浅谈熵模型的意义及在精度分析中的应用

浅谈熵模型的意义及在精度分析中的应用
浅谈熵模型的意义及在精度分析中的应用

最大熵算法笔记

最大熵算法笔记 最大熵,就是要保留全部的不确定性,将风险降到最小,从信息论的角度讲,就是保留了最大的不确定性。 最大熵原理指出,当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以人们称这种模型叫"最大熵模型"。 匈牙利著名数学家、信息论最高奖香农奖得主希萨(Csiszar)证明,对任何一组不自相矛盾的信息,这个最大熵模型不仅存在,而且是唯一的。而且它们都有同一个非常简单的形式-- 指数函数。 我们已经知道所有的最大熵模型都是指数函数的形式,现在只需要确定指数函数的参数就可以了,这个过程称为模型的训练。 最原始的最大熵模型的训练方法是一种称为通用迭代算法GIS (generalized iterative scaling) 的迭代算法。GIS 的原理并不复杂,大致可以概括为以下几个步骤: 1. 假定第零次迭代的初始模型为等概率的均匀分布。 2. 用第N 次迭代的模型来估算每种信息特征在训练数据中的分布,如果超过了实际的,就把相应的模型参数变小;否则,将它们便大。 3. 重复步骤2 直到收敛。 GIS 最早是由Darroch 和Ratcliff 在七十年代提出的。但是,这两人没有能对这种算法的物理含义进行很好地解释。后来是由数学家希萨(Csiszar) 解释清楚的,因此,人们在谈到这个算法时,总是同时引用Darroch 和Ratcliff 以及希萨的两篇论文。GIS 算法每

次迭代的时间都很长,需要迭代很多次才能收敛,而且不太稳定,即使在64 位计算机上都会出现溢出。因此,在实际应用中很少有人真正使用GIS。大家只是通过它来了解最大熵模型的算法。 八十年代,很有天才的孪生兄弟的达拉皮垂(Della Pietra) 在IBM 对GIS 算法进行了两方面的改进,提出了改进迭代算法IIS (improved iterative scaling)。这使得最大熵模型的训练时间缩短了一到两个数量级。这样最大熵模型才有可能变得实用。即使如此,在当时也只有IBM 有条件是用最大熵模型。 由于最大熵模型在数学上十分完美,对科学家们有很大的诱惑力,因此不少研究者试图把自己的问题用一个类似最大熵的近似模型去套。谁知这一近似,最大熵模型就变得不完美了,结果可想而知,比打补丁的凑合的方法也好不了多少。于是,不少热心人又放弃了这种方法。第一个在实际信息处理应用中验证了最大熵模型的优势的,是宾夕法尼亚大学马库斯的另一个高徒原IBM 现微软的研究员拉纳帕提(Adwait Ratnaparkhi)。拉纳帕提的聪明之处在于他没有对最大熵模型进行近似,而是找到了几个最适合用最大熵模型、而计算量相对不太大的自然语言处理问题,比如词性标注和句法分析。拉纳帕提成功地将上下文信息、词性(名词、动词和形容词等)、句子成分(主谓宾)通过最大熵模型结合起来,做出了当时世界上最好的词性标识系统和句法分析器。拉纳帕提的论文发表后让人们耳目一新。拉纳帕提的词性标注系统,至今仍然是使用单一方法最好的系统。科学家们从拉纳帕提的成就中,又看到了用最大熵模型解决复杂的文字信息处理的希望。

熵函数的来历及统计学意义

熵函数的来历及统计学意义 12级物理学 阴爽 热力学第一定律就是能量守恒与转换定律,但是它并未涉及能量转换的过程能否自发地进行以及可进行到何种程度。热力学第二定律就是判断自发过程进行的方向和限度的定律,它有不同的表述方法:热量不可能自发地从低温物体传到高温物体;热量不可能从低温物体传到高温物体而不引起其他变化;不可能从单一热源取出热量使之全部转化为功而不发生其他变化;第二类永动机是不可能造成的。热力学第二定律是人类经验的总结,它不能从其他更普遍的定律推导出来,但是迄今为止没有一个实验事实与之相违背,它是基本的自然法则之一。 由于一切热力学变化(包括相变化和化学变化)的方向和限度都可归结为热和功之间的相互转化及其转化限度的问题,那么就一定能找到一个普遍的热力学函数来判别自发过程的方向和限度。可以设想,这种函数是一种状态函数,又是一个判别性函数(有符号差异),它能定量说明自发过程的趋势大小,这种状态函数就是熵函数。 如果把任意的可逆循环分割成许多小的卡诺循环,可得出 ∑(δQi/Ti)r=0 (1) 即任意的可逆循环过程的热温商之和为零。其中,δQi为任意无限小可逆循环中系统与环境的热交换量;Ti为任意无限小可逆循环中系统的温度。上式也可写成? ∮(δQr/T)=0 (2) 克劳修斯总结了这一规律,称这个状态函数为“熵”,用S来表示,即 dS=δQr/T (3) 对于不可逆过程,则可得? dS>δQr/T (4) 或 dS-δQr/T>0 (5) 这就是克劳修斯不等式,表明了一个隔离系统在经历了一个微小不可逆变化后,系统的熵变大于过程中的热温商。对于任一过程(包括可逆与不可逆过程),则有? dS-δQ/T≥0 (6)

令人胆寒,让人顿悟的“熵增理论”

令人胆寒,让人顿悟的“熵增理论” 作者:觉者看世界 生命是什么? 生命的敌人是什么? 人类的未来会怎样? 为什么时间有方向? 若想造出人工智能生命,需要具备什么能力? 信息究竟有多重要? 为什么刷今日头条、抖音等一类短视频时,会让人感觉轻松愉悦,甚至上瘾? 为什么坚持刷今日头条、刷抖音很容易,坚持看书、坚持健身却很难? 为什么咖啡和茶倒在一起,会自发混合在一起,之后却不会自发地再分开? 为什么房间只会越用越乱?而不会越用越整齐? 为什么散漫很容易,专注却很难? 为什么好习惯养成很难,打破很容易,而坏习惯养成很容易,打破却很难? 为什么所谓的人性的弱点,真的是人性的弱点? 放弃部分控制和努力,事情难道真的会变好吗? 面对人生的变动,敢放手一试,放下焦虑,把命运交给未知吗? 以上这些问题,看似风马牛不相及,但其背后都和“熵”以及“熵增定律”有关。这么一来,是不是觉得“熵”并没那么遥远,却近在咫尺? 无论努力与否,系统的熵(一种混乱程度)只增不减,这就是熵理论的大概描述。 熵增原则是自然界所有定律中至高无上的。 “熵”,念shāng,与“商”同音。 “熵”字长得有些生僻,因此似乎觉得离日常生活很遥远。但恰恰相反,熵和我们的日常生活关系密切,甚至无处不在。 熵”是对系统的混乱程度的度量,熵值越高越混乱无序,熵值越低越有序! 熵的通俗理解就是“混乱程度”,简单的说熵是衡量我们这个世界中事物混乱程度的一个指标。 熵增,在人生观上的启示是:越发力,越混乱。 人活着就是在对抗熵增定律,生命以负熵为生。 熵增定律真的是宇宙最强机制吗? 什么是熵增定律?为什么它如此重要?它到底对我们有什么巨大影响?为什么熵增定律让好多人,一下子顿悟了? 熵”不是自然界的发展方向,熵只是一种度量,“熵增”才代表了自然界的发展方向。 熵(Entropy),最早在1865年由德国物理学家克劳修斯提出,用以度量一个系统“内在的混乱程度”。你可以理解为,系统中的无效能量。 确实,光看“熵”的概念,似乎很难想到具体有什么用。 熵作为一种度量方式,起到根本作用是对特定特征的量化度量。有了量化度量,许多的实际应用就可以在此基础上开展。例如我们能精确的度量长度、面积和体积,在制造、建筑等等实际应用时,就能更精确。

熵的应用和意义

浅谈熵的意义及其应用 摘要:介绍了熵这个概念产生的原因,以及克劳修斯对熵变的定义式;介绍了玻尔兹曼从微观角度对熵的定义及玻尔兹曼研究工作的重要意义;熵在信息、生命和社会等领域的作用;从熵的角度理解人类文明和社会发展与环境的关系。 关键词:克劳修斯熵玻尔兹曼熵信息熵生命熵社会熵 0 前言:熵是热力学中一个非常重要的物理量,其概念最早是由德国物理学家克劳 修斯(R.Clausius)于1854年提出,用以定量阐明热力学第二定律,其表达式为 dS=(δQ/T)rev。但克劳修斯给出的定义既狭隘又抽象。1877年,玻尔兹曼(L.Boltzmann)运用几率方法,论证了熵S与热力学状态的几率W之间的关系,并由普朗克于1900给出微观表达式S=k logW,其中k为玻尔兹曼常数。玻尔兹曼对熵的描述开启了人们对熵赋予新的含义的大门,人们开始应用熵对诸多领域的概念予以定量化描述,促成了广义熵在当今自然及社会科学领域的广泛应用【1】【2】。 1 熵的定义及其意义 由其表达式可知,克劳修克劳修斯所提出的熵变的定义式为dS=(δQ/T)rev , 斯用过程量来定义状态函数熵,表达式积分得到的也只是初末状态的熵变,并没有熵的直接表达式,这给解释“什么是熵”带来了困难。【1】直到玻尔兹曼从微观角度理解熵的物理意义,才用统计方法得到了熵的微观表达式:S=k logW。这一公式对应微观态等概出现的平衡态体系。若一个系统有W个微观状态数,且出现的概率相等,即每一个微观态出现的概率都是p=1/W,则玻尔兹曼的微观表达式还可写为:S=-k∑plogp。玻尔兹曼工作的杰出之处不仅在于它引入了概率方法,为体系熵的绝对值计算提供了一种可行的方案,而且更在于他通过这种计算揭示了熵概念的一般性的创造意义和价值:上面所描述的并不是体系的一般性质量和能量的存在方式和状态,而是这些质量和能量的组构、匹配、分布的方式和状态。 玻尔兹曼的工作揭示了正是从熵概念的引入起始,科学的视野开始从对一般物的质量、能量的研究转入对一般物的结构和关系的研究,另外,玻尔兹曼的工作还为熵概念和熵理论的广义化发展提供了科学依据。正是玻尔兹曼开拓性的研究,促使熵概念与信息、负熵等概念联姻,广泛渗透,跨越了众多学科,并促

信息熵理论

信息熵理论 在通信系统中,信息从发送到接收的传输过程是一个有干扰的信息复制过程。 对每一个具体的应用而言,传输的信息是确定的,有明确的应用目的。 对一个通信系统而言主,不同的用户要传送的具体的信息内容是不同的,则如何从这些繁杂的具体信息中提炼出它们的共同特征,并可进行量化估计是shannon 信息论研究的基础。 所谓量化估计就是用提炼的共同特征估计与某些具体内容所对应的需要传输的信息量大小。 信息量定义的另一个重要特征是它能保证信息量值的大小与具体的信息内容无关。 1.定义信息熵: 设X 是一个离散的随机变量,其定义空间为一个字符集E 。 ()()E x x X P x p ∈==,,表示相应的概率分布函数,则 ()()()()x p x p X H x log ∑-=称为离散随机变量的熵。 有时记()()()()(){}X p E x p x p p H p x log log -=-=∑ {}p E 表示以概率分布()x p 对某随机变量或随机函数求概率平均。 2.定义联合熵: 设X ﹑Y 是丙个离散的随机变量,(X,Y )的联合概率分布函数为()()y Y x X P y x p ===,,,则 ()()()y x p y x P Y X H x y ,log ,,∑∑-= 称为离散随机变量X 与Y 的联合熵。 有时记为: ()()()(){}Y X p E y x p y x p Y X H p x y ,log ,log ,,-=-=∑∑ 3.定义条件熵: 如果()(),,~,y x p Y X 则条件熵()X Y H /定义为 ()()() ∑=-=x x X Y H x p X Y H // ()()()∑∑- =x y x y p x y p x p /log / ()()∑∑-=x y x y p y x p /log , (){}X Y p E /log -= 条件熵等于零的条件为()1==Y X p 事实上,对任意的y x ,都有()()0/log /=x y p x y p ,从而得()()1/0/==x y p x y p 或,又因为X 与Y 是取值空间完全相同的随机变量,所以有()1/=X Y p

中庸哲学思想与熵增加原理的关系

中庸哲学思想与熵增加原理的关系 文/王军礼 吃饭是一件再也平常不过的事,但其中却包含着深刻的哲学道理。吃饭能反映一个人的性格,有的人喜欢吃酸的,有的人喜欢吃甜的,有的人喜欢吃辣的。就同样一碗米饭,上面盖的菜或辣、或酸、或咸,不同的人吃法也不同。 有的人吃这晚饭时,觉得碗里的菜不合口味,就会将菜和米饭均匀的混合后再去吃,在这个很不起眼的动作中蕴含了中庸思想,何谓“中庸”?“中庸”就是不走极端、就是和谐统一。 其实,物理学中的熵增加原理正是中庸哲学思想的具体体现,熵增加原理是说在自然状态中一个系统内的熵值总是增加的。换句话说,宇宙中的物质分布总是向着均匀统一的方向发展,即从极端自发的走向和谐。自然界的发展如此,人类社会的发展亦是如此,事物存在的大多数时间都处在这样一个向着熵值增大的过程中,从高能态向低能态发展,从不稳定向稳定发展。 一杯热水放置一段时间后自然会变成凉水,一个苹果从树上落到地上,瀑布从高处流下,这些都是熵增加原理在生活中的例子。热水释放热量变成凉水是因为热水与周围物质(如空气)之间存在温度差,热水的温度要自然趋于稳定必须释放热量,才能使温度这个物理属性趋于一致,这杯水在温度属性上就达到空间的均匀分布,也就达到了和谐统一的终极目的。这仅仅是这杯水在温度这一物理属性上的“熵增加”,还有质量、能量等诸多物理属性的发展亦是如此,都遵循“熵增加”这条规律。 苹果落地、水往低处流等是能量分布范畴的“熵增加”现象,其诱因是引力,具体地说是重力势能这一物理属性在空间的分布不均匀导致的,不均匀就会不稳

定,所以它们都会低能态跌落,向稳定状态转化。 诸如以上这样的例子不胜枚举,从中我们可以看到“熵增加”的规律普遍存在于自然状态下的万事万物。至此,我们对对熵增加原理有了更深刻的认识,这里的“熵增加”已经是事物的一个物理属性对应的值在自然状态下随着时间的推移都有增大趋势,而不是仅仅局限于在物理学上最初的含义:熵是在一个热力学过程中当温度的变化量趋于无穷小时热量与温度比值的极限。 当我们对“熵增加”规律有了这样的认识后,可以毫无疑问的将它抽象为一种物理学思想体系,并可将其纳入到我们中国的中庸哲学思想体系当中。从而“熵增加”规律为中庸哲学思想的正确性提供了无可辩驳的事实与科学依据,中庸哲学使“熵增加”规律更具内涵性和广泛性。 此外,伟大的科学家牛顿发现的冷却定律和万有引力定律,实验物理学家库仑的库仑定律,科学巨人爱因斯坦的引力场理论等诸多科学规律中都有中庸哲学思想的缩影,新理论的诞生往往需要哲学思想的指导,而我国古代的中庸哲学思想对科学研究、经济社会的运行可以起到指导和借鉴的作用,然而我国的中庸思想的诞生要远早于这些科学家,直至今天仍然在我国没有发挥到其应有的作用,而国外的科学家却早已将他发挥到炉火纯青的地步,牛顿、爱因斯坦就是最鲜明的例子,他们都有自己的宗教信仰和科学信念。有一句话说的很好:宗教和科学是人类的智慧得以凌空翱翔的两只翅膀,有了它们,人的心灵就能进步。单靠一只翅膀是飞不起来的。倘若只用宗教之翼去飞,就会很快堕入迷信的深渊。倘若只用科学之翼去飞,不仅同样不能进步,反而会栽进极端唯物主义的绝望泥潭。中庸哲学思想表明,大自然是和谐统一的,它理应成为我国科技工作者的一种信念。

最大熵模型在股票投资中

最大熵模型在股票投资中的应用 在股票投资中由于各种不确定性因素的影响,投资的收益可大可小,甚至遭受损失,这种收益的不确定性及其发生的概率就是风险。一般而言,预期收益越大的股票其风险越高。投资风险也越大。为了避免或分散较大的投资风险,追求“安全,高效率,低风险”,许多学者利用熵的特性图来全面描述和度量风险。有学者考虑到嫡仅仅是对概率分布的形状做出描述,与其位置无关;而投资风险取决于人们对收益的感知,所以许多学者在研究这个问题时,把对证券收益率做为一种权数加到对嫡度量投资风险模型中,比如效用风险嫡模型,考虑了随机事件客观状态的不确定性和结果价值两方面的因素;期望效用一嫡决策模型,把风险行动的风险度量与决策者的偏好结合起来,但这个模型只是按这种风险度量方法把行动方案排序,最后还是利用马科维茨的模型给出最优解;还有把收益最大和嫡量度的风险最小做为两个目标的多目标决策模型;还有利用嫡的最大嫡原理改变组合投资的目标函数建立的模型。根据单一指数模型的假设,把影响收益率波动的因素分为微观因素和宏观因素,并假设受宏观因素和微观因素的影响的误差项和市场收益率两者互不相关。我们可以利用这一假设把证券收益的不确定性拆分,把证券收益的不确定性分为微观因素的影响的误差项不确定性以及受宏观因素影响的市场收益率的不确定性来分析,从而可以计算整个行动方案的风险。首先,我们考虑如何在上述思想下计算投资一支证券的行动风险。在单一指数模型中,假设误差项与市场收益率是无关的,由于ε月和r分别受宏观因素和微观

因素的影响,两者互不相关,无论市场收益率发生多大变化,都不会对气产生影响。所以它们的嫡值又是可加的。那么我们就把对一支证券投资这个风险行动分解为两个相互独立的风险行动,则原来的风险行动的嫡值应为相应的各个行动的嫡值的加权和。 其次,我们考虑如何度量整个证券组合的行动风险。由市场收益率爪变动引起的各资产的收益率变动是相关的,所以在整个证券投资组合中,它们的嫡值是不能直接相加的。单一指数模型认为p 值可以反映了个别资产价格相对于市场总体水平波动的程度。同时也有研究结果表明,资产的期望收益和市场p 之间的线性关系是显著的,那么可以考虑用p 值作为一种对市场收益率的嫡的权数引入到对投资资产 A 的风险计算中去,来反映单个资产收益率的不确定性受市场总体收益率不确定性影响的程度。这样,用p 值乘以市场收益率的嫡可以反映单个资产收益率受宏观因素影响的程度,而对于整个投资组合来说,对同一个市场收益率的嫡值也就不存在直接相加而相关的问题了。 这样,我们就可以从影响收益率波动的因素分为微观因素和宏观因素对风险进行一个全面的综合度量,同时可以得出了合理地对整个证券投资组合的风险度量方法。下面基于上述思考的过程,给出具体的证券投资风险的嫡度量的数学定义。 考察对某一支股票投资方案X 在未来环境状态下的收益情况,设其收益为R,根据单一指数模型的假设,设市场收益率为r误差项

浅谈熵

题目:浅谈熵 内容摘要:热力学中的熵是用来描述系统混乱程度的物理量。在信息论中,将它定义为信息的缺失,试验结果的不确定性。实际上,热力学中的熵与信息论中的熵它们有着密切的联系。或者说它们是等价的。无论是在热力学中还是在信息论中,熵的定义以及导出过程都有着异曲同工之处。本文即将从着重统计力学的观点出发阐明热力学中的熵与信息论中的熵的关系,将信息论与热力学结合,以此来简明介绍有关Maxwell —demon 的问题。并简单介绍熵的量子观点,进一步说明熵的本质及其意义。并着重于热力学中的各种熵作出详细的讨论。诸如:平动熵、转动熵、振动熵、电子熵、核熵等。 关键词:统计力学、量子观点、信息论、混乱程度、不确定性、Maxwell —demon 在热力学中我们知道熵描述了一个系统的混乱程度的大小。系统的熵值越大,则意味着系统越混乱。一切宏观现象上的热力学现象总是朝着熵增加的方向进行。但是我们也可以这样来想:若一个系统内部它越混乱,则我们从中所获取的微观信息也就越少。也就是说熵描述了信息的缺失,系统的破确。至此我们来考虑这样的一个问题,比如一条具有一定长度的信息(There is a cat )共14个字符,包含空格。如果把组成上述信息的所有字符都打乱,在我们对此一无所知的情况下,将会有14!/3!2!21种组合方式(即系统完全破却)。得到一系列的概率分布。针对此问题,通过信息论我们知道,信息的获取意味着不确定性的消除,或不确定性意味着信息的缺失。在Maxwell —demon 中所谓的精灵就是通过信息与外界系统进行相互作用的,该精灵利用信息操控着过程,使其向逆自发方向方向进行。其实有了Maxwell —demon 的存在,系统已变成了敞开系统,该精灵将负熵引入了系统,降低了系统的熵。因此从整体看气体的反方向集中必不违背热力学第二定律,换句话说:信息即可视为负熵。这种不确定度完全由试验结果的一组概率来唯一确定,令这种不确定度为H ,则 123(......);n H H p p p p =且H 需要满足以下条件: (1)H 是一个关于123......n p p p p 的连续函数。 (2)若所有的概率相等,则1231111 (......)( .....)n H p p p p H n n n n =;为关于n 的单调增函数。 (3)如果一个实验的可能结果依赖于n 个辅助实验的可能结果,那么H 就是辅助实验的不确定性之和。即1 n i i H H == ∑。 数学家香农证实H 的最简单选择是:1231 (......)()n n i i H H p p p p f p === ∑;这里的f 是 未知的。因为是一个连续函数,所以对于等概率的特殊情况,可以定出f ,对已所有的i ,若有1i p n = ,则上述方程可写成:11111(.....)()H nf n n n n n =;由条件(2)知1 [()]0d f dn n ≥; 调用合成定律,考虑第一个辅助实验的等概率结果数目是r, 第二个辅助实验的等概率 结果数目是s,那么n r =; 并且:11111111 (.....)(.....)(.....)(.....);.......(1)H H H H r r s s n n rs rs +==,所以:

熵模型

熵模型 1、数据。。。 计算第i 个教练第j 种指标下的权值 12 1 ,(1,230;1,26) ij ij ij i x p i j x == ==∑ 计算第j 种指标的熵值(公式) 6 1 1 ln(),0,,0ln(12)j ij ij j i e k p p k k e ==->= ≥∑其中 表2.2各种指标的熵值 第j 种指标的系数。 差别越大或是离散度越大,其在评价指标中占的影响位置越重要,其熵值也较小。定义差异系 数: 66 1 1 1,,01,1 j j e j j j j j e e g E e g g m E ==-= =≤≤=-∑∑式中 表2.3各种指标的差异系数:: 最大熵模型的优缺点 优点: (1)建模时,试验者只需集中精力选择特征,而不需要花费精力考虑如何使用这些特征。 (2)特征选择灵活,且不需要额外的独立假定或者内在约束。 (3)模型应用在不同领域时的可移植性强。 (4)可结合更丰富的信息。 缺点: (1)时空开销大 (2)数据稀疏问题严重 (3)对语料库的依赖性较强 层次分析法的优缺点 优点 1. 系统性的分析方法 层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。 1234561.3816 1.3696 0.8472 1.3523 1.373 1.373 1g 2g 3g 4g 5g 6g 0.1498 0.1512 0.2444 0.1531 0.1508 0.1508

熵S的物理意义

徐在新钱振华选自《物理教学》2008年第9期 18世纪中叶,物理学家在认识到运动物体有动能,地面上空的物体又有势能(两者即机械能)之后,又进一步认识到物体的内部也具有能量(即内能),这是人类对能量的认识和利用历史上的一次大飞跃。为了利用蕴藏在物体内部的能量,使它们转化为机械能,开动各式各样的机器,就需将研究热量和内能的热学与研究做功和机械能的力学相结合,形成热力学,以便探究内能和机械能之间的转化规律。 热力学最基本的规律是热力学第一定律和热力学第二定律(或熵增加原理),内能和熵就是与这两个基本定律相联系的两个重要的物理量。人们利用这些物理概念和物理规律,可更加合理、有效地开发和利用内能。此外,由于热运动的普遍性,一切过程,包括物理、化学、生命和宇宙等领域中的一切运动变化过程都必然遵循热力学基本规律。 “熵”这一概念的重要性不亚于“能”,它不仅应用于“热效率”这类对社会发展起到关键作用的科技领域,而且还广泛地应用于物质结构、凝聚态物理、低温物理、化学动力学、生命科学和宇宙学以及诸如经济、社会和信息技术等领域。鉴于熵这一概念的基础性和重要性,我国近期出版的各套中学物理教材中都编入了这方面内容。为了更好地理解和掌握这些内容,本文将对熵的定义及其在宏观和微观上的物理意义作简单介绍,以供参考。 1.熵是描述自然界一切过程具有单向性特征的物理量 热传导、功变热和气体自由膨胀等物理过程具有单向性(或不可逆性)特征,热量能自发地从高温物体传到低温物体,但热量从低温物体传到高温物体的过程则不能自发发生;机械功可通过摩擦全部转化为热,但热不可能全部转化为机械功;气体能向真空室自由膨胀,使本身体积扩大而充满整个容器,但决不会自动地收缩到容器中的一部分。德国物理学家克劳修斯首先注意到自然界中实际过程的方向性或不可逆性的特性,从而引进了一个与“能”有亲缘关系的物理量——“熵”。熵常用S表示,它定义为:一个系统的熵的变化ΔS是该系统吸收(或放出)的热量与绝对温度T的“商”,即 ΔS=ΔQ/T (1) 当系统吸收热量时,取为正;当系统放出热量时,ΔQ取为负。这里我们定义的是熵的变化,而不是熵本身的值。这种情况与讨论内能或电势能和电势时一样,在这些问题中重要的是有关物理量的变化量。 这样定义的熵是如何描述实际过程单向性特征的呢?以热传导过程为例,热量只能自发地从高温物体传向低温物体,而不能自发地从低温物体传向高温物体。设高温物体的温度为T1,低温物体的温度为T2,在热量ΔQ从高温物体转移到低温物体的过程中,高温物体熵变为ΔS1=-ΔQ/T1,低温物体熵变为ΔS2=+ΔQ/T2,总系统熵变为ΔS=ΔS2+ΔS1=ΔQ/T2-ΔQ/T1 ,因为T1>T2,所以总熵变ΔS>0,这表明,在热传导过程中系统的熵增加了!反之,如果热量从低温物体自发地转移到高温物体而不存在其他任何变化,则因为ΔS2=-ΔQ/T2;ΔS1=+ΔQ/T1,所以ΔS=ΔS1+ΔS2=ΔQ/T1-ΔQ/T2,且因T1>T2,所以在这样的过程中总系统的熵变ΔS<0,即系统的熵减少了! 自然界实际过程具有方向性特征这个客观事实表明,只有熵增加的过程才能自发发生。热量从高温物体传向低温物体时系统的熵增加,所以这样的过程能自发发生;反之,热量从低温物体传向高温物体时系统的熵减少,所以这样的过程不能自发发生。所谓自发发生的过程,就是指不受外界影响或控制而发生

华为之熵 光明之矢

华为之熵光明之矢 熵和生命活力,就像两支时间之矢,一头儿拖拽着我们进入无穷的黑暗,一头儿拉扯着我们走向永恒的光明。今天和大家分享的内容,作者认为是目前为止对华为发展之道最不为人知的一个视角。 鲁道夫·克劳修斯发现热力学第二定律时,定义了熵。自然社会任何时候都是高温自动向低温转移的。在一个封闭系统最终会达到热平衡,没有了温差,再不能作功。这个过程叫熵增,最后状态就是熵死,也称热寂。 熵原本是热力学第二定律的概念,却被任正非用于研究企业的发展之道,是贯穿任正非管理华为的思想精华。 华为之所以不易被人理解,一个重大原因就是任正非的思想源头摆脱了商学院式的理论框架,仿佛黄河源头的九曲十八弯,既有观察现实世界、不断实践的人性感悟,也有横贯东西方的科学和哲学洞察。 经济学的很多理论和计算方法都来源于物理学的启发,但鲜活的生命并不是经济学意义上的理性人和有限理性人。在人性和社会(人性的群体化)的复杂性面前,经济学在社会发展的现实面前已经落后甚至溃败,而熵的理论透过物理学和生命活力,直指人心。 任正非把物理学、人性和哲学理念直接引入企业管理中,成

就了华为独特的思想文化、价值观和发展战略。华为的发展不是偶然的,任正非开创性的管理思想和战略起着决定性的作用。 一、华为之熵 1. 熵为何物? 这里,我们稍微探讨一下熵的物理学概念,不想烧脑的同学请直接跳到下一段落,不影响理解下文。熵首先是物理学概念,熵的单位是焦耳/热力学温度。热力学第二定律告诉我们,一个孤立系统的熵一定会随时间增大,熵达到极大值,系统达到最无序的平衡态。因此,热力学第二定律也被称为熵增定律。1850年熵増定律诞生的时候就有两种表述,后来不同学科、不同科学家又发表了很多种各不相同的表述。相比较,作者更喜欢量子物理学和现代生物学的奠基人欧文·薛定谔对热力学第二定律的综合性描述:“一个非活的系统被独立出来,或是把它置于一个均匀的环境里,所有的运动由于周围的各种摩擦力的作用都将很快地停顿下来;电势或化学势的差别也消失了;形成化合物倾向的物质也是如此;由于热传导的作用,温度也变得均匀了。由此,整个系统最终慢慢地退化成毫无生气的、死气沉沉的一团物质。于是,这就达到了被物理学家们称为的热力学平衡或“最大熵”——这是一种持久不变的状态,在其中再也不会出现可以观察到的事件。”

基于最大熵模型的中文词与句情感分析研究pdf

基于最大熵模型的中文词与句情感分析研究* 董喜双,关毅,李本阳,陈志杰,李生 哈尔滨工业大学,哈尔滨,150001 dongxishuang@https://www.360docs.net/doc/ed8378065.html,, guanyi@https://www.360docs.net/doc/ed8378065.html,, libenyang012566@https://www.360docs.net/doc/ed8378065.html,, ruoyu_928@https://www.360docs.net/doc/ed8378065.html,, lisheng@https://www.360docs.net/doc/ed8378065.html, 摘要:本文将研究焦点对准喜、怒、哀、惧四类情感分析问题,重点解决中文词、句的情感分析问题。将词的情感分析处理为候选词情感分类问题。首先通过词性过滤获得候选词,进而根据特征模板获取候选词情感特征,然后应用最大熵模型判断候选词情感类别,最后应用中性词典、倾向性词典、复句词表、否定词表过滤候选情感词分类错误得到情感词集合。句的情感分析首先根据情感词典和倾向词典提取词特征,并采用规则提取词序列特征,然后采用最大熵模型对句子进行情感分类。在COAE2009评测中词与句情感分析取得较好结果。 关键词:情感分析;情感极性;最大熵;分类; Sentiment Analysis on Chinese Words and Sentences Based on Maximum Entropy Model Dong Xi-Shuang, Guan Yi, Li Ben-Yang, Chen Zhi-Jie, Li Sheng Harbin Institute of Technology, Harbin 150001 dongxishuang@https://www.360docs.net/doc/ed8378065.html,, guanyi@https://www.360docs.net/doc/ed8378065.html,, libenyang012566@https://www.360docs.net/doc/ed8378065.html,, ruoyu_928@https://www.360docs.net/doc/ed8378065.html,, lisheng@https://www.360docs.net/doc/ed8378065.html, Abstract: This paper presents a method to analyze sentiments on Chinese words and sentences, where the sentiments include happy, angry, sad, and fear. In the case of words, sentiment analysis was processed as the sentiment classification of candidate words. The candidate words were firstly obtained by POS filtering, then Maximum Entropy (ME) model was adopted to judge sentiment categories of the words, which sentiment features were gained with feature templates. Finally, errors in the word classification would be removed through filtering with a neutral lexicon, a sentiment polarity lexicon, a connective word list of complex sentences, and a negative word list. In the case of sentences, word features in sentences were extracted on the basic of the sentiment lexicon and the sentiment polarity lexicon, and word sequence features were extracted by rules while processing sentiment analysis on sentences, then ME model was used to classify the sentences. Good performance of sentiment analysis was gained in COAE 2009. Keywords: Sentiment Analysis, Sentiment Polarity, Maximum Entropy, Classification 1 引言 情感分析的主要任务为识别文本对某一事物的观点[1]。情感包含两方面信息:情感极性与情感强度。情感极性指情感要素(词、短语、句子以及篇章)表达的情感倾向。情感强度指情感要素表达情感的强弱程度。情感分析包含四方面研究内容:词级情感分析、短语级情感分析、句级情感分析以及篇章级情感分析。词级情感分析包括识别候选情感词、判断候选情感词情感极性与强度以及构建情感字典[2]。短语级情感分析为根据情感词识别 *董喜双,1981年出生,男,黑龙江省哈尔滨市,博士研究生。本项研究受到国家自然科学基金项目支持,项目批准号:60975077,60736044

熵及熵增加的概念及意义

熵及熵增加的概念及意义 摘 要:熵是热学中一个及其重要的物理概念。自从克劳修斯于1865年提出熵概念以来,由于各学科之间的相互渗透,它已经超出物理学的范畴。本文从熵的概念出发,简述了熵的概念和意义及熵增加的概念和意义,促进我们对熵的理解。 关键词:熵;熵概念和意义; 一. 熵概念的建立及意义 1.克劳修斯对熵概念的推导 最初,克劳修斯引进态函数熵,其本意只是希望用一种新的形式,去表达一个热机在其循环过程所必须的条件。熵的最初定义建立于守恒上,无论循环是否理想,在每次结束时,熵都回到它最初的数值。首先将此过程限于可逆的过程。则有 0d =?T Q 图1-1 闭合的循环过程 公式0d =?T Q 的成立,足以说明存在个态函数。因此,对于任意一个平衡态,均可引 入态函数——熵:从状态O 到状态A ,S 的变化为 ? =-A O T Q S S d 0S 为一个常数,对应于在状态O 的S 值。对于无限小的过程,可写上式为 可逆)d ( d T Q S = 或 可逆)d (d Q S T = 在这里的态函数S 克劳修斯将其定义为熵。不管这一系统经历了可逆不可逆的变化过程,具体计算状态A 的熵,必须沿着某一可逆的变化途径。这里不妨以理想气体的自由膨胀为例来说明这一点。 p V

设总体积为2V 的容器,中间为一界壁所隔开。 图1-2 气体的自由膨胀 初始状态时,理想气体占据气体为1V 的左室,右室为真空气体2V 。然后,在界壁上钻一孔,气体冲入右室,直到重新达到平衡,气体均匀分布于整个容器为止。膨胀前后,气体温度没有变化,气体的自由膨胀显然是一个不可逆的问题。对于此过程,是无法直接利用公式(1-1)来计算熵的变化的。但为了便于计算,不一定拘泥于实际所经历的路线。不妨设想一个联系初、终状态的可逆过程,气体从体积1V 扩展到2V 得等温膨胀。在此过程中,热量Q 全部转化为功W 。 ??===T W T Q Q T T Q d 1d ??===?V P V V T T W T Q S d 1d 2112ln V V nR = 计算中引用了理想气体状态方程 pV =nRT = NkT 时至今日,科学的发展远远超出了克劳修斯当时引进熵的意图及目标。熵作为基本概念被引入热力学,竟带来了科学的深刻变化,拓展了物理内容,这是克劳修斯所没有预料到的。 2.熵的概念 熵,热力学中表征物质状态的参量之一,用符号S 表示,其物理意义是体系混乱程度的度量。 3.熵的性质及意义 自然界中所有不可逆的过程不仅不能反向进行,而且在不引起其它条件的变化下,用任何方式也不能回到原来状态,这就表明,自发过程单向性或不可逆性并不由过程进行的方式和路径决定,而是由系统的初、终状态决定。所以,根据态函数的定义,不可逆的过程的单向性或不可逆性具有以上态函数的性质,因而熵就是用来表征这个态函数。熵的单位J/K 。熵具有以下两个性质: (1)熵是一个广延量,具有相加性。体系的总熵等于体系各部分的熵的总和。 (2)体系熵的变化可分为两部分:一部分是由体系和外界环境间的相互作用引起的。另一部分是由体系内部的不可逆过程产生的。 熵的物理意义可以这样来理解,在孤立的体系中进行不可逆的过程,总包含有非平衡态向平衡态进行的过程,平衡态与非平衡态比较,系统内运动的微观粒子更为有序,因此,系统的熵增加过程与从有序态向无序态转变有联系。熵越大的态, 系统内热运动的微观粒子越

熵理论与麦克斯韦妖

熵理论与麦克斯韦妖 熵是一个极其重要的物理概念,自从熵的概念提出以来,熵就在各个领域发挥了重要的作用。特别是近几年来,不仅在自然科学与工程技术的许多领域,如物理学、化学、生物学、信息科学与工程、动力工程及制冷工程等会遇到熵的踪迹,就是在社会科学,乃至于人文科学中也经常会碰到熵这一名词。 1.熵理论的发展历程 熵概念的发展从提出到今天跨科学的应用,大致可分为五个阶段。 第一阶段是熵概念的提出。热力学第二定律指出,一切实际自发的热力学过程都是不可逆的,是单项进行的。熵概念的提出为实际自发过程的方向做出了普遍适用的判据。同时,也为热力学第二定律的定量表述奠定了基础。 第二阶段是熵概念本质的揭示。玻耳兹曼方程的确立,赋予了熵的统计解释,即一切宏观自发的过程总是从概率小的方向向概率大的方向进行。他从微观的角度分析了熵是系统中混乱度的量度。大大地丰富了熵的物理内涵,明确了它的应用范围。 第三阶段是普利高津等人把传统的平衡态热力学推广到非平衡态,将孤立系统中熵的概念推广到开放系统中的熵,从而产生了非平衡态的热力学。从而熵的理论被进一步的深化了。 第四阶段是威廉·汤姆逊提出的“热寂”。宇宙的不断膨胀使它远离平衡的状态,宇宙的熵值不断增加,在遥远的将来熵值将达到极大值,将会发生宇宙的“热寂”。 第五阶段即由麦克斯韦妖的启示,西拉德又发现了熵与信息的关系,揭示了熵含义的新层次,进一步扩大了熵的应用面。成为了处理复杂信息问题的一个依据。 20世纪以来,产生很多不同的熵,熵的概念在不断地发展着,被应用着。形成了许多的交叉科学,显示出了熵的强大生命力。所以,对熵概念的学习也显示出了重要的意义,有人说,熵概念产生的重要性毫不低于能量概念的产生。 1.1熵概念的提出 热力学第二定律是有关过程进行方向的规律,它指出,一切与热现象有关的实际宏观过程都是不可逆的。若要方便判断过程可逆与不可逆性,更进一步地阐明不可逆性的本质,应能找到与不可逆性相关联的态函数。这个新的态函数就是克劳休斯找到的,他

现代熵理论在社会科学中的应用

现代熵理论在社会科学中的应用 摘要:文章简述了热学熵的理论及其统计解释,介绍了熵增原理,最大最小熵原理,对现代熵理论在人类社会,生态环境,致冷技术上的应用作了浅显 的说明,使人类意识到加强熵观念以维护良好社会秩序及生态环境的必 要性,最后讲解了现代熵理论在社会科学中的应用对我的启发与影响。 关键词: 现代熵现代熵理论现代熵与人类社会现代熵与生态环境 现代熵与致冷技术制冷技术现代熵理论的应用对我的启发 正文: 一. 现代熵理论的基本概念 1. 热熵的基本概念 克劳修斯引入了状态函数熵,记为 S。他采用宏观分析的方法得出 : 对于一个封闭系统 , 可逆过程的熵变 dS与系统从外界所吸收的热量 dQ和系统的温度 T之间存在如下关系: dS = dQ T 上式称为熵的克劳修斯关系式。由此定义的熵称为热力学熵 (或宏观熵 , 克劳修斯熵 ) 。 2. 统计熵 (或玻尔兹曼熵 )的概念 在克劳修斯给出热力学熵的定义以后 ,玻尔兹曼又从微观 (气体动理论 )的角 度 , 深入研究了状态函数熵 , 给出了一个统计物理学的解释。在等概率原理 的前提下 , 任一给定的宏观状态所包含的微观状态数的数目称为该宏观状态的热力学概率 , 用 Q表示。据此 , 玻尔兹曼对气体分子的运动过程进行了研 究 ,将熵 S和热力学概率Ω联系起来得出 S∝ lnΩ的关系 ,在 1900年由普朗克引进比例常数 k而成为 S = klnΩ。这就是统计物理的玻尔兹曼熵 关系式 ,其中 k为玻尔兹曼常量。由此定义的熵称为统计熵 (或玻尔兹曼熵 )。二.现代熵理论的原理 现代熵理论有熵增加原理,最大最小熵原理等。 1. 熵增原理: 处于平衡态的孤立系统的熵增加原理在定义熵的概念以后 ,克劳修斯把热 力学第二定律中熵用式中等号对应可逆过程 , 大于号对应不可逆过程。即在绝热过程中熵不可能减少,这就是熵增原理。

浅谈工程热力学里的熵

工程热力学论文 题目:浅谈工程热力学里的熵 姓名:杨枫 学号:1122610312 专业:建筑环境与设备工程 导师:谭羽非 学院:市政环境工程学院 2013年12月24日

浅谈工程热力学中的熵 摘要:熵是工程热力学中重要的概念,它是对热力学第二定律的深化和补充,同时熵定律又是对基于热力学第二定律的熵的深化和扩展。熵也可以作为节能的标准,熵的理论在环境中的应用很广泛, 对于保护环境维持生态平衡具有重要意义。 关键词:熵的概念热力学第二定律熵增原理 正文:熵是物理学中一个非常重要的概念,最早由德国物理学家克劳修斯提出,后来玻尔兹曼又用统计的方法给出了熵的定义。我国据此译成热温之商,为了反映与热有关,加上火字旁,创造了新汉字熵。从1865 年提出熵到现今已经有150 多年的历史了,现在的熵已不局限于物理学中,在其它学科都有着广泛的应用,熵的概念有泛化的趋势。另一方面,就物理学中的熵仍有诸多争论的问题,可以说,没有哪一个物理概念像熵一样难以理解,应用广泛,同时又伴随着诸多未解之迷从。物理学角度来说,熵是物质分子紊乱程度的描述,紊乱程度越大,熵也 越大;从能量及其利用角度来说,熵是不可逆耗散程度的量度,不可逆能量耗散越多,熵变化越大。熵增加意味着有效作功能量的减少。在工程热力学中,熵是热力学第二定律的一个重要概念及参数。从热力学的角度,认为可以从以下几个方面来理解熵这个概念。 一.熵概念的提出 熵的概念由卡诺循环引出的。卡诺循环由两个可逆等温过程和两个可逆绝热过程组成。工质在两个恒温热源间循环,没有耗散损失。对微卡诺循环,以微元可逆热机为例,设有高温热源温度T1,低温热源温度T2,工质从高温热源吸热为DQ1,向低温热源放热为DQ2, 由G=1-DQ2/DQ1=1-T2/T1得 DQ2/ T2=DQ1/ T1 由于DQ2与DQ1符号相反,代入符号,有 DQ2/ T2+DQ1/ T1=0 对任意可逆循环,都可分割成无限多个微元卡诺循环, 则有RDQ/T=0 (1) 式(1)即克劳修斯积分式。式(1)表明任意工质经任意一个可逆循环后,微量DQ/T 沿整个循环的积分为零。状态参数的充要条件为该参数的微分一定是全微分,且全微分的循环积分为零。式(1)说明,DQ/T一定是某个参数的全微分。克劳修斯将这一参数定名为熵,以符号S表示, 于是dS=DQ/T (2) 熵是状态参数,工质经一微元过程,熵的变化等于初、终态任意一个可逆过程中与热源交换的热量和热源温度的比值。熵的变化只由初、终态参数确定,与中间所经历的途径无关。式(1)和(2)前提条件是可逆的,既在没有任何耗散的条件下,工质的温度和热源的温度才处处相等。 二.熵与热力学第二定律 实际工质的热力过程都是不可逆的,可逆过程只是将过程视为极端缓慢的情况下,工质内部及工质与周围环境能时刻处于平衡状态,这是一种理想化过程。现在来

相关文档
最新文档