实验五对流传热系数

实验五对流传热系数
实验五对流传热系数

实验五对流传热系数的测定

一、实验目的

1.学会对流传热系数的测定方法。

2.测定空气在圆形直管内(或螺旋槽管内)的强制对流传热系数,并把数据整理成准数关联式,以检验通用的对流传热准数关联式。

3.了解影响对流传热系数的因素和强化传热的途径。

二、实验内容

测定不同空气流量下空气和水蒸汽在套管换热器中的进、出口温度,求得空气在管内的对流传热系数。

三、基本原理

1.准数关联式

对流传热系数是研究传热过程及换热器性能的一个很重要的参数。在工业生产和科学研究中经常采用间壁式换热装置来达到物料的冷却和加热目的,这种传热过程是冷热流体通过固体壁面(传热元件)进行的热量交换,由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

由传热速率方程式知,单位时间、单位传热面所传递的热量为

q=K(T-t) (5—1)而对流传热所传递的热量,对于冷热流体可由牛顿定律表示

q=αh·(T-T w1) (5—2)或q=αc·(t w2-t) (5—3)式中q———传热量,W/m2;

α———给热系数,W/m2·

T———热流体温度,℃;

t———冷流体温度,℃;

T w1、t w2———热、冷流体侧的壁温,℃;

下标:c——冷侧h——热侧。

由于对流传热过程十分复杂,影响因素极多,目前尚不能通过解析法得到对流传热系数的关系式,它必须由实验加以测定获得各影响因素与对流传热系数的定量关系。为了减少实验工作量,采用因次分析法将有关的影响因素无因次化处理后组成若干个无因次数群,从而获得描述对流传热过程的无因次方程。在此基础上组织实验,并经过数据处理得到相应的关系式,如流体在圆形(光滑)直管中做强制对流传热时传热系的变化规律可用如下准数关联式表示

N u=CR e m P r n(5—4)

N

d

u

=

α

λ

(5—5)

R du dw A e ==ρμμ

(5—6) 式中 N u ———努塞尔特准数;

R e ———雷诺准数;

P r ———普兰特准数;

w ———空气的质量流量, Kg /s ;

d ———热管内径, m ;

A ———换热管截面积, m 2;

μ———定性温度下空气的粘度, Pa ·S ;

λ———定性温度下空气的导热系数, W /(m ·℃);

α———对流传热系数, W /(m 2·℃)。

当流体被加热时,n=0.4;被冷却时,n=0.3。此式的适用范围:R e >10000,0.7

>60,低粘度的流体(<2倍常温下水的粘度)。计算各物理量的定性温度用进出口温度的算术平均值。

对空气而言,在较大的温度和压力范围内P r 准数实际上保持不变,取P r =0.7。因空气被加热,取n=0.4,则(5—4)式可简化为:

N C R u e m ='? (C ’=C ·P r n =0.867C) (5—7) 对于螺旋槽管的准数关联式:N R u e =00040610175..

2.对流传热系数α的测定

在套管换热器中,环隙中通水蒸汽,内管管内通空气,水蒸冷凝放热加热空气,当传热达到稳定之后空气侧对流传热系数αi 与总传热系数K 有以下关系:

o i K αλδα111++= (5—8) 式中 δ———管壁厚度, m ;

λ———管壁材料的导热系数, W / (m ·℃);

αi ———管内对流传热系数, W / (m 2·℃);

αo ———管外对流传热系数, W / (m 2·℃)。 因管内流动的是空气,管外流动的是水蒸汽,所以两侧污垢热阻可不计。式中δλ为黄铜管壁热传导的热阻,其中δ=0.001m ,λ=377W / (m ·℃),所以

δλ很小,10α为蒸汽冷凝膜的热阻,δλα?10与1αi

相比很小可以忽略,所以K i ≈α。 根据传热速率方程和热量衡算式有如下关系

()

Q KS t WC t t m p ==-?出进 (5—9)

其中 ()()?t T t T t T t T t m =-----出进

ln 式中 Q ———传热速率, W ;

K ———总传热系数, W / (m 2·℃);

W ———空气的质量流量, Kg /s ;

C p ———空气的平均比热, J /(Kg ·℃);

t 出———空气出口温度, ℃;

t 进———空气进口温度, ℃;

?t ———对数平均温度差, ℃;

T ———蒸汽温度, ℃。

于是式(5—9)可改写成

Q=()αi m p s t WC t t ?=-出进

(5—10) 从而得到管内空气对流传热系数的计算式

()()αρi p m s p m WC t t s t V C t t s t =-=-出进

出进?? (5—11)

式中 V S ———空气的体积流量, m 3/s ;

ρ———流经流量计处空气密度, Kg /m 3。

所以当传热达到稳定后,用蒸汽温度可计算出?t m ,利用仪器测出各数据,就能计算出实测值αi ,从而整理出N u 准数与R e 准数之间的函数关系,最后确定出式中的C 与指数m 。

3.R e 与N u 的计算

R du V d V d e s i s i ===ρμρπμρμ41274. (5—12) 式中 d i ———管内径, m ;

μ———定性温度下空气的粘度, P a ·S ;

N d u i i =αλ (5—13) 式中 λ———定性温度下空气的导热系数, W /(m ·℃)。

4.流量的测量和密度的计算

t

R p p a ++??=273760273293.1ρ (5—14) 式中 P a ———大气压强(可取当地大气压) mmHg

R p ———流量计前端被测介质表压强 mmHg

t ———流量计前端被测介质温度(可取t=t 进) ℃

V V s o

go s

=ρρ 式中 V 0———转子流量计的读数;

ρgo ———标定转子时空气的密度;

ρs ———实际操作情况时气体密度。 四、实验装置及流程

1.实验流程

本实验有四套套管换热器组成,其中一套是螺旋槽管,另三套是光滑管。空气由风机输送,经转子流量计计量后送套管换热器内管换热后排向大气。蒸汽由蒸汽发生器经蒸汽调节阀送入套管换热器的套管环隙,不凝性气体由放气阀排出,冷凝水由排液阀排出。实验装置流程如图所示。

对流传热实验装置流程图

1. 蒸汽发生器 2.压力表 3.安全阀 4.套管换热器 5.仪表箱 6.U 型管压差计 7.放气阀

8.转子流量计 9.旁通阀 10.气泵 11.冷凝水罐 12.温度显示仪 13.阀门

8

2.主要设备仪表规格

(1)光滑管:d i=17.8mm;螺旋槽管:D i=17.8mm;光滑管与螺旋槽管均为黄铜管,换热管长度均为1.224m;

(2)风机型号:D2—4型微音气泵;

(3)铜电阻:C u50型;

(4)蒸汽发生器:用 219×6mm不锈钢管制成,由2kW电加热棒加热,其中1kW 为常加热,1kW由智能程序控温仪控制并显示其中温度;

(5)流量计:LZB—40空气转子流量计,范围:6~60m3/h。

五、实验方法

1.把蒸汽发生器加蒸馏水至恒定水位,然后关闭蒸汽阀,打开总电源开关,给温控仪设定适当温度。

2.待蒸汽发生器内温度接近设定温度时,打开蒸汽阀门,使蒸汽进入套管环隙,并打开放气阀排除不凝性气体。微开排液阀,以便冷凝水及时排除。

3.打开空气旁通阀,开启风机,调节阀门使流量到指定刻度,待稳定后,记录数据4.改变空气流量,稳定后,读取数据。

5.实验结束后,先关闭空气调节阀后关闭风机,最后关闭总电源开关。

6.读大气压力计值,记录操作条件下大气压强值。

注意:实验过程中应及时排除不凝性气体和冷凝水。但在排放过程中,尽量不要影响实验操作的稳定性。

六、实验报告

1.在双对数坐标纸上以N u为纵坐标,以R e为横坐标绘出N u—R e曲线。

2.整理出光滑管或螺旋槽管的N u=CR e m准数方程式。

3.列出实验结果,写出典型数据的计算过程,分析和讨论实验现象。

七、思考题

1.实验过程中,蒸汽温度改变对实验结果有什么影响?如何保持蒸汽温度恒定?2.本实验中,空气与蒸汽流径能否改变?这样安排的优点是什么?

3.实验过程中,如何判断传热达到稳定?

4.蒸汽冷凝过程中不凝性气体存在对实验结果会有什么影响?应采取什么措施解决?

对流传热系数的测定实验报告

. . .. . . 浙江大学 化学实验报告 课程名称:过程工程原理实验甲 实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验容和原理 (2) 1.间壁式传热基本原理 (2) 2.空气流量的测定 (2) 3.空气在传热管对流传热系数的测定 (2) 3.1牛顿冷却定律法 (2) 3.2近似法 (2) 3.3简易Wilson图解法 (2) 4.拟合实验准数方程式 (2) 5.传热准数经验式 (2) 四、操作方法与实验步骤 (2) 五、实验数据处理 (2) 1.原始数据: (2) 2.数据处理 (2) 六、实验结果 (2) 七、实验思考 (2)

一、实验目的和要求 1)掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径; 2)把测得的数据整理成形式的准数方程,并与教材中公认 经验式进行比较; 3)了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验流程与装置 本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显 示仪表等构成。 空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器管,热交换后从风机出口排出。 注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者 必学统一。

对流传热系数的测定

01 对流传热系数的测定 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握空气在普通和强化传热管内的对流传热系数的测定方法,了解影响传热系数的因素和强化传热 的径。 2.把测得的数据整理成B Re n Nu=?形式的准数方程式,并与教材中相应公式进行比较。 3.了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验内容和原理 在实际生产中,大量情况采用的是间壁式换热方式进行换热,就是冷、热流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,不直接接触,通过固体壁面进行热量交换。 本实验主要研究汽—气综合换热,包括普通管和强化管。其中,水蒸气和空气通过紫铜管间接换热,空气走紫铜管内,水蒸气走紫铜管外,采用逆流换热。所谓加强管,是在紫铜管内加了弹簧,增大了绝对粗糙度,进而增大了空气流动的湍流程度,使换热效果更明显。 1. 空气在普通和强化传热管内对流传热系数的测定 间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

T t Figure 1间壁式传热过程示意图 间壁式传热元件,在传热过程达到稳态后,有 ()()()()111222211122--α-α-Δp p W W m M m Q m c T T m c t t A T T A t t KA t =====(1) 式中:Q ——传热量,s J /; 1m 、2m ——分别为热流体、冷流体的质量流量,s kg /; 1p c 、2p c ——分别为定性温度下热流体、冷流体的比热,()C kg J °?/; 1T 、2T ——分别为热流体的进、出口温度,C °; 1t 、2t ——分别为冷流体的进、出口温度,C °; 1α、2α——分别为热流体、冷流体与固体壁面的对流传热系数,()2/W m C ??; 1A 、2A ——分别为热流体、冷流体测的传热面积,2m ; ()W M T T -、()w m t t -——分别为热流体、冷流体与固体壁面的对数平均温差,C °; K ——以传热面积A 为基准的总传热系数,( )C m W °?2/; A ——传热面积,2m ; m t Δ——冷、热流体的对数平均温差,C °。 热流体与固体壁面的对数平均温差可由式(2)计算: ()()()112211 22 ----ln -W W W m W W T T T T T T T T T T -= (2) 式中:1W T 、2W T ——分别为热流体进、出口处热流体侧的壁面温度,C ?。 冷流体与固体壁面的对数平均温差可由式(3)计算:

气汽对流传热系数的测定实验

《气-汽对流传热系数的测定》实验 一、仪器设备简介 流程如图,冷空气由风机13,经孔板流量计11计量后,进入换热器内管,并与套管环隙中蒸汽换热。空气被加热后,排入大气。空气的流量可用控制阀9调节。 1 、蒸汽发生器 2、蒸汽管 3、补水口 4、补水阀 5、排水阀 6、套管换热器 7、放气阀 8、冷凝水回流管 9、空气流量调节阀 10、压力传感器 11、孔板流量计 12、空气管 13、风机 二、试验目的、任务 1、掌握传热膜系数α及传热系数K 的测定方法。 2、通过实验掌握确定传热膜系数准数关联式中的系数A 和指数m 、n 的方法。 3、通过实验提高对α准数关联式的理解,并分析影响α的因素,了解工程上强化传热的措施。 三、实验原理及步骤 1、实验原理: 对流传热的核心问题是求算传热膜系数α,当流体无相变式对流传热准数关联式的一般形式为: Nu=A·R e m ·P r n ·G r p 对于强制湍流而言,G r 准数可以忽略,故 Nu=A· R e m ·P r n 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量R e m 和P r 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,既得到直线方程: lg(Nu/P r 0.4)=lgA+mlgR e 在双对数坐标中作图,找出直线斜率,即为方程的指数m 。在直线上任取一点的函数值带入方程式中,则可得到系数A ,即 A=Nu/(P r 0.4·R e m ) 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联式。应用微机,对多变量方程进行一次回归,就能同时得到A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其准数定义式分别为:

对流传热系数的测定实验报告

浙江大学化学实验报告 课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验内容和原理 (4) 1.间壁式传热基本原理 (4) 2.空气流量的测定 (6) 3.空气在传热管内对流传热系数的测定 (6) 3.1牛顿冷却定律法 (6) 3.2近似法 (7) 3.3简易Wilson图解法 (8) 4.拟合实验准数方程式 (8) 5.传热准数经验式 (9) 四、操作方法与实验步骤 (10) 五、实验数据处理 (11) 1.原始数据: (11) 2.数据处理 (11) 六、实验结果 (14) 七、实验思考 (15)

一、实验目的和要求 二、1)掌握空气在传热管内对流传热系数的 测定方法,了解影响传热系数的 三、因素和强化传热的途径; 四、2)把测得的数据整理成形 式的准数方程,并与教材中公认 五、经验式进行比较; 六、3)了解温度、加热功率、空气流量的自 动控制原理和使用方法。 七、实验流程与装置 八、本实验流程图(横管)如下图1所示, 实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。 九、空气-水蒸气换热流程:来自蒸汽发 生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。 十、注意:普通管和强化管的选取:在 实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切 换,电脑界面上通过鼠标选择,三者必学统一。 十一、 十二、 十三、 十四、

对流传热系数测定实验

对流传热系数测定实验 一、实验目的 a)测定空气在传热管的对流传热系数,掌握空气在传热管的对流传热系数的测定方法。 b)把测得的实验数据整理成Nu=BRe n形式的准数方程式,并与教材中相应公式进行比较。 c)通过实验提高对准数方程式的理解,了解影响传热系数的因素和强化传热的途径。 二、实验装置 实验装置如图1所示,由蒸汽发生器、风机、套管换热器、流量调节阀及不锈钢进、出口管道、温度测量和流量测量装置等组成。 1. 风机 F1. 旁路阀 2. 孔板流量计 3. 空气压力变送器 4. 蒸汽放空口 5. 冷凝液排放口 6. 玻璃视镜 7. 套管换热器 F2. 空气流量调节阀 F3. 蒸汽流量调节阀 8. 加水装置F4. 进水阀 13. 蒸汽发生器 T. 蒸汽温度 t1、t2 . 空气进、出口温度 T w1、T w2. 空气出口和进口侧的管壁温度 图1 空气-水蒸气传热实验装置示意图 三、对流传热及参数测取 空气从漩涡风机吸入,经孔板流量计计量后进入套管换热器的管(紫铜管),与来自蒸汽发生器的饱和水蒸汽在套管换热器进行换热。被空气冷凝下来的冷凝水经冷凝液排放口排入蒸汽发生器的加水装置。进入套管换热器的空气进、出口温度t1、t2分别由铜—康铜热电偶测出。换热管两端管壁温度T w1、T w2同样也分别由埋在管(紫铜管)外壁上的铜—康铜热电偶测出。蒸汽温度T由蒸汽发生器根据管路的实际状况实现自动控制,T由热电阻PT100测得。空气流量通过F2、F2的组合调节来改变或通过变频器改变,由孔板流量计测量,并通过压力变送器测出空气的压力。套管换热器管(紫铜管)的规格为:φ20×2 mm,换热管

12固体小球对流传热系数的测定讲解

固体小球对流传热系数的测定 A 实验目的 工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程,此过程通称为对流传热(或对流给热)。显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。了解与测定各种环境下的对流传热系数具有重要的实际意义。 通过本实验可达到下列目的: (1) 测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。 (2) 了解非定常态导热的特点以及毕奥准数(Bi )的物理意义。 (3) 熟悉流化床和固定床的操作特点。 B 实验原理 自然界和工程上,热量传递的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。 当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象的表现。 通过对导热的研究,傅立叶提出: dy dT A Q q y y λ-== (1) 式中: dy dT - y 方向上的温度梯度[]m K / 上式称为傅立叶定律,表明导热通量与温度梯度成正比。负号表明,导热方向与温度梯度的方向相反。 金属的导热系数比非金属大得多,大致在50~415[]K m W ?/范围。纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。本实验中,小球材料的选取对实验结果有重要影响。 热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热,因而是微观分子热传导和宏观微团热对流两者的综合过程。具有宏观尺度上的运动是热对流的实质。流动状态(层流和湍

4-5_对流传热系数关联式

知识点4-5 对流传热系数关联式 【学习指导】 1.学习目的 通过本知识点的学习,了解影响对流传热系数的因素,掌握因次分析法,并能根据情况选择相应的对流传热系数关联式。理解流体有无相变化的对流传热系数相差较大的原因。 2.本知识点的重点 对流传热系数的影响因素及因次分析法。 3.本知识点的难点 因次分析法。 4.应完成的习题 4-11 在一逆流套管换热器中,冷、热流体进行热交换。两流体进、出口温度分别为t1=20℃、t2=85℃;T1=100℃、T2=70℃。当冷流体流量增加一倍时,试求两流体的出口温度和传热量的变化情况。假设两种情况下总传热系数不变,换热器热损失可忽略。 4-12 试用因次分析法推导壁面和流体间自然对流传热系数α的准数方程式。已知α为下 列变量的函数: 4-13 一定流量的空气在蒸汽加热器中从20℃加热到80℃。空气在换热器的管内湍流流动。压强为180kPa的饱和蒸汽在管外冷凝。现因生产要求空气流量增加20%,而空气的进出口温度不变,试问应采取什么措施才能完成任务,并作出定量计算。假设管壁和污垢热阻可忽略。 4-14 常压下温度为120℃的甲烷以10m/s的平均速度在列管换热器的管间沿轴向流动,离开换热器时甲烷温度为30℃,换热器外壳内径为190mm,管束由37根ф19×2的钢管组成,试求甲烷对管壁的对流传热系数。

4-15 温度为90℃的甲苯以1500kg/h的流量流过直径为ф57×3.5mm、弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。 4-16 流量为720kg/h的常压饱和蒸汽在直立的列管换热器的列管外冷凝。换热器的列管直径为ф25×2.5mm,长为2m。列管外壁面温度为94℃。试按冷凝要求估算列管的根数(假设列管内侧可满足要求)。换热器的热损失可以忽略。 4-17 实验测定列管换热器的总传热系数时,水在换热器的列管内作湍流流动,管外为饱和蒸汽冷凝。列管由直径为ф25×2.5mm的钢管组成。当水的流速为1m/s时,测得基于管外表面积的总传热系数为2115W/(m2.℃);若其它条件不变,而水的速度变为1.5m/s时,测得系数为2660 W/(m2.℃)。试求蒸汽冷凝的传热系数。假设污垢热阻可忽略。 对流传热速率方程虽然形式简单,实际是将对流传热的复杂性和计算上的困难转移到对流传热系数之中,因此对流传热系数的计算成为解决对流传热的关键。 求算对流传热系数的方法有两种:即理论方法和实验方法。前者是通过对各类对流传热现象进行理论分析,建立描述对流传热现象的方程组,然后用数学分析的方法求解。由于过程的复杂性,目前对一些较为简单的对流传热现象可以用数学方法求解。后者是结合实验建立关联式,对于工程上遇到的对流传热问题仍依赖于实验方法。 一、影响对流传热系数的因素 由对流传热的机理分析可知,对流传热系数决定于热边界层内的温度梯度。而温度梯度或热边界层的厚度与流体的物性、温度、流动状况以及壁面几何状况等诸多因素有关。 1.流体的种类和相变化的情况 液体、气体和蒸汽的对流传热系数都不相同,牛顿型流体和非牛顿型流体也有区别。本书只限于讨论牛顿型流体的对流传热系数。 流体有无相变化,对传热有不同的影响,后面将分别予以讨论。 2.流体的特性

对流给热系数的测定(数据处理)

实验三 对流给热系数的测定 一、实验目的 1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2、测定空气(或水)在圆直管内强制对流给热系数i α; 3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 4、掌握热电阻测温的方法。 二、基本原理 在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式: V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1) 式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃); αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃; A i ——内管的外壁、内壁的传热面积,m2; (T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 2 2112211ln )()()(w w w w m T T T T T T T T Tw T -----= - (1-2) (t w -t)m ——内壁与流体间的对数平均温度差,℃; 2 211 2211ln )()()(t t t t t t t t t t w w w w m w -----= - (1-3) 式中:T 1、T 2——蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。 当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。 由式(1-3)可得: m w P i t t A t t C V )() (012--= ρα (1-4) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。 流体在直管内强制对流时的给热系数,可按下列半经验公式求得: 湍流时: 4.08.0Pr Re 023 .0i i d λ α= (1-5) 式中:αi —— 流体在直管内强制对流时的给热系数,W/ (m 2·℃); λ—— 流体的导热系数,W/(m 2·℃); d i —— 内管内径,m ; Re —— 流体在管内的雷诺数,无因次; Pr —— 流体的普朗特数,无因次。 上式中,定性温度均为流体的平均温度,即t f = (t 1 + t 2) / 2。 过渡流时: αi ’=φαi (1-6)

自然对流换热试验

自然对流换热实验报告 一、实验目的 (1)了解空气沿水平圆柱体表面自然流动是的换热过程,掌握实验测试技术。 (2)测定单管(水平放置)的自然对流换热系数h 。 (3)根据实验测得的有关数据,计算各实验管的Nu 数、Gr 数和Pr 数,然后用作图法或最小二乘法确定经验方程式n Gr c Nr Pr)(=中的c 值和n 值,并给出 Pr Gr 的范围。 二、实验原理 对铜管进行加热,热量是以对流和辐射两种方式来散发,所以对流换热量为总流量与辐射热量之差。即 r h c Φ-Φ=Φ (W ) 式中:)(f w c t t hA -=Φ;UI h =Φ;??? ???????? ??-??? ??=Φ4f 4w 0100T 100T A c r ε,所以 ? ?????????? ??-??? ??---=4 f 4w 0100T 100T )()(f w f w t t c t t A UI h ε[])(K /W ?m 式中:c Φ为对流换热量,W ;h Φ为加热器产生的热量,W ;r Φ为辐射换热量,W;U 加热器电压,V ;I 为加热器电流,A ;ε为圆柱体表面黑度,ε=0.064;0c 为黑体辐射系数,) (420K m /W 67.5?=c ;w t 为管壁平均温度,℃;f t 为玻璃室内空气温度,℃;A 为圆柱体的表面积,m 2;h 为自然对流换热系数,)(K /W 2?m 。 当实验管表面温度稳定时,测定每根管的加热电压U 、电流I 、管壁温度w t 、玻璃室内温度f t ,从表中查出圆管的直径和长度,计算出圆管表面积A ,计算出其对流换热系数h 。 根据相似理论,自然对流换热的准则为 Pr),(Gr f Nr = 在工业中广泛使用的是比式更为简单的经验方程式,即 n Gr c Nr Pr)(= 式中:c 、n 是通过实验所确定的常数(在一定的Pr Gr 数值范围内)。为

实验8 空气横掠单管强迫对流换热系数测定实验

实验8 空气横掠单管强迫对流换热系数测定实验 一、实验目的 1. 测算空气横掠单管时的平均换热系数h 。 2. 测算空气横掠单管时的实验准则方程式13 Re Pr n Nu C =??。 3. 学习对流换热实验的测量方法。 二、实验原理 1对流换热的定义 对流换热是指在温差存在时,流动的流体与固体壁面之间的热量传递过程。 2、牛顿冷却公式 根据牛顿冷却公式可以测算出平均换热系数h 。 即:h= )(f W t t A Q -Q A t =?? w/m 2·K (8-1) 式中: Q — 空气横掠单管时总的换热量, W ; A — 空气横掠单管时单管的表面积,m 2 ; w t — 空气横掠单管时单管壁温 ℃; f t — 空气横掠单管时来流空气温度 ℃; t ?— 壁面温度与来流空气温度平均温差,℃; 3、影响h 的因素 1).对流的方式: 对流的方式有两种; (1)自然对流 (2)强迫对流 2).流动的情况: 流动方式有两种;一种为雷诺数Re<2200的层流,另一种为Re>10000的紊流。

Re — 雷诺数, Re v ud = , 雷诺数Re 的物理定义是在流体运动中惯性力对黏滞力比值的无量纲数。 上述公式中,d —外管径(m ),u —流体在实验测试段中的流速(m/s ),v —流体的运动粘度(㎡/s )。 3).物体的物理性质: Pr — 普朗特数,Pr= α ν = cpμ/k 其中α为热扩散率, v 为运动粘度, μ为动力粘度;cp 为等压比热容;k 为热导率; 普朗特数的定义是:运动粘度与导温系数之比 4).换面的形状和位置 5).流体集体的改变 相变换热 :凝结与沸腾 4、对流换热方程的一般表达方式 强制对流:由外力(如:泵、风机、水压头)作用所产生的流动 强迫对流公式为(Re,Pr)Nu f = 自然对流:流体因各部分温度不同而引起的密度差异所产生的流动。 自然对流公式为Nu=f (Gr ,Pr ) 1).Re=v ul = 雷诺数Re 的定义是在流体运动中惯性力对黏滞力比值的无量纲数Re=UL/ν 。其中U 为速度特征尺度,L 为长度特征尺度,ν为运动学黏性系数。 2).Pr= α ν 定义:流体运动学黏性系数γ与导温系数κ比值的无量纲数 3).Nu=λ hd (努谢尔数) 4).Gr= 2 3 ν t gad ? 式中a 为流体膨胀系数,v 为流体可运动系数。 格拉晓夫数 ,自然对流浮力和粘性力之比 ,控制长度和自然对流边界层厚度之比 。 5、对流换热的机理 热边界层 热边界层的定义是:黏性流体流动在壁面附近形成的以热焓(或温度)剧变为 特征的流体薄层 热边界层内存在较大的温度梯度,主流区温度梯度为零。

自然对流强化换热

自然对流强化换热 班级:14040203 姓名:吴端 学号:2011040402121

1.概述 当前,对于自然对流换热问题的研究没有强迫对流研究那样开展得广泛。一方面是由于自然对流强化效果没有强迫对流换热强化效果好;另一方面是由于自然对流强化的途径少难度大,所以自然对流的研究进展缓慢。但自然对流应用有自己的领域,强迫对流又有其制约因素,尤其是随着电子集成电路的发展,自然对流强化换热的问题越来越受到学者的关注。 利用振动强化单相流体对流换热的方法可分为两种:一种是使换热面振动以强化换热;另一种是使流体脉动或振动以强化换热。研究表明,不管是换热面振动还是流体振动,对单相流体的自然对流和强制对流换热都是有强化作用的。振动可以增大流体间的扰动,干扰附面层的形成和发展,从而减小换热热阻,达到强化换热的目的。 2.原理 利用振动可以强化传热早已为人们所认识,在1923年就有关于在静止流体中振动换热面以增强传热效果的相关研究。早期研究的主要手段为传热实验,随着数值计算方法及计算机技术的发展,自80年代人们开始对振动对流换热问题进行数值分析。研究结果表明,换热面在流体中振动时,根据振动系统的不同,自然对流换热系数可提高30%~2000%。。传热实验中,采用的振动源形式主要有以下几种: 1)机械振动或电动机驱动偏心装置产生,早期的实验均采用该方法; 2)流体绕流诱导传热元件产生,如在换热器中的管束: 3)超声波激励换热元件产生。下面分别就这三个方面分别展开综述,其中,A表示振幅,厂表示振动频率,D表示管直径,U表示来流速度,尺P表示雷诺数,h表示表面传热系数。 机械振动为传热实验中最为常用的振动源,一般情况下,机械振动装置结构简单,并且能够比较方便调节振幅、频率等参数,这对于深入研究振动参数对传热的影响具有不可替代的作用。 表1.2、1.3分别为自然对流、强制对流条件下振动传热研究概况,表中

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系 数测定 一、实验目的 1、 了解间壁式传热元件,掌握给热系数测定的实验方法。 2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途 径。 二、基本原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热 量交 换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()() ()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) T t 图4-1间壁式传热过程示意图

式中:Q - 传热量,J / s ; m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ?℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ?℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃; α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 1 - 热流体侧的对流传热面积,m 2; ()m W T T -- 热流体与固体壁面的对数平均温差,℃; α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 2 - 冷流体侧的对流传热面积,m 2; ()m W t t - - 固体壁面与冷流体的对数平均温差,℃; K - 以传热面积A 为基准的总给热系数,W / (m 2 ?℃); m t ?- 冷热流体的对数平均温差,℃; 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4 -2) 式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃; T W 2 - 热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, ()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4 -3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃; t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。

空气 水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。 然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。 由式(4-1)得, ()m p t A t t c m K ?-= 1222 (4-6) 实验测定2m 、2121T T t t 、、、、并查取()212 1 t t t += 平均下冷流体对应的2p c 、换热面积

空气—蒸汽对流给热系数测定实验报告及数据答案

空气—蒸汽对流给热系数测定 一、实验目的 ⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。 ⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。 二、实验装置 本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。饱和蒸汽由配套的电加热蒸汽发生器产生。该实验流程图如图1所示,其主要参数见表1。 表1 实验装置结构参数

图1 空气-水蒸气传热综合实验装置流程图 1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀; 12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口; 孔板流量计测量空气流量 空气压力 蒸汽压力 空气入口温度 蒸汽温度 空气出口温度

三、实验内容 1、光滑管 ①测定6~8个不同流速下光滑管换热器的对流传热系数α1。 ②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。 2、波纹管 ①测定6~8个不同流速下波纹管换热器的对流传热系数α1。 ②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。 四、实验原理 1.准数关联 影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe m Pr n Gr l (1) 式中C 、m 、n 、l 为待定参数。 参加传热的流体、流态及温度等不同,待定参数不同。目前,只能通过实验来确定特定 范围的参数。本实验是测定空气在圆管内作强制对流时的对流传热系数。因此,可以忽略自然对流对传热膜系数的影响,则Gr 为常数。在温度变化不太大的情况下,Pr 可视为常数。所以,准数关联式(1)可写成 Nu =CRe m (2) Re 4 du V d ρ ρ π μ μ == 其中: , 500.02826W/(m.K)d Nu αλλ = =℃时,空气的导热系数

对流换热系数的确定.doc

对流换热系数的确定 核心提示:1.自然对流时的对流换热系数炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。2.强制对流时的对流换热系数(1)气流沿 1.自然对流时的对流换热系数 炉墙、炉顶和架空炉底与车间空气间的对流换热均属自然对流换热。 2.强制对流时的对流换热系数 (1)气流沿平面强制流动时气流沿平面流动时,烧结炉其对流换热系数可按表1-1的近似公式计算。 表1-1对流换热系数计算 vo=C4.65(m/s) x;o>4.65(m/s) 光滑表面a=5.58+4.25z'o a^V.Slvg78 轧制表面a-=5.81+4.25vo a=7.53vin. 粗糙表面o=6.16+4.49vo a=T.94vi78 气流沿长形工件强制流动时当加热长形工件时,循环空气对工件表面的对流换热系数可用下述近似公式计算 气流在通道内层流流动时气流呈层流流动时,对流换热系数主要决定于炉气的热导率,而与炉气的流速无关。 绝对黑体的概念 当物体受热后一部分热能转变为辐射能并以电磁波的形式向外放射,其波长从lfmi到若干m。各种不同波长的射线具有不同性质,可见光和红外线能被物体吸收转化为热能,称它们为热射线。各种物体由于原子结构和表面状态的不同,其辐射和吸收热射线的能力有明显差别。 当能量为Q的一束热射线投射到物体表面时,也和可见光一样,一部分能量Qa将被吸收,一部分能量Qr被反射,还有一部分能量Qu透射过物体(如图1-5)。按能量守恒定律则有

图1-5辐射能的吸收、反射和透过 如果A=l,则R=D=0,即辐射能全部被吸收,这种物体称绝对黑体,简称黑体。 如果R=l,则A=D=0,即辐射能全部被反射,这种物体称绝对白体,简称白体。如果D= 1,则A=K=0,即辐射能全部被透过,这种物体称绝对透过体,简称透过体。 自然界中,黑体、白体和透过体是不存在的,它们都是假定的理想物体。对于一种实 际物体来说数值,不仅取决于物体的特性,还与表面状态、温度以及投射射线的波长等有关。为研究方便,人们用人工方法制成黑体模型。在温度均匀、不透过热射线的空心壁上开一小孔,此小孔即具有绝对黑体性质:所有进入小孔的辐射能,在多次反射过程中几乎全部被内壁吸收。小孔面积与空腔内壁面积之比越小,小孔越接近黑体。当它们的面积比小于0.6%,空腔内壁的吸收率为0.8时,则小孔的吸收率A大于0.998,非常接近黑体。

对流传热系数的测定

对流传热系数的测定 北京理工大学化学学院董女青1120102745 一、实验目的 1、掌握对流传热系数的测定方法,测定空气在圆形直管内的强制对流传热系数, 验证准数关联式。 2、了解套管换热器的结构及操作,掌握强化传热的途径。 3、学习热电偶测量温度的方法。 二.实验原理 冷热流体在间壁两侧换热时,传热基本方程及热衡算方程为: Q = KAAtm = m^Cp (t入一t出) 换热器的总传热系数可表示为: 1 1 b 1 —------- 1 ---- 1 ---- K a :入a 0 式中:Q—换热量,J/s K—总传热系数,J/(m' s) A—换热面积,m: At m-平均温度差,°C Cp—比热,J/ (kg ? K) nu—质量流量,kg/s b—换热器壁厚,m a i、a o—内、外流体对流传热系数,J/(m? ? s) 依据牛顿冷却定律,管外蒸汽冷凝,管内空气被加热,换热最亦可表示为: Q = a jAj(t w - t) = a 0A0 (T — T w) 式中:t w.凡一管内(冷侧)、管外(热侧)壁温, t、T-管内(冷侧)、管外(热侧)流体温度 测定空气流量、进出口温度、套管换热面积,并测定蒸汽侧套管壁温,由于管壁导热系数较大且管壁较薄,管内壁温与外壁温近似柑等,根据上述数据即可得到管内对流传热系数,由丁?换热器总传热系数近似等丁?关内对流传热系数,所以亦可得到套管换热器的总传热系数。 流体在圆形直管强制对流时满足下述准数关联式: Nu = O.O237?e°-8Pr0-33 式中:Nu-努塞尔特准数,Nu=^,无因次 Re—雷诺准数,Re = ^,无因次 P L普兰特准数,Pr =耳,无因次 测定不冋流速条件下的对流传热系数,在双对数坐标屮标绘加he关系得到一条直线,直线斜率应为0. &

水蒸汽给热系数测定实验

****化工原理实验报告学院:化学工程学院专业:****** 班级:****

2 0.276451 49.85 988.1 0.0005494 0.648 4174 4068 .858393 21.34236261 1.657855 12.8 7348 279 3977.590815 3 0.387031 49.65 988.1 0.0006814 0.648 4174 5603 .33671 24.33863957 1.80 6974 13.4 6928 282 4489.879294 4 0.829352 38.6 992. 2 0.0006814 0.634 4174 7838 .100863 45.08657579 1.82 2830 24.7 3438 558 9661.091782 5 1.216384 34.75 993.4 0.0007225 0.626 4174 1009 2.29164 59.17467243 1.87 5540 31.5 5073 474 13379.71432 6 1.769285 31.55 995.7 0.0007679 0.618 4174 1012 0.40257 77.0623575 1.931734583 39.89282905 18353.19476 水的密度、粘度、热导率以及比热容等可由附录五和附录七查得。 m s =ρV s =988.1 ()()()2 211 2211 ln t t t t t t t t t t W W W W m W -----= -得 (t w -t)m1℃ u t=(26.2+79.2)/2=52.7℃ 由公式 m w P t t A t t C V )()(2122 --= ρα (t 2-t 1)1=53℃ A=πdl=3.14*0.008*1=0.02512m 2 α1 n Nu Pr Re 023.08.0= =

空气沿横管外表面自然对流换热实验

实验三、空气沿横管外表面自然对流换热实验 一、实验目的 1、测定无限空间内水平横管和空气间自由流动时的放热系数。 2、根据自由流动放热过程的相似分析,将实验数据整理成准则方程式。 3、通过实验加深对相似理论的理解,并初步掌握在相似理论指导下进行实验研究的方法。 二、实验原理 根据相似原理,空气自由流动放热过程准则方程由下式描述: )(γγP G f N u ?= 通常用幂函数形式来表示:n u P G c N )(γγ?= 通过实验确定准则方程式的函数形式,即确定准则 方程式中的系数C 和指数n 。 λ αd N u = 2 32 2υβνβγt d g t g G ?= ?= α ν γ=P ( P γ准则数也可以根据定性温度由书后附录查得) d —定型尺寸即横管外径; g —重力加速度: t m —定性温度。 t m = 2 w f t t + △t — △t=t w -t f v —空气运动粘度; λ—空气导热系数; β—空气容积膨胀系数,β= 1 m T 为了具体确定(1)式,根据相似定理,通过实验测得或者从书后附录中查得上述所有物理量。而放热系数α是通过计算求得的。 由热量平衡,水平横管内电加热器发出的热量等于横管上空气自由流动放热量加横管辐射换热热量。 电加热器发热量 Q=IV (W ) 横管上空气自由流动放热量 Q=αF (t w -t f ) (W ) 其中;F=dI π2 (m ) I 为计算管长(m )。 横管辐射换热量 Q=4 4[100100 f o T T C F ωε-( )() ] (W ) 其中: ε—横管表面黑度,查附录7,磨光的铬ε=0.058; Co —黑体辐射系数,Co=5.67(W/㎡?K 4 ) 由于: Q=Q 1+Q 2 即: IV=4[100f o T F t t C F ωωαω-+-4 f T ()()()]100 44 [] 100W O f T IV C F F t t ωεα--=-f T ()()100() W/㎡?℃ (2) 三、实验装置 实验装置有试验管(为降低辐射散热量的影响,试管表面镀铬抛光),放试验管的支撑架,转换开关盒等。测量仪表有电位差计,直流电源。试验管上有热电偶(4对)嵌入管壁,可反映出管壁的热电势;电位差计上的“未知”接线柱按极性和转换开关盒上的接线柱(红正黑负)相连,用于测量室内空气和管壁的热电势;直流电源可输入稳定的电压和电流,使加热功率保持恒定 四、实验步骤: 1、连接加热器线路,经验查无误后即可接同电源,调节变压器到所需电压,进行加热。 2、正确连接热电偶测温线路, 3、每隔十分钟测热电偶电势一次,当电势不再随时间而变时,加热达到了稳定工况,以连续二次测定的平均值为测定结果,记录下来。 4、测定远离水平管处的空气温度t f 。 5、调节变压器,以达到在另一个温度下的稳定工况,以取得另外一组实验数据。

浙江大学化工原理实验---横管对流传热系数的测定实验报告

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 杨国成 成绩:__________________ 实验名称:传热综合实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 横管对流传热系数的测定 1 实验目的: 1.1 掌握空气在普通和强化传热管内的对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径。 1.2 把测得的数据整理成n B N Re u 形式的准数方程式,并与教材中相应公式进行比较。 1.3 了解温度、加热功率、空气流量的自动控制原理和使用方法。 2 装置与流程: 2.1 实验装置如图1所示: 图1.装置示意图 专业: 姓名: 学号: 日期: 2015.12.04 地点: 教十1206

2.2 流程介绍: 实验装置由蒸汽发生器、孔板流量变送器、变频器、套管换热器及温度传感器、智能显示仪等构成。 空气—水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行热交换,冷凝水经排出阀排入盛水装置。空气经孔板流量计进入套管换热管内(紫铜管),流量通过变频器调节电机转速达到自动控制,热交换后从风机出口排出。 本实验中,普通管和强化管实验通过管路上的切换阀门进行切换。 2.3 横管对流传热系数测定实验数据符号说明表: 名称 符号 单位 备注 冷流体流量 V 紫铜管规格: Φ19mm ×1.5mm , 即内径为16mm , 有效长度为1020mm , 冷流体流量范围: 3~18 m^3/h 冷流体进口温度 t 1 ℃ 普通管冷流体出口温度 t 2 ℃ 强化管冷流体出口温度 t 2’ ℃ 蒸汽发生器内蒸气温度 T 1 ℃ 普通管热流体进口端壁温 T W1 ℃ 普通管热流体出口端壁温 T W2 ℃ 普通管外蒸气温度 T ℃ 强化管热流体进口端壁温 T W1 ‘ ℃ 强化管热流体出口端壁温 T W2 ’ ℃ 强化管外蒸气温度 T ’ ℃ 3 基本原理: 间壁式换热器:冷流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,两流体不直接接触,通过固体壁面进行热量交换。 本装置主要研究汽—气综合换热,包括普通管和强化管。其中,水蒸气空气通过紫铜管间接换热,空

相关文档
最新文档