对流方程及算法介绍

对流方程及算法介绍
对流方程及算法介绍

1 引言

2 对流方程及算法介绍

2.1对流方程的概述

对流:是指由于流体的宏观运动,从而使流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递过程。

对流仅发生在流体中,对流的同时必伴随有导热现象。

人们研究对流扩散方程,主要的研究对象是流体在流动过程中,流体所携带的某种物质的物理量的变化规律,例如传热过程中温度的变化规律或者溶解于流体中溶质的物质浓度等物理量的变化规律。这些变化通常包括对流、扩散以及由于某种物理或者化学的因素而引起的物理量的自身衰减或增长。 最简单的一维对流扩散方程形如(2-1)式: (2-1)

其中C 是常数,它属于双曲型方程,可以被用来描述流体的运动等物理现象。

2.2水对流现象的简易演示

2.2.1 基本步骤

用两只相同的小烧杯,各装上冷水,再如图1所示插入长短两根吸管,虹吸管由普通化学实验用玻璃管在酒精灯上加热弯成,一根查到被子底部,一根只插入水的表面,再在右杯中滴入几滴墨水并搅拌均匀,现在开始用酒精灯加热左边的烧杯,一段时间后就可以明显的看到染了颜色的水从右杯源源不断的流入左杯,左杯的水源源不断的流入右杯,最后两杯水都变成了墨水的颜色,与此同时用手摸右边的杯子,右边的水也热了起来,这就是冷热水发生了对流的缘故。

2.2.2 实验注意事项

短虹吸管只插入水的表面,不能过深。

玻璃管宜选壁较厚一些的,这样绝热性好一些,效果也好一些。

0=??+??x

u

C t u

2.2.3 实验原理分析

对左边的水杯用酒精灯加热,水受热密度变小开始上升,右边水杯的

冷水从下边的吸管流向左边的水杯进行补充,左边水杯的热水从上边的吸管流向右边的水杯,这样一会儿两杯水都变成墨水的颜色了[1]。

在冷水里面掺热水也是一样的道理,在不搅拌的情况下,最后水温基本都是一个温度,这就是水的对流,除了水的对流还有刮风是空气的对流,气压高的一方向气压低的一方补充空气,这就形成了对流,就会产生风;还有冬天在家里开空调,形成空气对流,最后整个房间的温度都升了起来。

2.3对流方程及其现有算法

1.针对常系数对流扩散方程,我们利用指数变换,

构造四阶紧致差分格式。

2.针对一维变系数对流扩散方程,将其转化为扩散方程,并构造四阶紧致差分格式。

3.对于常系数二维对流扩散方程,构造出四阶紧致差分方程,以及特殊的变系数

对流扩散方程的四阶紧致差分格式。

4.针对一维常系数对流扩散方程

和一维变系数对流扩散方程,分别构造了几种基于线性和双线性插值

的特征差分格式。

5.针对二维对流扩散方程

,构造了几种基于线性和双线性插值的特征差分格式。 2.3影响物理量?的三个过程

用),,,(t z y x ??=来表示流体中单位体积的流体所携带的某种物理量,它可以是流体的质量或温度。流体的温度可以用?来表示,流体的密度ρ也可以用?

),(22t x f x u

x u a t u +??=??+??ε2

2),(x u

x u t x a t

u ??=??+??εf y u

x u a y u q x u p t u =??+??-??+??+??)(2222)

,()()()(2222y x f y u

y q x u x p y u x u =??+??+??+??22x u

x u v t u ??=??+??ε)

,()()()(22t x f x x a x u x b x u x c u

=??-??+??)

,())(,(),(),(),(222221y x f y u

x u y x a y u y x b x u y x b t u y x c =??+??-??+??+??

来表示。于是物理量?也可以写成乘积的形式:ρ?。为了研究物理?的变化规律,任取一个有限区域D ,它的边界为S ,值得研究的是D 内?的分布情况和变化过程。

对流、扩散和源项三个方面的物理变化过程构成了区域D 内?的变化,现在对这三种变化过程分别进行讨论。

a.对流过程

对流的过程中,有限区域D 内?的变化包括两个方面,一方面是由于流体的流动位置发生变化而引起的变化,另一种是?随时间的变化而产生的变化。在有限区域D 中,?的积分量的变化可写成下面的随体导数.

(2-2)

式中是流体的速度在S 面上的法方向分量。 利用Green-Gauss 公式[2] 可以得到

(2-3)

b.扩散过程

湍流扩散和分子扩散是扩散过程最基本的构成。在扩散作用下,物理量

?由数值高的向数值低的方向转移。根据Fick 定律可得,扩散速度q 即单位时间内通过单位面积的某种物理量?,和物理量?的关系为:

关系式中K 为扩散系数,它可以是其他物理量的函数,也可以是一个常数。鉴于扩散过程的作用,有限区域D 中的?增量为:

(2-4)

c.源汇

流场中物理量尹会因为源和汇的存在而发生变化。流场中的

物理量?可

能由于流体的流动位置的原因,使得?的自身发生增长或衰减,并且用源或汇进行描述,记作Q ,Q 为分布函数,当Q>0时表示源,Q<0时表示汇,分别说明?增

长或减少。?增长或减少的快慢通过Q 绝对值的大小得到反映,表示源汇的强度,在有限的区域D 内,由于源汇的作用,物理量?的增加量为??D

QdD 。

根据守恒性原理,物理量的变化满足下面的关系式

n u u n ?=??-=K q dS u dD t dD dt d D

n D D ?????+??=??

?dD u div dS u D

S

n ???=)(??dD u div t dD dt d D D ????+??=)]([???dD

K div dS nK nqdS S

S

D

?????=?=-)(????????+?=+??D

D D

QdD dD K div dD u div t )()]([

???

Q K div u div t

+?=+??)()(???

由于D 是任意的,上面的守恒方程可以改写为

以上两个就是对流扩散方程。

求解时,对流扩散方程的初始条件是初始时刻t=o 时,给出?的分布

)()0,(0j j x x ??=

参考文献:

[1]物理教学探讨 第24卷总第269期 2006年第6期 Vol.24 No.269 [2]《重庆文理学院学报(自然科学版)》 2007年05期 Green 公式及其证明

Q K div u div t

u

+?=+??)()(??

数学必修2---直线与方程典型例题(精)

第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型 一 求直线的倾斜角 例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ). A. 60° B . 30° C. 60°或120° D. 30°或150° 变式训练: 设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则 1l 的倾斜角为( )。 A. 45α+? B . 135α-? C. 135α?- D. 当0°≤α<135°时为45α+?,当135°≤α<180°时,为135α-? 题型 二 求直线的斜率 例 2如图所示菱形ABCD 中∠BAD =60°,求菱形A BCD 各边和两条对角线所在直线的倾斜角和斜率. 变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值. 题型 三 直线的倾斜角与斜率的关系 例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k3? B. k3

变式训练: 若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B.1b a -= C.23a b -= D.23a b -= 拓展 二 与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围. 变式训练: 已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB相交,求直线l 的斜率k 的取值范围. 拓展 三 利用斜率求最值 例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求y x 的最大值与最小值。 变式训练: 利用斜率公式证明不等式:(0a m a a b b m b +><<+且0)m > 3.1.2 两条直线平行与垂直的判定 【知识点归纳】

特征方程法求递推数列的通项公式

特征方程法求解递推关系中的数列通项 一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比 的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -= 作换元,0x a b n n -=则.)(110011n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 1 11=∈--=+a n a a n n 求.n a 解:作方程.2 3,2310-=--=x x x 则 当41=a 时,.2 1123,1101=+=≠a b x a 数列}{n b 是以3 1-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数

梁的剪力方程和弯矩方程--常用弯矩图

梁的剪力方程和弯矩方程--常用弯矩图 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水工作1)眼神关注客人,当客人距3米距离侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式 一:A(n+1)=pAn+q, p,q为常数. (1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p). (2)此处如果用特征根法: 特征方程为:x=px+q,其根为x=q/(1-p) 注意:若用特征根法,λ的系数要是-1 例一:A(n+1)=2An+1 , 其中q=2,p=1,则 λ=1/(1-2)= -1那么 A(n+1)+1=2(An+1) 二:再来个有点意思的,三项之间的关系: A(n+2)=pA(n+1)+qAn,p,q为常数 (1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn], 则m+k=p, mk=q (2)此处如果用特征根法: 特征方程是y×y=py+q(※) 注意: ①m n为(※)两根。 ②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜, ③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。 例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An, 特征方程为:y×y= - 5y+6 那么,m=3,n=2,或者m=2,n=3 于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1) A(n+2)-2A(n+1)=3[A(n+1)-2A] (2) 所以,A(n+1)-3A(n)= - 2 ^ n (3) A(n+1)-2A(n)= - 3 ^ (n-1) (4) you see 消元消去A(n+1),就是An勒 例三: 【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列。 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2

梁的剪力方程和弯矩方程常用弯矩图

梁的剪力方程和弯矩方程常用弯矩图 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

5-7.试列出下列梁的剪力方程和弯矩方程,并画出剪力图和弯矩图。 解:首先求出支座反力。考虑梁的整体平衡 由 0,0=+?=∑e RA B M l F M 得 l M F e RA - = 由 0,0=-?=∑e RB A M l F M 得 l M F e RB = 则距左端为x 的任一横截面上的剪力和 剪力图 弯矩表达式为: ()l M F x F e RA S - == 弯矩图 ()x l M x F x M e RA ?- =?= 剪力方程为常数,表明剪图应是一条平行梁轴线的直线;弯矩方程是x 的一次函数,表明弯矩图是一条斜直线。(如图) 解:首先求出支座反力。考虑梁的平衡

由0 4 5 2 ,0= ? ? - ? = ∑l l q l F M RB c 得ql F RB8 5 = 由0 2 1 ,02= + ? = ∑ql l F M RC B 得ql F RC2 1 - = 则相应的剪力方程和弯矩方程为: AB段:( 2 1 l x≤ ≤) () ()2 1 1 1 1 2 1 qx x M qx x F S - = - = BC段:( 2 3 22 l x l ≤ ≤) () ()? ? ? ? ? - ? + ? ? ? ? ? - ? ? - = = - = 2 8 5 4 2 8 2 1 8 5 2 2 2 2 l x ql l x l q x M ql ql ql x F S AB段剪力方程为x 1 的一次函数,弯矩方程为x 1 的二次函数,因此AB段的剪力图为斜直 线,弯矩图为二次抛物线;BC段剪力方程为常数,弯矩方程为x 2 的一次函数,所以BC段剪力图为平行梁轴线的水平线段,弯矩图为斜直线。(如图) 5-9 用简便方法画下列各梁的剪力图和弯矩图。

最新直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即k=tan α。斜率反映直线与轴的倾斜程度。 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[ ) 90,0∈α时,0≥k ; 当( ) 180 ,90∈α时,0

特征方程

特征方程法求解递推关系中的数列通项 当()f x x =时,x 的取值称为不动点,不动点是我们 在竞赛中解决递推式的基本方法。 典型例子:1n n n aa b a ca d ++=+ 令 ax b x cx d +=+,即2()0cx d a x b +--= , 令此方程的两个根为12,x x , (1)若12x x =,则有111 1 1n n p a x a x +=+-- (其中2c p a d =+) (2)若12x x ≠,则有11 1 122 n n n n a x a x q a x a x ++- -=-- (其中1 2 a cx q a cx -=-)

例题1:设23()27 x f x x -+=-, (1)求函数()y f x =的不动点; (2)对(1)中的二个不动点,()a b a b <, 求使()()f x a x a k f x b x b --=--恒成立的常数k 的值; (3)对由111,()n n a a f a -==(2)n ≥定义的数列{}n a ,求其通项公式n a 。23()27 x f x x -+=- 解析:(1)设函数()f x 的不动点为0x ,则0002327 x x x -+= - 解得012x =-或03x = (2)由231111()1272222238248(3)83 327 x x x x x x x x x x -++---++-===?-++----- 可知使()()f x a x a k f x b x b --=--恒成立的常数18k =。 (3)由(2)可知1111122383n n n n a a a a --+ +=?--,所以数列 123n n a a ??+????-????是以34-为首项,18为公比的等比数列。 则11312()348n n n a a -+ =-?-,则11 911()482311()48n n n a ---=+

(完整版)差分方程模型(讲义)

差分方程模型 一. 引言 数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。 1. 确定性连续模型 1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2. 确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。但是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 1. 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i Λ=关联起来得到的方程,则称这个方程为差分方程。 2. 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x Λ, (1) 或者表示为 0),,,,(1=++k n n n x x x n F Λ (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21Λ为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a Λλλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21Λ称为(1)式的特征根。 2.1 差分方程的解 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出方程解的形式。 2.1.1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21Λ,则

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

不动点(特征方程)法求数列通项

特征方程法求解递推关系中的数列通项 考虑一个简单的线性递推问题. 设已知数列}{n a 的项满足 其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 111=∈--=+a n a a n n 求.n a 解:作方程.2 3,23 10-=--=x x x 则 当41=a 时,.2112 3 ,1101= +=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是.N ,)3 1 (2112323,)31(211)3 1 (111 1∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5 360i x +-= a 1= b a n+1=ca n +d

人教版高中数学必修 知识点考点及典型例题解析全

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:33 4  R V π= ,球的表面积公式:24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:22 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简 称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与 该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简 称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称 面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和 这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 (简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,

梁的剪力、弯矩方程和剪力、弯矩图

5.4.1 梁的剪力、弯矩方程和剪力、弯矩图 梁在外力作用下,各个截面上的剪力和弯矩一般是不相等的。若以横坐标表示横截面沿梁轴线的位置,则剪力Q 和弯矩M 可以表示为坐标的函数,即 它们分别称为梁的剪力方程和弯矩方程。 与绘制轴力图或扭矩图一样,可用图线表明梁的各截面上剪力和弯矩沿梁轴线的变化情况。作图时,取平行于梁轴线的直线为横坐标轴,值表示各截面的位置;以纵坐标表示相应截面上的剪力、弯矩的大小及其正负,这种表示梁在各截面上剪力和弯矩的图形,称为剪力图和弯矩图。 例5-1 简支梁AB 承受承受均布荷载作用,如图 5 - 10a 所示。试列出剪力方程和弯矩方程,并绘制剪力图和弯矩图。 解:(1) 计算支反力以整梁为研究对象,利用平衡条件计算支反力。由于简支梁上的载荷对于跨度中央截面是对称的,所以 A 、 B 两端的支反力应相等,即 (1) 方向如图。 (2) 建立剪力、弯矩方程以梁左端A 为的坐标原点,取坐标为的任意横截面的左侧梁段为研究对象。设截面上的剪力Q () 、弯矩M () 皆为正,如图5-10b 所示。由平衡方程

将(1) 式代入上面两式,解得 ( 2 ) ( 3 ) (2) 、(3) 两式分别为剪力方程和弯矩方程。 (3) 绘制剪力图、弯矩图由式(2) 可知,剪力图为一直线。只需算出任意两个截面的剪力值,如A 、B 两截面的剪力,即可作出剪力图,如图5 - 10c 所示。 由式(3) 可知,弯矩图为一抛物线,需要算出多个截面的弯矩值,才能作出曲线。例如计算下列五个截面的弯矩值:当时, M =0 ;当 时,;当时,。由此作出的弯矩图,如图5-10d 所示。 由剪力图和弯矩图可知,在靠近A 、B 支座的横截面上剪力的绝对值最大,其值为 在梁的中央截面上,剪力Q =0 ,弯矩为最大,其值为 例5-2 简支梁AB 承受集中力偶M0作用,如图 5 - 11a 所示。试作梁的剪力图、弯矩图。

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

数列的特征方程

递推数列特征方程的来源与应用 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 ,令d t c =-)1(,即1 -= c d t , 当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列???? ??-+1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2=--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+=

特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项 曾建国 当()f x x =时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 典型例子:1n n n aa b a ca d ++= + 令 ax b x cx d +=+,即2 ()0cx d a x b +--= ,令此方程的两个根为12,x x , (1)若12x x =,则有11111n n p a x a x +=+-- (其中2c p a d =+) (2)若12x x ≠,则有111122 n n n n a x a x q a x a x ++--=-- (其中12a cx q a cx -=-) 例题1:设23 ()27 x f x x -+=-, (1)求函数()y f x =的不动点; (2)对(1)中的二个不动点,()a b a b <,求使()()f x a x a k f x b x b --=--恒成立的常数k 的值; (3)对由111,()n n a a f a -==(2)n ≥定义的数列{}n a ,求其通项公式n a 解析:(1)设函数()f x 的不动点为0x ,则00023 27 x x x -+= - 解得012x =-或03x = (2)由231111 ()1272222238248(3)83327 x x x x x x x x x x -++---++ -= ==?-++----- 可知使()()f x a x a k f x b x b --=--恒成立的常数18k =。 (3)由(2)可知1111122383 n n n n a a a a --++=?--, 所以 123n n a a ??+????-????是以34-为首项,18为公比的等比数列。即 11312()348n n n a a -+=-?-?11 911()482311()48 n n n a ---=+ 例2.已知数列}{n a 满足性质:对于14 N,,23 n n n a n a a ++∈= + 且,31=a 求}{n a 的通项公式. 解:依定理作特征方程,3 24 ++= x x x 变形得,04222=-+x x 其根为.2,121-==λλ 故特征方程有两个相异的根,则有114 1 12342311 142446510 52223 n n n n n n n n n n n n n n a a a a a a a a a a a a a a +++--++---+-====-+++++++++ 即1111 1252n n n n a a a a ++--=-++ 又1 113122325 a a --==++ ∴数列12n n a a ??-??+?? 是以25为首项,15-为公比的等比数列 1121()255 n n n a a --=-+ 1 141()1 (5)455,N.212(5)1()55 n n n n n a n ---+--==∈+---

高二数学-直线与方程典型习题(教师版)

【知识点一:倾斜角与斜率】 (1)直线的倾斜角 ①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。 ②直线与x 轴平行或重合时,规定它的倾斜角为0 ③倾斜角α的范围00 0180α≤< (2)直线的斜率 ①直线的斜率就是直线倾斜角的正切值,而倾斜角为0 90的直线斜率不存在. 记作tan k α=0(90)α≠ ⑴当直线l 与x 轴平行或重合时, 0 0α=,0 tan 00k == ⑵当直线l 与x 轴垂直时, 0 90α=,k 不存在. ②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是21 21 y y k x x -=- ③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)求斜率的一般方法: ①已知直线上两点,根据斜率公式21 2121 ()y y k x x x x -= ≠-求斜率; ②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率; (4)利用斜率证明三点共线的方法: 已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。 【知识点二:直线平行与垂直】 (1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =? 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行 (2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=??⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确; 由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直. (2)线段的中点坐标公式 121122,(,),(,)P P x y x y 若点的坐标分别是,

相关文档
最新文档