随机变量及其分布习题解答

随机变量及其分布习题解答
随机变量及其分布习题解答

第二章 随机变量及其分布

1、解:

设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为

投保一年内没有死亡:0

2、一袋中有55,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律

解:X 可以取值3,4,5,分布律为

10

61)4,3,2,1,5()5(1031)3,2,1,4()4(10

11)2,1,3()3(35

2

4

35

2

335

2

2=?=

===

?====

?=

==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5

P :10

6

,103,101

3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522

)0(315

313===C C X P

3512)1(3

15213

12=?==C C C X P 35

1)2(3

15

113

22=

?=

=C C C X P 再列为下表 X : 0, 1, 2

P : 35

1,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。(此时称Y 服从以r, p 为参数的巴斯卡分布。)

(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1

p k=1,2,……

(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功} ,,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,

或记r+n=k ,则 P {Y=k }=Λ,1,,)

1(11+=----r r k p p C r

k r r k (3)P (X=k ) = k

- k=1,2…

P (X 取偶数)=31

1145.0)55.0()2(1

121

=

==∑∑∞

=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,鸟飞向各扇窗子是随机的。

(1)以X 表示鸟为了飞出房间试飞的次数,求X 的分布律。 (2)户主声称,他养的一只鸟,是有记忆的,它飞向任一窗子的尝试不多于一次。以Y 表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y 的分布律。

(3)求试飞次数X 小于Y 的概率;求试飞次数Y 小于X 的概率。 解:(1)X 的可能取值为1,2,3,…,n ,…

P {X=n }=P {前n -1次飞向了另2扇窗子,第n 次飞了出去}

=3

1

)32(1?-n , n=1,2,……

(2)Y 的可能取值为1,2,3

P {Y=1}=P {第1次飞了出去}=3

1

P {Y=2}=P {第1次飞向 另2扇窗子中的一扇,第2次飞了出去}

=3

1

2132=?

P {Y=3}=P {第1,2次飞向了另2扇窗子,第3次飞了出去}

=3

1

!3!2=

∑∑===<===<==

<3

23

1}

|{}{}

|{}{}{)3(k k k Y Y X P k Y P k Y Y X P k Y P Y X P ???

? ??==<0}1|{Y Y X P 全概率公式并注意到

278313231313131}

{}{3

2=??

?????+?+?=<==

∑=k k X P k Y P }{}|{,k X P k Y Y X P Y X <==<独立即

注意到

同上,∑=====

=3

1

}|{}{}{k k Y Y X P k Y P Y X P

81

192743192313131}{}{3

1

=?+?+?=

===

=k k X P k Y P 故81

38){}{1}{=

=-<-=

(1)恰有2个设备被使用的概率是多少

0729.0)9.0()1.0()2(322

525225=??===-C q p C X P (2)至少有3个设备被使用的概率是多少

00856.0)1.0()9.0()1.0()9.0()1.0()3(55

54452335=?+??+??=≥C C C X P (3)至多有3个设备被使用的概率是多少

322541

5505)9.0()1.0()9.0(1.0)9.0()3(??+??+=≤C C C X P 99954.0)9.0()1.0(233

5=??+C

(4)至少有一个设备被使用的概率是多少 40951.059049.01)0(1)1(=-==-=≥X P X P

7、设事件A 在每一次试验中发生的概率为,当A 发生不少于3次时,指示灯发出信号。(1)进行了5 次独立试验,求指示灯发出信号的概率 。(2)进行了7次独立试验,求指示灯发出信号的概率

解: 设X 为 A 发生的次数。 则()0.3,.X B n : n=5,7

B:“指示等发出信号“ ① (){}3P B P X =≥5

55

30.30.70.163k k k k C

-===∑

②(){}3P B P X =≥=

{}{}7

2

3

1k P X K P X K ===-=∑∑

7

1

6225

10.70.30.70.30.70.353G G =--??-?≈ 8、甲、乙二人投篮,投中的概率各为, ,令各投三次。求 (1)二人投中次数相等的概率。 记X 表甲三次投篮中投中的次数 Y 表乙三次投篮中投中的次数

由于甲、乙每次投篮独立,且彼此投篮也独立。 P (X =Y )=P (X =0, Y=0)+P (X =2, Y=2)+P (X=3, Y=3)

= P (X =0) P (Y=0)+ P (X =1) P (Y=1)+ P (X =2) P (Y=2)+ P (X =3) P (Y=3)

= 3× 3+ [])3.0(7.0[])4.0(6.021

3213

?????C C 3223223

)6.0(]3.)7.0([]4.0)6.0([+?????+C C 321.0)7.0(3=?

(2)甲比乙投中次数多的概率。

P (X>Y )=P (X =1, Y=0)+P (X =2, Y=0)+P (X=2, Y=1)+

P (X =3) P (Y=0)+ P (X =3) P (Y=1)+ P (X =3) P (Y=2) =P (X =1) P (Y=0) + P (X =2, Y=0)+ P (X=2, Y=1)+ P (X =3) P (Y=0)+ P (X =3) P (Y=1)+ P (X =3) P (Y=2)

=+???+???82233213

)3.0(]4.0)6.0([)3.0(])4.0(6.0[C C 3

213223)6.0(])3.0(7.0[]4.0)6.0([+?????C C 321

333)6.0(])3.0(7.0[)6.0()3.0(+???+?C

243.0]3.0)7.0([2

23=???C

9、有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求

(1)这批产品经第一次检验就能接受的概率 (2)需作第二次检验的概率

(3)这批产品按第2次检验的标准被接受的概率

(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率 (5)这批产品被接受的概率

解:X 表示10件中次品的个数,Y 表示5件中次品的个数, 由于产品总数很大,故X~B (10,),Y~B (5,)(近似服从) (1)P {X =0}=≈

(2)P {X ≤2}=P {X =2}+ P {X =1}=581.09.01.09.01.0911082210

≈+C C (3)P {Y =0}= 5

(4)P {0

=×≈(5)P {X =0}+ P {0

10、有甲、乙两种味道和颜色极为相似的名酒各4杯。如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。

(1)某人随机地去猜,问他试验成功一次的概率是多少

(2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。)

解:(1)P (一次成功)=701

148

=C

(2)P (连续试验10次,成功3次)= 10000

3

)7069()701(733

10

=C 。此概率太小,按实际推断原理,就认为他确有区分能力。

11. 尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的。但每年总有一些“发明者”撰写关于用圆规和直尺将角三等分的文章。设某地区每年撰写此类文章的篇数X 服从参数为6的泊松分布。求明年没有此类文章的概率。

解: ().6~πX Θ 6=λ

{}0025.01

066≈=

==∴-e

e X P 12. 一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布。求(1)每分钟恰有8次呼唤的概率。(2)某一分钟的呼唤次数大于3的概率。

()4~πX 4=λ

(1){}∑∑∞

=∞=--?-?==89

9

484!!8r r r e r e X P λλ

(2)566530.0}4{}3{=≥=>X P X P

13. 某一公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔的起点无关(时间以小时计)。

(1)求某一天中午12时至下午3时没有收到紧急呼救的概率。 (2)求某一天中午12时至下午5时至少收到1次紧急呼救的概率。

解:2

t

λ=

()X πλ: ①3

2

λ= {}3200.2231P X e -===

②5

2λ= {} 2.51

2.510.918!k k e P X k -∞

=≥==∑ 14、解:~(2)X t π

(1)、10t =分钟时1

6t =小时,

{}13

1310.2388!1

k e

e P X k κλ--====

(2)、{}

00.5

P X =≥故()0

220.50.346571

t

t e t -≥?≥(小时)

所以0.34657*6020.79t ≥≈(分钟)

15、解:

{}()(){}10

500005000100.001510.0015100.8622

k k

k P X k P X -=??≤=- ?

??

≤≈∑ 16、解:{}{}{}

011000,0.0001,0.1

2101110.99530.0047

0!

1!

n p np P X P X P X e e λ

λ

λλλ--====≥=-=-==-

-

≈-=

17、解:

设X 服从()01:分布,其分布率为{}()11,0,1k

k

P X k p p k -==-=,求X 的

分布函数,并作出其图形。

()0,1X :

X 的分布函数为:

()0010111x F x p x x ,

=- , ≤

18.在区间[]0,a 上任意投掷一个质点,以X 表示这个质点的坐标。设这个质点落在[]0,a 中任意小区间内的概率与这个小区间的长度成正比例,试求X 的分布函数。

解:① 当0X <时。{}X x ≤是不可能事件,(){}0F X P X x =≤= ②当0x a ≤≤时, {}0P X x kx ≤≤= 而 {}0X a ≤≤是必然事件

{}1

01P X x ka k a

∴≤≤==?= {}0x P X x kx a

∴≤≤==

则 (){}{}{}00x F x P X x P X P X x a

=≤=≤+≤≤=

③当x a >时,{}X x ≤是必然事件,有(){}1F x P X x =≤=

()0001x x F x x a a x a , < ???

∴ , ≤≤?? , >

??

19、以X 表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X 的分布函数是

???<≥-=-00

0,1)(4.0x x e

x F x

X 求下述概率:

(1)P {至多3分钟};(2)P {至少4分钟};(3)P {3分钟至4分钟之间}; (4)P {至多3分钟或至少4分钟};(5)P {恰好分钟} 解:(1)P {至多3分钟}= P {X ≤3} =2.11)3(--=e F X (2)P {至少4分钟} P (X ≥4) =6.1)4(1-=-e F X

(3)P {3分钟至4分钟之间}= P {3

20、设随机变量X 的分布函数为???

??≥<≤<=.

,1,1,ln ,1,0)(e x e x x x x F X ,

求(1)P (X<2), P {0

4

5

ln 2ln 25ln )2()25(252(=-=-=<

(2)?????<<==其它

,0,

1,1)(')(e x x x F x f

21、设随机变量X 的概率密度)(x f 为

(1)??

???≤≤--=其它

01112

)(2

x x x f π

(2)???

??≤≤-<≤=其他0

21210)(x x x x x f

求X 的分布函数F (x ),并作出(2)中的f (x )与F (x )的图形。 解:(1)当-1≤x ≤1时: 2

1arcsin 111arcsin

211212120)(212121

++-=??????+-=-+=---∞-?

?

x πx x πx x x πdx x πdx x F X

x

当1

1121=+-+=?

??--∞-x dx dx x πdx x F 故分布函数为:

??

???<≤≤-++--<=x x x πx x πx x F 111121arcsin 11110)(2

解:(2)?

-=

≤=x

dt t f x X P x F )()()(

?

?

?

?

??

?

?

?

?

=+

-+

+

=

<--

=-+

+

=≤≤=

+=<≤==

<∞

-∞

-∞-∞

-1

2

2

1

2

1

1

2

00

1

0)2(0)(,212

2)2(0)(,212

0)(,100

0)(,0x

x

x

x

dt dt t dt t dt x F x x

x dt t dt t dt x F x x dt t dt x F x dt x F x 时当时当时当时当

故分布函数为

?????????<≤≤--<≤<=x x x x x x

x x F 21

21122102

00

)(2

2 (2)中的f (x )与F (x )的图形如下

22、⑴由统计物理学知,分子运动速度的绝对值X 服从迈克斯韦尔(Maxwell)分布,其概率密度为

其中2b m kT =,k 为Boltzmann 常数,T 为绝对温度,m 是分子的质量。试确定常数A 。

解: ① ()1x dx +∞

-∞

=?Q

即2

202x b Ab x xe d b -+∞??

=-- ???

?

2

2

2

000

()|222x

x x b

b b Ab Ab Ab xd e xe e dx ---+∞+∞+∞=-=-+??

22120

2x b

Ab e dx d - -+∞

+∞ ?

==??

? 1122Ab == 2

2

012u du +∞-??= ? ???

?Q A ∴=

②当0t <时,()00t

T F t dt -?

=

?=?

x

1 2 0

当0t ≥时, ()()()241

01241

x

t

t

T T F t f x dt F t e dt --∞

=

?==?

?

241

1t e -

=-

{}{}{}()()501001005010050P T P T P T F F ∴<<=<-≤=-

50100e e --=-

或{}()100

50

50100P T f t dt <<=

?

50100

100

241

24124150

1241

t e dt e e ---==-?

23、某种型号的电子的寿命X (以小时计)具有以下的概率密度:

?????>=其它

10001000)(2

x x x f

现有一大批此种管子(设各电子管损坏与否相互独立)。任取5只,问其中至少有

2只寿命大于1500小时的概率是多少

解:一个电子管寿命大于1500小时的概率为

3

2

)321(1)1(1000110001)1500(1)1500(15001000150010002

=

--=??????--=-=≤-=>?

x dx x X P X P

令Y 表示“任取5只此种电子管中寿命大于1500小时的个数”。则)3

2

,5(~B Y ,

{}2432322431113

2511)31()32()31(1)1()0(1)2(1)2(5

41

55=-=?+-=??

??????+-==+=-=<-=≥C Y P Y P Y P Y P

24、设顾客在某银行的窗口等待服务的时间X (以分计)服从指数分布,其概率

密度为:

?????>=-其它

,00

,5

1)(5

x e x F x

X 某顾客在窗口等待服务,若超过10分钟他就离开。他一个月要到银行5次。以Y 表示一个月内他未等到服务而离开窗口的次数,写出Y 的分布律。并求P (Y ≥1)。

解:该顾客“一次等待服务未成而离去”的概率为

210

510

5

10

5

1

)()10(-∞+-

+-

+=-==

=

>?

?

e e

dx e

dx x f X P x

x X

因此5,4,3,2,1(,)1(5)().,5(~5222=-??

?

??==----k e e k k Y P e B Y k k 即

.

5167.04833.018677.01)1353363.01(1)389

.711(1)1(1)0(1)1(1)1(55

5

52=-=-=--=-

-=--==-=<-=≥-e Y P Y P Y P 25、设K 在(0,5)上服从均匀分布,求方程02442=+++K xK x 有实根的概率

∵ K 的分布密度为:?????<<-=其他05

0051)(K K f

要方程有根,就是要K 满足(4K )2

-4×4× (K+2)≥0。 解不等式,得K ≥2时,方程有实根。

5

305

1

)()2(5

5

22

=

+=

=

≥?

?

?

∞+∞+dx dx dx x f K P 26、设X ~N ()

(1)求P (22},P (X>3)

∵ 若X ~N (μ,σ2),则P (α

? ??-σμα ∴ P (2

? ??-232=φ(1)-φ(- =-=

P (-4

? ??--234=φ-φ(- =-=

P (|X |>2)=1-P (|X |<2)= 1-P (-2< P <2 )

=??

?????

?? ??--Φ-??? ??-Φ-2322321 =1-φ(- +φ(- =1-+=

P (X >3)=1-P (X ≤3)=1-φ??

?

??-233=1-=

(2)决定C 使得P (X > C )=P (X ≤C )

∵ P (X > C )=1-P (X ≤C )= P (X ≤C )

得 P (X ≤C )=2

1

=

又 P (X ≤C )=φ023

,5.023=-=??

? ??-C C 查表可得

∴ C =3 27、某地区18岁的女青年的血压(收缩区,以mm-Hg 计)服从)12,110(2

N 在该

地区任选一18岁女青年,测量她的血压X 。求

(1)P (X ≤105),P (100x ) ≤ .

解:

3384.06616.01)4167.0(1)4167.0()12

110

105()105()1(=-=Φ-=-Φ=-Φ=≤X P

5952

.017976.021)8333.0(21)6

5

(2)6

5

()65()12110100()12110120(

)120100(=-?=-Φ=-Φ=-Φ-Φ=-Φ--Φ=≤

.

74.129.74.12974.19110.645.112

110

.

95.0)12110

(05.0)12110(1)(1)()2(==+≥?≥-≥-Φ?≤-Φ-=≤-=>X x x x x x X P x X P 故最小的查表得

28、由某机器生产的螺栓长度(cm )服从参数为μ=,σ=的正态分布。规定长度在范围±内为合格品,求一螺栓为不合格的概率是多少

设螺栓长度为X

P {X 不属于-, + =1-P -

=1-???

?????????--Φ-??????-+Φ06.005.10)12.005.10(06.005.10)12.005.10( =1-{φ(2)-φ(-2)}

=1-{-} =

29、一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160,σ(未知)的正态分布,若要求P (120<X ≤200==,允许σ最大为多少

∵ P (120<X ≤

200)=80.04040160120160200=?

?

? ??-Φ-??? ??Φ=??? ??-Φ-??? ??-Φσσσσ 又对标准正态分布有φ(-x )=1-φ(x )

∴ 上式变为80.040140≥???????

?? ??Φ--??? ??Φσσ 解出9.040:40≥??

? ??Φ??? ??Φσσ便得 再查表,得25.31281

.140281.140=≤≥σσ 30、解:

[]{}{}{}223120

~(120,2) ~(0,1)2

P 118,122P 1181222P 12(10.8413)0.3174

5(1)0.32042V V N X N V V V X p p -=

?==->=-=??

∴-= ???

则p=

31、解:

0 ,0()0.20.8/30 ,0301 ,30x F x x x x

=+≤

32、解:

[]()0,()0,01()(1)()0()(1)()()(1)()(1)1

f x

g x a af x a g x af x a g x dx a f x dx a g x dx a a ∞∞

-∞

-∞-∞≥≥<<∴+-≥+-=+-=+-=?

??Q 且

所以()(1)()af x a g x +-为概率密度函数 33、设随机变量X 的分布律为:

X :-2, -1, 0, 1, 3

P :51, 61, 5

1, 151, 3011

求Y=X 2

的分布律

∵ Y=X 2:(-2)2 (-1)2 (0)2 (1)2 (3)2

P : 51 61

5

1 151 3011

再把X 2

的取值相同的合并,并按从小到大排列,就得函数Y 的分布律为: ∴ Y : 0 1 4 9

P : 51 15161+ 5

1 3011

34、设随机变量X 在(0,1)上服从均匀分布

(1)求Y=e X

的分布密度

∵ X 的分布密度为:???<<=为其他

x x x f 01

01)(

Y=g (X ) =e X

是单调增函数 又 X=h (Y )=lnY ,反函数存在

且 α = min [g (0), g (1)]=min (1, e )=1 =βmax [g (0), g (1)]=max (1, e )= e

∴ Y 的分布密度为:??

?

??<

y e y y

y h y h f y ψ0111|)('|)]([)(

(2)求Y=-2lnX 的概率密度。

∵ Y= g (X )=-2lnX 是单调减函数

2

)(Y e Y h X -== 反函数存在。 且 α = min [g (0), g (1)]=min (+∞, 0 )=0 β=max [g (0), g (1)]=max (+∞, 0 )= +∞

∴ Y 的分布密度为:??

???+∞<<=-?=?=--为其他

y y e e

y h y h f y ψy y 002

1211|)('|)]([)(22

35、设X ~N (0,1)

(1)求Y=e X

的概率密度

∵ X 的概率密度是+∞<<∞-=-x e π

x f x ,21

)(22

Y= g (X )=e X

是单调增函数

又 X= h (Y ) = lnY 反函数存在

且 α = min [g (-∞), g (+∞)]=min (0, +∞)=0

β = max [g (-∞), g (+∞)]= max (0, +∞)= +∞ ∴ Y 的分布密度为:

??

???+∞<

y h y h f y ψy 00121|)('|)]([)(2)(ln 2 (2)求Y=2X 2

+1的概率密度。

在这里,Y=2X 2

+1在(+∞,-∞)不是单调函数,没有一般的结论可用。 设Y 的分布函数是F Y (y ),

则 F Y ( y )=P (Y ≤y )=P (2X 2

+1≤y )

=???

? ??-≤≤--2121y X y P 当y<1时:F Y ( y )=0

当y ≥1时:?

---

-=???

?

?

?

-≤≤--=21

2

12

221212

1

)(y y x y dx e π

y X y P y F

故Y 的分布密度ψ( y )是:

当y ≤1时:ψ( y )= [F Y ( y )]' = (0)' =0

当y>1时,ψ( y )= [F Y ( y )]' ='???

?

??

?---

-

212

12

221y y x dx e

π

=41

)

1(21

---y e y π

(3)求Y=| X |的概率密度。

∵ Y 的分布函数为 F Y ( y )=P (Y ≤y )=P ( | X |≤y ) 当y<0时,F Y ( y )=0

当y ≥0时,F Y ( y )=P (| X |≤y )=P (-y ≤X ≤y )=?

--y y

x dx e π

22

21

∴ Y 的概率密度为:

当y ≤0时:ψ( y )= [F Y ( y )]' = (0)' =0

当y>0时:ψ( y )= [F Y ( y )]' =22222

21y y y x e πdx e π---='???

? ???

36、(1)设随机变量X 的概率密度为f (x ),求Y = X 3

的概率密度。

Y=g (X )= X 3

是X 单调增函数,

又 X =h (Y ) =3

1Y ,反函数存在,

且 α = min [g (-∞), g (+∞)]=min (0, +∞)=-∞ β = max [g (-∞), g (+∞)]= max (0, +∞)= +∞ ∴ Y 的分布密度为:

ψ( y )= f [h ( h )]·| h' ( y )| = 0,,3

1)(32

3

1≠+∞<<∞-?-

y y y y f

但 0)0(=ψ

(2)设随机变量X 服从参数为1的指数分布,求Y=X 2

的概率密度。

法一:∵ X 的分布密度为:??

?≤>=-0

)(x x e x f x

Y =x 2

是非单调函数

当 x<0时 y =x 2

? 反函数是y x -=

当 x<0时 y =x 2

? y x =

∴ Y ~ f Y (y ) = ))(())(('+'--y y f y y f

=???

??≤>=+--00

0,21210y y e y

e y y y 法二:)()()()()(~y X P y X P y X y P y Y P y Y F Y -≤-≤=≤<-=≤=

???

??≤>-=+--?

0,0

0,100y y e dx e y y x

∴ Y ~ f Y (y ) =???

??≤>-.0,0

.0,21y y e y y

37、设X 的概率密度为

???

??<<=为其他x πx πx x f 0

02)(2

求Y =sin X 的概率密度。 ∵ F Y ( y )=P (Y ≤y ) = P (sin X ≤y ) 当y<0时:F Y ( y )=0

当0≤y ≤1时:F Y ( y ) = P (sin X ≤y ) = P (0≤X ≤arc sin y 或π-arc sin y ≤X ≤π)

=?

?-+πy πy dx πx

dx πx arcsin 2arcsin 02

22

当1

∴ Y 的概率密度ψ( y )为:

y ≤0时,ψ( y )=[ F Y ( y )]' = (0 )' = 0

0

38、设电流I 是一个随机变量,它均匀分布在9安:11安之间。若此电流通过2欧的电阻,在其上消耗2

2.W I =求W 的概率密度。

解:I Q 在()9,11上服从均匀分布 I ∴的概率密度为:

()1

,1120,q x f x ? <

22W I =的取值为162242W <<

分布函数 (){}{}

2

2

22w w F w P W w P I w P I ?

?=≤=≤=≤

????

(

)q P Q i f x dx ??=<≤=???

12q q ?==???

()(

)',1622420,w w w f w F w <<∴== ?

其它 39、某物体的温度T (o

F )是一个随机变量,且有T ~N (,2),试求θ(℃)的概

率密度。[已知)32(9

5

-=T θ]

法一:∵ T 的概率密度为+∞<<∞-=?--

t e

t f t ,2

21)(2

2)6.98(2

π

又 )32(95

)(-=

=T T g θ 是单调增函数。 325

9

)(+==θθh T 反函数存在。

且 α = min [g (-∞), g (+∞)]=min (-∞, +∞)=-∞ β = max [g (-∞), g (+∞)]= max (-∞, +∞)= +∞ ∴ θ的概率密度ψ(θ)为

5

9

2

21|)('|)]([)(4)6.98325

9

(2?

=

?=-+-θe

πθh θh f θψ +∞<<∞-=

--

θe

π

θ,109

100

)37(812

法二:根据定理:若X ~N (α1, σ1),则Y=aX+b ~N (aα1+b, a 2 σ2

) 由于T ~N (, 2)

故 ???

????????? ??=????????????

??-?-=295,9333295,91606.9895~91609522

N N T θ

故θ的概率密度为:

+∞<<∞-=

=

--

???

? ????

??

?

?--θπ

πθψθθ,1092

9

521

)(100

)37(81295293332

2

2

e

e

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

第三章--多维随机变量及其分布总结

第三章--多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{=∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

高中数学 随机变量及其分布列 版块一 离散型随机变量及其分布列1完整讲义(学生版)

学而思高中完整讲义:随机变量及其分布列.版块一.离散型随机变量 及其分布列1.学生版 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值x 与该取值对应的概率p ,)n L 列表表示: X 1x 2x … i x … n x P 1p 2p … i p … n p X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布. X 1 P 0.8 0.2 两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M , n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1) k k n k n n P k p p -=-(0,1,2,,)k n =L . 知识内容

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

选修2-3随机变量及其分布知识点总结典型例题

2-3随机变量及其分布 -- HW) T数字特征11 …. --- L-W Array「(两点分布〕 5店殊分布列)--憊几何分祠 -(二项分利 十[并件相互独立性)一価立重复试劇 5J ~(条件概率) ”、r<正态分布密度曲绚 f正态分布)一 要点归纳 一、离散型随机变量及其分布列 1.⑴随机变量:在随机试验中,我们确定了一个对应关 系,使得每一个试验结果都用一个确定的数字表示?在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量?通常用字母X, Y, E, n等表示. (2) 离散型随机变量:所有取值可以一一列出的随机变量称为离散型随 机变量. (3) 离散型随机变量的分布列: 一般地,若离散型随机变量 X可能取的不同值为X i, X2…,X i,…X n,X取每一个值X i(i = 1,2,…,n)的概率 P(X= X)= p i,以表格的形式表示如下: X的分布列.有时为了简单起见,也用等式P(X = X i) = p i, i = 1,2,…,n表示X的分布列. (4)离散型随机变量的分布列的性质: ①P i>0,i = 1,2,…,n; n ②P i = 1. i = 1

(5)常见的分布列: 两点分布:如果随机变量X 的分布列具有下表的形式,则 称X 服从两点分布,并称p = P(X = 1)为成功概率. 两点分布又称 0- 1分布,伯努利分布. 超几何分布:一般地,在含有 M 件次品的N 件产品中,任取 X 件次品,则事件{X = k }发生的概率为 P(X = 其中 m= min { M , n },且 n W N , M < N , n , M , N € N *.如 果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 2 .二项分布及其应用 (1)条件概率:一般地,设 A 和B 是两个事件,且 P(A)>0, p / AB) 称P(BA) = P ((A )为在事件A 发生的条件下,事件B 发生 的条件概率.P(B|A)读作A 发生的条件下B 发生的概率. ⑵条件概率的性质: ① 0 < P(BA)< 1; ② 必然事件的条件概率为1,不可能事件的条件概率为0; ③ 如果 B 和C 是两个互斥事件,则 P(B U C|A)= P(B|A) + P(C|A). (3) 事件的相互独立性:设 A, B 为两个事件,如果 P(AB)= P(A)P(B),则 称事件 A 与事件B 相互独立?如果事件 A 与B 相互独立,那么 A 与-,-与B ,-与-也都相互独立. (4) 独立重复试验:一般地,在相同条件下重复做的 n 次试 验称为n 次独立重复试验. c M c N-/i c N k = 0, 1, 2, ,m,即 n 件,其中恰有 k)=

选修2-3第二章随机变量及其分布知识点总结

第二章概率总结 一、知识点 1.随机试验的特点: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会 出现哪一个结果. 2.分类 随机变量 (如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结 果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等 或希腊字母ξ、η等表示。) 离散型随机变量:连续型随机变量: 3.离散型随机变量的分布列 一般的,设离散型随机变量X可能取的值为x1, x2, ,x i , ,x n X取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表 为离散型随机变量X 的概率分布,简称分布列 性质:①---------------------------------------------- ②-------------------------------------------------. 二点分布 如果随机变量X的分布列为: 其中0

一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件, 这n 件中所含这类物品件数X 是一个离散型随机变量, 则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,其中 则称随机变量X 的分布列 , 为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布 注意:(1)超几何分布的模型是不放回抽样; (2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的 总数、样本容量 条件概率 1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率, 叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积).记作D=A ∩B 或D=AB 3.条件概率计算公式: 例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品, 求第二个又取到次品的概率. 相互独立事件 1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件 叫做相互独立事件 2.相互独立事件同时发生的概率公式 两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。则有 如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率, 等于每个事件发生的概率的积。即: P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An) 3解题步骤 说明(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立. (2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响. (3)如果A 、B 是相互独立事件,则A 的补集与B 的补集、A 与B 的补集、A 的补集与B 也都相互独立.

第五节 离散型随机变量及其分布列 复习讲义

第五节离散型随机变量及其分布列 一、离散型随机变量 随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量. 二、离散型随机变量的分布列及性质 1.一般地,若离散型随机变量X可能取的不同值为 x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则表

称为离散型随机变量X的概率分布列,简称为X的分布列. 2.离散型随机变量的分布列的性质 (1)p i≥0,i=1,2,…,n. (2)p1+p2+…+p n=1. 三、相互独立事件 一般地,对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立. 四、两点分布 若随机变量X的分布列为 则称X服从两点分布,并称p=P(X=1)为成功概率. 五、独立重复试验与二项分布 1.独立重复试验 一般地,在相同条件下重复做的n次试验称为n次独立重复试验. 2.二项分布 一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,事件A恰好发生k次的概率为 P(X=k)=C k p k(1-p)n-k(k=0,1,2,…,n). n 此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.

1.概念理解 (1)随机变量是将随机试验的结果数量化. (2)离散型随机变量的分布列从整体上反映了随机变量取各个值的可能性的大小,反映了随机变量取值的规律性. (3)因为一次试验的各种结果是互斥的,而全部结果之和为一个必然事件,所以离散型随机变量的分布列具有性质p 1+p 2+…+p i +…+p n =1. (4)由事件A 和B 同时发生所构成的事件称为事件A 与B 的交(或积),记作A ∩B(或AB). (5)相互独立的两个事件实质上是一个事件的发生对另一个事件的发生没有影响. (6)独立重复试验必须满足三个特征:①每次试验的条件都完全相同,即每次试验事件发生的概率相等;②各次试验互相独立;③每次试验只有两种结果,即事件要么发生,要么不发生. (7)P(X=k)=C k n p k (1-p)n-k 恰好是[(1-p)+p]n 展开式的第k+1项 1k T =C k n (1-p) n-k p k . (8)独立重复试验的实际原型是有放回的抽样问题,但在实际中,从大批产品中抽取少量样品的不放回检验,也可以近似地看作此类型. (9)独立重复试验中的概率公式P n (k)=C k n p k (1-p)n-k 中的p 与(1-p)的位 置不能互换,否则式子表示为事件A 有k 次不发生的概率. 2.与独立事件有关的结论 (1)若A 与B 相互独立,则A 与B ,A 与B,A 与B 也都相互独立.

高考数学讲义随机变量及其分布列.版块二.几类典型的随机分布2.教师版

1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值x 与该取值对应的概率,)n L 列表表示: X 1x 2x … i x … n x P 1p 2p … i p … n p X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布. X 1 P 0.8 0.2 两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N , 知识内容 超几何分布

M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =L . 2.二项分布 若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复 试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q -==,其中0,1,2,,k n =L .于是得到X 0 1 … k … n P 00C n n p q 111 C n n p q - … C k k n k n p q - 0 C n n n p q 由式 001110 ()C C C C n n n k k n k n n n n n n q p p q p q p q p q --+=++++L L 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差: 若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq =(1)q p =-. ⑷正态分布 1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22 ()2()2πx f x μσσ --= ?, x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望 为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线. ⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑶重要结论: ①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%. ②正态变量在()-∞+∞,内的取值的概率为1, 在区间(33)μσμσ-+,之外的取值的概率x=μO y x

第三章__多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{= ∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

随机变量及其分布考点总结

随机变量及其分布考点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x x ),2,1( =i x 的概率p x P ==)(ξ. ,2,1,01=≥i p 121=++++ i p p p 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ===+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋 中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.

高三理数一轮讲义:11.7-离散型随机变量及其分布列(练习版)

第7节离散型随机变量及其分布列 最新考纲 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用. 知识梳理 1.离散型随机变量 随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量. 2.离散型随机变量的分布列及性质 (1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i =1,2,…,n)的概率P(X=x i)=p i,则表 X x1x2…x i…x n P p1p2…p i…p n 称为离散型随机变量X的概率分布列. (2)离散型随机变量的分布列的性质: ①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1. 3.常见离散型随机变量的分布列 (1)两点分布:若随机变量X服从两点分布,其分布列为, X 0 1 P 1-p p 其中p=P(X=1)称为成功概率. (2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)= C k M C n-k N-M C n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N *,称随机变量X服从超几何分布. X 01…m P C0M C n-0 N-M C n N C1M C n-1 N-M C n N … C m M C n-m N-M C n N

1.判断下列结论正误(在括号内打“√”或“×”) (1)离散型随机变量的概率分布列中,各个概率之和可以小于1.() (2)对于某个试验,离散型随机变量的取值可能有明确的意义,也可能不具有实际意义.() (3)如果随机变量X 的分布列由下表给出, X 2 5 P 0.30.7 则它服从两点分布.() (4)一个盒中装有4个黑球、3个白球,从中任取一球,若是白球则取出来,若是黑球则放回盒中,直到把白球全部取出来,设取到黑球的次数为X,则X服从超几何分布.() 2.(选修2-3P49练习2改编)抛掷一枚质地均匀的硬币2次,则正面向上次数X的所有可能取值是________. 3.(选修2-3P77A1改编)已知离散型随机变量X的分布列为 则常数q=________. 4.(2018·菏泽联考)一盒中有12个乒乓球,其中9个新的、3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为() A. 1 220 B. 27 55 C. 27 220 D. 21 55 5.(2019·郑州二模)设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)=________. 6.(2019·南宁二模改编)设随机变量X的概率分布列为 X 123 4 P 1 3 m 1 4 1 6 则P(|X-3|=1)=________. X 01 2 P 0.51-2q q2

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X 的分布函数 F(X) ,若存在非负函数f(x), 使对于 任意的实数 x,有F ( x)x f(x) 称为 X f (t)dt ,则称X为连续性随机变量, 的概率密度函数,简称概率密度。 注: F(x)表示曲线下x 左边的面积,曲线下的整个面积为1。 2 .密度函数f(x) 的性质:注: f( x)不是概率。 1) f( x)≥ 0 + f ( x) dx = 1 2) ò-x 2 3)P{x 1 < X ? x 2 }òx1 f (x) dx = F (x 2 ) - F (x 1 ) 特别地,连续型随机变量在某一点的概率为零,即 P{ X = x} = 0. (但 { X=x} 并不一定是不可能事件) 因此P(a≤X ≤ b)= P(a< X

相关文档
最新文档