HDPE的耐应力开裂性; (六)mPE中的长支链聚合物,熔体温度较好,加工性可以,但是短支链化的mPE由于熔体粘度大,而熔体强度低,因而吹膜比较困难,容易发生膜泡破裂或产生鲨鱼皮纹,因而在吹膜mPE时,口模间隙应在1.5~2.8mm宽,比普通PE吹膜时稍宽,吹胀比应小一点,一般在1:5左右较佳,虽然mPE同LLDPE一样,可以用提高剪切速率的方法来降低高度的熔体粘度,但是,过大的吹膜速度会引起熔体破裂,同样,过高的熔体温度也是不合宜的,mPE同LLDPE不同的是,mPE的熔体粘度同温度和剪切速率都很敏感,而LLDPE熔体粘度仅对剪切速率敏感,对温度的敏感性很小。m PE的熔点随品片的不同在94~1 21℃之间,加工时的熔体最大温度在210℃,使用加工LDPE或加工LLDPE的设备均能顺利地加工mP E。为了更好地加工mPE,可以在mPE中适当添加氟弹性体、油酸酰胺、滑石粉或硅藻土等添加剂,添加量仅0.3~0.5%,就可显著提高mPE的成型性。 DOW化学公司生产的mPE,PL1880、PL1840、FM1570是吹膜级mPE,FW1650、PL1845、HF1030为流涎薄膜级mPE,PP1140是流涎和吹膜二用牌号。Affinity PT1450是单层或共挤复合用牌号。Affinity 1450具有强度好韧性大加工性好的优点,但缩颈大,挤出流涎复合或挤出流涎膜生产时,

金属有机化合物气体应用:1,2-二溴四氟乙烷参考文本

金属有机化合物气体应用:1,2-二溴四氟乙烷 参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

金属有机化合物气体应用:1,2-二溴 四氟乙烷参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.别名·英文名 氟碳化合物-11482;1,2- Dibromotetrafluoroethane. 2.用途

溶剂、灭火剂、农药杀虫喷射剂。 3.制法 (1)1 ,1,2,2-四氟乙烷的溴化反应。 (2)四氟乙烯加溴。

(3)1,2一二氯四氟乙烷与HBr反应,氯原子被Br替代。 4.理化性质 分子量:259.82

熔点:-110.5℃ 沸点(101.325kPa):47.3℃ 液体密度(21.1℃):2175kg/m3 气体密度(101.325kPa,50℃):9.805kg/m3

相对密度(101.325kPa,50℃,空气=1):8.97 临界温度:214.5℃ 临界压力:3445kPa 临界密度:790kg/ma 气化热(50℃):104.73kJ/kg

茂金属催化剂 ——聚烯烃新技术的基础

茂金属催化剂---聚烯烃新技术的基础 清华大学化学系宋心琦 聚烯烃简介 聚烯烃又称烯烃聚合物,是世界上聚合物中产量最大的产品。自1939年聚乙烯开始工业化以来,至今已有70 多年的历史。随着聚乙烯的发展、聚丙烯的问世、其它烯烃聚合物的工业化进程也先后完成,于是就有了聚烯烃作为这类聚合物的总称,实际并没有十分严格的定义,一般认为,聚烯烃是脂肪族单烯烃的均聚物和它与其它烯烃的共聚物的一个总称。而且限定为固体聚合物,不包括液体或石蜡状聚合物在内。虽然聚烯烃还可以细分为塑料与弹性体,但是通常所说的‘聚烯烃’仅指聚烯烃树脂(或聚烯烃塑料)。 1990年,全世界的聚乙烯和聚丙烯的总产量分别为57.06Mt 和30.56Mt。所消耗的原料在乙烯和丙烯总产量中分别占到53.3%和39.8%。当年全世界的塑料总产量约100Mt,其中聚烯烃占到40%以上(我国2008年的聚烯烃产量已达到0.103 Mt)。聚乙烯和聚丙烯不仅在整个石油化工下游产品中占有很高的份额,年增长率也高于其它合成树脂,在塑料工业中,有着举足轻重的地位。固然和原料来源充足、价格低廉不无关系。更重要的是,聚烯烃材料具有性能优异、能够同时覆盖塑料、纤维和橡胶的应用领域的优点。例如通过共聚改性等途径,可以开发出高抗冲击、高耐热性、高透明度、低热封温度和导热、导磁以及高性能屏蔽性材料等。因此聚烯烃合成工艺的开发和研究一直是高分子化学和塑料工业的热门课题之一。 在聚烯烃的技术发展过程中,早期聚乙烯的生产用的是高压自由基聚合工艺。所用引发剂是不含金属组分的空气(氧)或过氧化氢,同时也不用溶剂。所得聚乙烯质地最纯,加工性能、制品的柔软性和透明性都是其它聚乙烯产品所不能取代的。这是聚烯烃生产中唯一不用催化剂的品种,不过由于能耗和市场等原因,近年来的发展速度已经落后于其它品种。所以催化聚合方法和催化剂的研究与开发是聚烯烃生产技术中竞争最激烈、进步也最迅速的一个领域。 除去传统的高压法外,聚烯烃的其他生产工艺几乎都离不开催化剂。这类催化聚合作用有着不同的名称,如?配位聚合?、?配位催化聚合?或?催化聚合?,但以催化聚合最为简明易懂。所谓?过渡金属催化聚合?,指主催化剂中含有过渡金属元素的催化体系,过渡金属元素则以钒和钛为主。这类催化剂体系的首创者为德国的Karl Ziegler和Giulio Natta(他们曾经因此而获得1963年诺贝尔化学奖),所以通称为Ziegler-Natt a催化剂。但是并不包括全部过渡金属催化剂,如美国Philips公司后来开发的铬系氧化物催化剂,就不属于Ziegler -Natta催化剂的范畴。 茂金属--第三代过渡金属催化剂 已有的过渡金属催化剂体系大致可以分为三代,第一代钛系催化剂的主催化剂是四氯化钛(TiCl4),助催化剂是一氯二乙基铝(C2H5)2AlCl,(最早的Ziegler-Natta催化剂中用的

相关文档
最新文档