可控硅调光非隔离 LED 驱动芯片

可控硅调光非隔离 LED 驱动芯片
可控硅调光非隔离 LED 驱动芯片

BT152单向可控硅

GENERAL DESCRIPTION QUICK REFERENCE DATA Glass passivated thyristors in a plastic SYMBOL PARAMETER MAX.MAX.MAX.UNIT envelope,intended for use in applications requiring high BT152-400R 600R 800R bidirectional blocking voltage V DRM ,Repetitive peak off-state 450650800V capability and high thermal cycling V RRM voltages performance.Typical applications I T(AV)Average on-state current 131313A include motor control,industrial and I T(RMS)RMS on-state current 202020A domestic lighting,heating and static I TSM Non-repetitive peak on-state 200 200 200 A switching. current PINNING - TO220AB PIN CONFIGURATION SYMBOL LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134).SYMBOL PARAMETER CONDITIONS MIN.MAX. UNIT -400R -600R -800R V DRM Repetitive peak off-state -45016501800 V voltages I T(AV)Average on-state current half sine wave; T mb ≤ 103 ?C -13 A I T(RMS)RMS on-state current all conduction angles -20A I TSM Non-repetitive peak half sine wave; T j = 25 ?C prior to on-state current surge t = 10 ms -200A t = 8.3 ms -220A I 2t I 2t for fusing t = 10 ms -200A 2s dI T /dt Repetitive rate of rise of I TM = 50 A; I G = 0.2 A;-200A/μs on-state current after dI G /dt = 0.2 A/μs triggering I GM Peak gate current -5A V GM Peak gate voltage -5V V RGM Peak reverse gate voltage -5V P GM Peak gate power -20W P G(AV)Average gate power over any 20 ms period -0.5W T stg Storage temperature -40150?C T j Operating junction -125 ?C temperature 1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the thyristor may switch to the on-state. The rate of rise of current should not exceed 15 A/μs.

最新单向可控硅和双向可控硅原理及应用大全

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示

图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G 输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流 ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 表1 可控硅导通和关断条件 状态条件说明从关断到导通 1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可维持导通 1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可从导通到关断 1、阳极电位低于阴极电位 2、阳极电流小于维持电流

任一条件即可 2、基本伏安特性 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。 图3 阳极加反向电压 (2)正向特性 当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压 图4 阳极加正向电压

单向可控硅与双向可控硅结构电原理图及测试方法

单向可控硅与双向可控硅结构电原理图及测试方法 可控硅的检测 1.单向可控硅的检测 万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏

。 2.双向可控硅的检测 用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电

压,A1、A2间阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。 检测较大功率可控硅管是地,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。双向可控硅(TRIAC)在控制交流电源控制领域的运用非常广泛,如我们的日光灯调光电路、交流电机转速控制电路等都主要是利用双向可控硅可以双向触发导通的特点来控制交流供电电源的导通相位角,从而达到控制供电电流的大小[1]。然而对其工作原理和结构的描述,以我们可以查悉的资料都只是很浅显地提及,大部分都是对它的外围电路的应用和工作方式、参数的选择等等做了比较多的描述,更进一步的--哪怕是内部方框电路--内容也很难找到。 由于可控硅所有的电子部件是集成在同一硅源之上,我们根本是不可能通过采用类似机械的拆卸手段来观察其内部结构。为了深入了解和运用可控硅,依据现有可查资料所给P 型和N型半导体的分布图,采用分离元器件--三极管、电阻和电容--来设计一款电路,使该电路在PN的连接、分布和履行的功能上完全与双向可控硅类似,从而通过该电路来达到深入解析可控硅和设计实际运用电路的目的。 1 双向可控硅工作原理与特点 从理论上来讲,双向可控硅可以说是有两个反向并列的单向可控硅组成,理解单向可控硅的工作原理是理解双向可控硅工作原理的基础[2-5]。 1.1单向可控硅 单向可控硅也叫晶闸管,其组成结构图如图1-a所示,可以分割成四个硅区P、N、P、N和A、K、G三个接线极。把图一按图1-b 所示切成两半,就很容易理解成如图1-c所示由一个PNP三极管和一个NPN三极管为主组成一个单向可控硅管。

单向可控硅与双向可控硅的导通条件及特点

一、单向可控硅工作原理 可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。以上两个条件必须同时具备,可控硅才会处于导通状态。另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。 可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。 二、单向可控硅的引脚区分 对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。从外形无法判断的可控硅,可用万用表R×100或R×1K挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的范围)时,黑表笔所接的是控制极G,红表笔所接的是阴极C,余下的一只管脚为阳极A。 三、单向可控硅的性能检测 可控硅质量好坏的判别可以从四个方面进行。第一是三个PN结应完好;第二是当阴极与阳极间电压反向连接时能够阻断,不导通;第三是当控制极开路时,阳极与阴极间的电压正向连接时也不导通;第四是给控制极加上正向电流,给阴极与阳极加正向电压时,可控硅应当导通,把控制极电流去掉,仍处于导通状态。 用万用表的欧姆挡测量可控硅的极间电阻,就可对前三个方面的好坏进行判断。具体方法是:用R×1k或R×10k挡测阴极与阳极之间的正反向电阻(控制极不接电压),此两个阻值均应很大。电阻值越大,表明正反向漏电电流愈小。如果测得的阻值很低,或近于无穷大,说明可控硅已经击穿短路或已经开路,此可控硅不能使用了。 用R×1k或R×10k挡测阳极与控制极之间的电阻,正反向测量阻值均应几百千欧以上,若电阻值很小表明可控硅击穿短路。 用R×1k或R×100挡,测控制极和阴极之间的PN结的正反向电阻在几千欧左右,如出现正向阻值接近于零值或为无穷大,表明控制极与阴极之间的PN结已经损坏。反向阻值应很大,但不能为无穷大。正常情况是反向阻值明显大于正向阻值。 万用表选电阻R×1挡,将黑表笔接阳极,红表笔仍接阴极,此时万用表指针应不动。红表笔接阴极不动,黑表笔在不脱开阳极的同时用表笔尖去瞬间短接控制极,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。如阳极接黑表笔,阴极接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 四、可控硅的使用注意事项 选用可控硅的额定电压时,应参考实际工作条件下的峰值电压的大小,并留出一定的余量。 1、选用可控硅的额定电流时,除了考虑通过元件的平均电流外,还应注意正常工作时导通角的大小、散热通风条件等因素。在工作中还应注意管壳温度不超过相应电流下的允许值。 2、使用可控硅之前,应该用万用表检查可控硅是否良好。发现有短路或断路现象时,应立即

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

单向可控硅的原理及测试

单向可控硅的原理及测试 可控硅的意思:可控的硅整流器,其整流输出电压是受控的,常与移相或过零触发电路配合,应用于交、直流调压电路。可控硅是在晶体管基础上发展起来的一种集成式半导体器件。单向可控硅的等效原理及测量电路见下图1: A K G P N P N K G G K G A 图1 可控硅器件等效及测量电路 单向可控硅为具有三个PN 结的四层结构,由最外层的P 层、N 层引出两个电极——阳极A 和阴极K ,由中间的P 层引出控制极G 。电路符号好像为一只二极管,但好多一个引出电极——控制极或触发极G 。SCR 或MCR 为英文缩写名称。 从控制原理上可等效为一只PNP 三极管与一只NPN 三极管的连接电路,两管的基极电流和集电极电流互为通路,具有强烈的正反反馈作用。一旦从G 、K 回路输入NPN 管子的基极电流,由于正反馈作用,两管将迅即进入饱合导通状态。可控硅导通之后,它的导通状态完全依靠管子本身的正反馈作用来维持,即使控制电流(电压)消失,可控硅仍处于导通状态。控制信号U GK 的作用仅仅是触发可控硅使其导通,导通之后,控制信号便失去控制作用。 单向可控硅的导通需要两个条件: 1)、A 、K 之间加正向电压; 2)、G 、K 之间输入一个正向触发电流信号,无论是直流或脉冲信号。 若欲使可控硅关断,也有两个关断条件: 1)、使正向导通电流值小于其工作维持电流值; 2)、使A 、K 之间电压反向。 可见,可控硅器件若用于直流电路,一旦为触发信号开通,并保持一定幅度的流通电流的话,则可控硅会一直保持开通状态。除非将电源开断一次,才能使其关断。若用于交流电路,则在其承受正向电压期间,若接受一个触发信号,则一直保持导通,直到电压过零点到来,因无流通电流而自行关断。在承受反向电压期间,即使送入触发信号,可控硅也因A 、K 间电压反向,而保持于截止状态。

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

可控硅的主要参数

可控硅的主要参数 This model paper was revised by the Standardization Office on December 10, 2020

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

单向可控硅参数列表 MCR100-8 1A400V

单向可控硅参数列表MCR100-8 1A400V 单向可控硅参数列表MCR100-8 1A400V 参数: 1A 400V 可控硅引脚定义可控硅外形象中功率三极管, 三个脚定义为阳极A,阴极K,栅极G, 使用时在阳极加正电压,必须在栅极加一个4伏左右的触发电压才能导通. 单向可控硅的型号参数表 常用1A/400V单向可控硅有: MCR100-6 MCR100-8 BT169T

P5G CR3AM 常用3A/600V的单向可控硅的型号有: 3CR3AM-12 TLC336 TLC336T TLC336D TLC336S TLC336 晶闸管的选用与代换及检测 1.晶闸管的选用 (1)选择晶闸管的类型:晶闸管有多种类型,应根据应用电路的具体要求合理选用。 若用于交直流电压控制、可控整流、交流调压、逆变电源、开关电源保护电路等,可选用普通晶闸管。 若用于交流开关、交流调压、交流电动机线性调速、灯具线性调光及固态继电器、固态接触器等电路中,应选用双向晶闸管。 若用于交流电动机变频调速、斩波器、逆变电源及各种电子

开关电路等,可选用门极关断晶闸管。 若用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等,可选用BTG晶闸管。 若用于电磁灶、电子镇流器、超声波电路、超导磁能储存系统及开关电源等电路,可选用逆导晶闸管。 若用于光电耦合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路,可选用光控晶闸管。2.选择晶闸管的主要参数:晶闸管的主要参数应根据应用 电路的具体要求而定。 所选晶闸管应留有一定的功率裕量,其额定峰值电压和额定电流(通态平均电流)均应高于受控电路的最大工作电压和最 大工作电流1.5~2倍。 晶闸管的正向压降、门极触发电流及触发电压等参数应符合应用电路(指门极的控制电路)的各项要求,不能偏高或偏低,否则会影响晶闸管的正常工作。 2.晶闸管的代换 晶闸管损坏后,若无同型号的晶闸管更换,可以选用与其性能参数相近的其他型号晶闸管来代换。 应用电路在设计时,一般均留有较大的裕量。在更换晶闸管时,只要注意其额定峰值电压(重复峰值电压)、额定电流(通态平均电流)、门极触发电压和门极触发电流即可,尤其是额定峰值电压与额定电流这两个指标。

常用双向可控硅参数

常用双向可控硅参数 型号类型电流电压封装 ----------------------------------232-4005A400V TO-220 ----------------------------------AC12F12A600V TO-220 ----------------------------------BCR1AM1A600V TO-92 ----------------------------------BCR3AM3A600V TO-220 ----------------------------------BCR10PM10A600V TO-220F ----------------------------------BCR12AM12A400V TO-220 ----------------------------------BCR70B-1670A800V铁绳 ----------------------------------BTA06-600C6A600V TO-220 ----------------------------------BTA08-600C8A600V TO-220 ----------------------------------BTA12-600B12A600V TO-220 ----------------------------------BTA16-600B16A600V TO-220 ----------------------------------BTA20-600B20A600V TO-220 ----------------------------------BTA26-600B26A600V TO-3P ----------------------------------BTA41-600B41A600V TO-3P ----------------------------------BTB24-40024A400V TO-220 ----------------------------------BT136-6004A600V TO-220 ----------------------------------BT136-8004A800V TO-220 ----------------------------------BT137-6008A600V TO-220 ----------------------------------BT138-80012A800V TO-220 ----------------------------------BT139-80016A800V TO-220 ----------------------------------BTA140-80025A800V TO-220 ----------------------------------MAC97A61A400V TO-92

可控硅的一些基本知识

可控硅的一些基本知识 摘要:可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。它具有体积小、效率高、寿命长等优点。在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。可控硅分单向可控硅和双向可控硅两种 可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。它具有体积小、效率高、寿命长等优点。在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。可控硅分单向可控硅和双向可控硅两种。 双向可控硅也叫三端双向可控硅,简称TRIAC。双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。其通断状态由控制极G决定。在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。这种装置的优点是控制电路简单,没有反向耐压问题,因此特别适合做交流无触点开关使用。结构编辑大家使用的是单向晶闸管,也就是人们常说的普通晶闸

可控硅管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极 第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号 可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。以硅单晶为基本材料的P1N1P2N2四层三端器件,起始于1957年,因为它的特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T,又因为晶闸管最初的在静止整流方面,所以又被称之为硅可控整流元件,简称为可控硅SCR。在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称"死硅")更为可贵的可控性。它只有导通和关断两种状态。可控硅能以毫安级电流控制大功率的机电设备,如果超过此功率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。可控硅从外形上分类主要有:螺栓形、平板形和平底形。可控硅元件的结构不管可控硅的外形如何,它们的管芯都是由P型硅和N 型硅组成的四层P1N1P2N2结构。

单向晶闸管的基础常识

单向晶闸管的基础常识 晶闸管(Thyristor)是一种开关元件,能在高电压、大电流条件下工作,并且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中,是典型的小电流控制大电流的设备。单向晶闸管是其中的一种,通常也叫可控硅或整流元件,它既有单向导电的整流作用,又有可以控制的开关作用.利用它可用较小的功率控制较大的功率。以下内容,我们主要看看晶闸管有什么特性及作用。 单向晶闸管的特性及作用 单向晶闸管属于PNPN 四层半导体器件,共有三个电极,即控制极(门极) G、阳极A 和阴极K,只能单向导通。单向晶闸管种类很多,常用的有3CT 系列和KP 系列,广泛地用于可控整流、交流调压、逆变器和开关电源电路中。 常见单向晶闸管的外形见图1(a),其内部结构及电路符号见图(b)。 单向晶闸管的导通条件是:除在阳、阴极间加上一定大小的正向电压外,还要在控制极和阴极间加正向触发电压。一旦管子触发导通,控制极即失去控制作用,即使控制极电压变为零,单向晶闸管仍然保持导通。要使单向晶闸管关断,必须去掉阳极正向电压,或者给阳极加反向电压,或者降低阳极正向电压,使通过单向晶闸管的电流降低到维持电流(单向晶闸管导通的最小电流)以下。 单向晶闸管按功率大小,可分为小功率、屮功率和大功率三种。一般从外观上即可进行识别:小功率管多采用塑封或金属壳封装;中功率管控制极引脚比阴极引脚细,阳极带有螺栓;大功率管控制极上带有金厉编织套,像一条辫子。一般额定电流小于200A 的多为螺栓形晶闸管,大于200A 的多为平板形晶闸管。 由于螺栓形和平板形单向晶闸管的三个电极外部形状有很大的区别,因此可

单向可控硅及其应用电路分析

单向可控硅及其应用电路分析 可控硅全称“可控硅整流元件”(Silicon Controlled Rectifier),简写为SCR,别名晶体闸流管(Thyristor),是一种具有三个PN结、四层结构的大功率半导体器件。可控硅体积小、结构简单、功能强,可起到变频、整流、逆变、无触点开关等多种作用,因此现已被广泛应用于各种电子产品中,如调光灯、摄像机、无线电遥控、组合音响等。 其原理图符号如下图所示: 从可控硅的电路符号可以看到,它和二极管一样是一种单方向导电的器件,只是多了一个控制极G,正是它使得可控硅具有与二极管完全不同的工作特性。可控硅是可以处理耐高压、大电流的大功率器件,随着设计技术和制造技术的进步,越来越大容量化。可控硅的基本结构如下图所示:三个PN 结(J1、J2、J3)组成4层P1-N1-P2-N2结构的半导体器件对外有三个电极,由最外层P型半导体材料引出的电极作为阳极A,由中间的P型半导体材料引出的电极称为控制极G,由最外层的N型半导体材料引出的电极称为阴极K,它可以等效成如图所示的两只三极管电路。下面我们来看看可控硅的工作原理:如下图所示,初始状态下,电压V AK施加到可控硅的A、K两个端,此时三极管Q1与Q2都处于截止状态,两者地盘互不侵犯。此时V AK电压全部施加到A、K

两极之间,这个允许施加的最大电压V AK即断态重复峰值电压VDRM(Peak Repetitive Off-State V oltage),相应的有断态重复峰值电流IDRM(Peak Repetitive Off-StateCurrent)如下图所示,电压VGK施加到G、K两极后,Q2的发射结因正向偏置而使其导通,从而产生了基极电流IB2,此时Q2尚处于截止状态,可控硅阳极电流IA为0,Q1的基极电流IB1也为0,电阻R2上也没有压降,因此Q2的集电极-发射电压VCE2为V AK,这个电压值通常远大于VBE2,即使是在测试数据手册中的参数时,V AK也至少有6V,实际应用时V AK会有几百伏,因此,三极管Q2的发射结正偏、集电结反偏,开始处于放大状态。只有在G、K加上正向电压后,才可以触发可控硅的导通,这个触发电压的最小值称为门极触发电压VGT(Gate Trigger V oltage),这个值就是一个PN 结的结电压(不是电池电压VGK),此时流过控制极的电流称为门极触发电流IGT(Gate Trigger V oltage) 刚刚进入放大状态(微导通)的三极管Q2将基极电流IB2进行放大,相应集电极的电流为IC2,其值为(IB2×β2),尽管放大了β2倍,但此时的IC2还比较小,因此IA与IB1也比较小(但是已经不为0了),电阻R2中也有微小电流,可以看成一个完整的电流回路,但此时的Q2的集电极-发射极压降仍然很大。与此同时,三极管Q1的发射极一直是V AK (最高电压),集电极一直是较低的电压(VBE2),只要基

各种晶闸管可控硅的检测方法

各种晶闸管(可控硅)的检测方法 1.单向晶闸管的检测 (1)判别各电极:根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。因此,通过用万用表的R×100或R×1 k Q档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。 具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其他电极,直到找出三个电极为止。 也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则两极即为阳极A和阴极K,而另一脚即为门极G。 普通晶闸管也可以根据其封装形式来判断出各电极。 例如:螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。 平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。 金属壳封装(T0—3)的普通晶闸管,其外壳为阳极A。 塑封(T0—220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。 图1为几种普通晶闸管的引脚排列。 (2)判断其好坏:用万用表R×1 kΩ档测量普通晶闸管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞);若测得A、K之间的正、反向电阻值为零或阻值均较小,则说明晶闸管内部击穿短路或漏电。 测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果要较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 kΩ),反向电阻值较大(大于80 kΩ)。若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K极之间开路或短路。若正、反电阻值均相等或接近,则说明该晶闸管已失效,其G、K极问PN结已失去单向导电作用。

单向晶闸管(可控硅)管脚极性及好坏检测方法

单向晶闸管(可控硅)管脚极性及好坏检测方法 单向晶闸管(可控硅)管脚极性及好坏检测方法 单向晶闸管的检测 (1)判别各电极:根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。因此,通过用万用表的R×100或R×1 k Q档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。 具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其他电极,直到找出三个电极为止。也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则两极即为阳极A和阴极K,而另一脚即为门极G。普通晶闸管也可以根据其封装形式来判断出各电极。 例如:螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。金属壳封装(T0—3)的普通晶闸管,其外壳为阳极A。塑封(T0—220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。 图1为几种普通晶闸管的引脚排列。

(2)判断其好坏:用万用表R×1 kΩ档测量普通晶闸管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞);若测得A、K之间的正、反向电阻值为零或阻值均较小,则说明晶闸管内部击穿短路或漏电。 测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果要较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 kΩ),反向电阻值较大(大于80 kΩ)。若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K 极之间开路或短路。若正、反电阻值均相等或接近,则说明该晶闸管已失效,其G、K极问PN结已失去单向导电作用。测量阳极A与门极G之间的正、反向电阻,正常时两个阻值均应为几百千欧姆(kΩ)或无穷大,若出现正、反向电阻值不一样(有类似二极管的单向导电)。则是G、A极之间反向串联的两个PN结中的一个已击穿短路。 (3)触发能力检测:对于小功率(工作电流为5 A以下)的普通晶闸管,可用万用表R×1档测量。测量时黑表笔接阳极A,红表笔接阴极K,此时表针不动,显示阻值为无穷大(∞)。用镊子或导线将晶闸管的阳极A与门极短路(见图2),相当于给G极加上正向触发电压,此时若电阻值为几欧姆至几十欧姆(具体阻值根据晶闸管的型号不同会有所差异),则表明晶闸管因正向触发而导通。再断开A极与G极的连接(A、K极上的表笔不动,只将G极的触发电压断掉)。若表针示值仍保持在几欧姆至几十欧姆的位置不动,则说明此晶闸管的触发性能良好。

单向可控硅与双向可控硅的导通条件及特点

一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。以上两个条件必须同时具备,可控硅才会处于导通状态。另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。 可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。 二、单向可控硅的引脚区分 对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。从外形无法判断的可控硅,可用万用表RX100或RX1K挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的范伟I)时,黑表笔所接的是控制极G,红表笔所接的是阴极C,余下的一只管脚为阳极A。 三、单向可控硅的性能检测 可控硅质量好坏的判别可以从四个方而进行。第一是三个PN结应完好;第二是当阴极与阳极间电压反向连接时能够阻断,不导通;第三是当控制极开路时,阳极与阴极间的电压正向连接时也不导通:第四是给控制极加上正向电流,给阴极与阳极加正向电压时,可控硅应当导通,把控制极电流去掉,仍处于导通状态。 用万用表的欧姆挡测量可控硅的极间电阻,就可对前三个方而的好坏进行判断。具体方法是:用RXlk或RXiOk挡测阴极与阳极之间的正反向电阻(控制极不接电压),此两个阻值均应很大。电阻值越大,表明正反向漏电电流愈小。如果测得的阻值很低,或近于无穷大, 说明可控硅已经击穿短路或已经开路,此可控硅不能使用了。 用RXlk或RXIOk挡测阳极与控制极之间的电阻,正反向测量阻值均应几百千欧以上, 若电阻值很小表明可控硅击穿短路。 用RXlk或RX100挡,测控制极和阴极之间的PN结的正反向电阻在几千欧左右,如出现正向阻值接近于零值或为无穷大,表明控制极与阴极之间的PN结已经损坏。反向阻值应很大,但不能为无穷大。正常情况是反向阻值明显大于正向阻值。 万用表选电阻RX1挡,将黑表笔接阳极,红表笔仍接阴极,此时万用表指针应不动。红表笔接阴极不动,黑表笔在不脱开阳极的同时用表笔尖去瞬间短接控制极,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。如阳极接黑表笔,阴极接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 四、可控硅的使用注意事项 选用可控硅的额泄电压时,应参考实际工作条件下的蜂值电压的大小,并留出一立的余量。 1、选用可控硅的额定电流时,除了考虑通过元件的平均电流外,还应注意正常工作时导通角的大小、散热通风条件等因素。在工作中还应注意管壳温度不超过相应电流下的允许值。 2、使用可控硅之前,应该用万用表检查可控硅是否良好。发现有短路或断路现象时,应立即更

相关主题
相关文档
最新文档