大学物理实验讲义实验10杨氏模量的测定-精选.pdf

大学物理实验讲义实验10杨氏模量的测定-精选.pdf
大学物理实验讲义实验10杨氏模量的测定-精选.pdf

实验1 拉伸法测量杨氏模量

杨氏弹性模量(以下简称杨氏模量

)是表征固体材料性质的重要的力学参量,它反映材

料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。

【实验目的】

1.学习用静态拉伸法测量金属丝的杨氏模量。

2.掌握钢卷尺、螺旋测微计和读数显微镜的使用。

3.学习用逐差法和作图法处理数据。

4.掌握不确定度的评定方法。

【仪器用具】

杨氏模量测量仪(包括砝码、待测金属丝)

、螺旋测微计、钢卷尺、读数显微镜

【实验原理】

1.

杨氏模量的定义

本实验讨论最简单的形变——拉伸形变,即棒状物体

(或金属丝)仅受轴向外力作用后

的伸长或缩短。按照胡克定律:在弹性限度内,弹性体的应力

S

F 与应变

L

L 成正比。

设有一根原长为l ,横截面积为S 的金属丝(或金属棒),在外力F 的作用下伸长了L ,

则根据胡克定律有

)

(

L

L E S

F (1-1)

式中的比例系数

E 称为杨氏模量,单位为Pa (或N ·m –2

)。实验证明,杨氏模量E 与外

力F 、金属丝的长度L 、横截面积S 的大小无关,它只与制成金属丝的材料有关。

若金属丝的直径为d ,则2

4

1d S ,代入(1-1)式中可得

L

d FL E 2

4(1-2)(1-2)式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝伸长量较小,

杨氏模量小的金属丝伸长量较大。因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。实验中,测量出L d L F 、、、值就可以计算出金属丝的杨氏模量E 。

2.

静态拉伸法的测量方法

测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝F ,测出金属丝的伸长量L ,即可求出E 。金属丝长度L 用钢卷尺测量,金属丝直径d 用螺旋测微计测量,

F 由砝码的重力mg F 求出。实验的主要问题是测准伸长

量L ,伸长量一般很小,约10-1mm 数量级,在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量)。为了使测量L 更准确些,采用测量多个L 的方法以减少测量的随机误差,即在金属丝下端每加一个砝码测一次伸长位置,逐个累加砝码,逐次记录长度;通过逐差法(参考绪论)求出L 。考虑到读数显微镜物镜的放大倍率为X 和砝码的重力

mg F ,拉伸法测量杨氏模量的实验公式为

L

d mgLX

E

24(1-3)

3.

测量结果的不确定度估计

根据间接测量量的不确定度合成法则(参考绪论)

,杨氏模量

E 的相对不确定度计算

式为:

2

22

2

2

2X

u L

u

d

u L

u m

u E

u X L

d L m E (1-4)

4.

对实验条件的分析(实验设计项目)本实验利用显微镜测微小长度变化,

根据(1-3)式测量金属丝的杨氏模量

E ,试分析

测量时须满足哪些实验条件?有哪些因素将导致系统误差的产生?请读者根据实验要求,理论联系实际地讨论提高测量结果

E 的精确度的方法和途径。

【仪器介绍】

1.

杨氏模量测量仪

杨氏模量测量仪的基本结构如图1-1所示。主要包括以下两部分:

金属丝支架和砝码:杨氏模量仪的底座是一个水平底座,四个角下都有螺旋底脚

12,

用于调节底座水平。在两根立柱之间有上下两个横梁。待测金属丝(长约80cm )的上端

被上梁侧面的夹板

1夹牢,下端用小夹板夹在连接方框上,方框下旋进一个螺钉吊起砝码

盘7,框子的侧面固定一个十字叉丝板

6,下梁一侧有连接框的防摆动装置,只需将两个

螺丝5调到适当位置,就能够限制增减砝码引起的连接框的扭转和摆动。

读数显微镜装置:测微目镜和带有物镜的镜筒、磁性底座(带锁紧钮支架,支架纵向、

横向、升降三个方向可微调)。

2.

测微目镜

测微目镜也称测微头,常作为精密光学仪器的附件,例如在内调焦平行光管和测角仪上均装有这种目镜;它也可单独使用,直接测量非定域干涉条纹的宽度或由光学系统所成实像的大小等。其主要特点是量程小(

0~8mm ),但准确度较高。

图1–1杨氏模量测量仪

1.上梁夹板

2.上梁水平调节镙钮

3.金属丝

4.立柱

5.防摆动装置调节镙钮

6.十字叉丝板

7.砝码盘

8.读数显微镜锁紧镙钮

9.读数显微镜 10.支架锁紧

镙钮 11.磁性底座 12.螺旋底脚

图1-2是测微目镜的结构示意图。目镜筒1与本体盒2相连,利用固定螺丝8和接头套筒7可将测微目镜固定在特定的支架上,亦可装在诸如内调焦平行光管、测角仪、生物

显微镜等仪器上作可测量目镜用。目镜焦平面的内侧装有一块量程为8mm的刻线玻璃标尺3,其分度值为1mm,在该尺下方0.1mm处平行地放置一块由薄玻璃片制成的活动分划

板4,上面刻有斜十字准线和一平行双线。人眼贴近目镜筒观察时,即可在明视距离处看

到玻璃标尺上放大的刻度线和活动分划板上的斜十字准线和平行双线(见图1-3)。活动分划板的框架与由读数鼓轮6带动的丝杆5通过弹簧(图中未画出)相连。当读数鼓轮顺时

针旋转时,丝杆便推动分划板沿导轨垂直于光轴向左移动,通过目镜就观察到准线交点和

平行双线向左平移,此时连接弹簧伸长;当鼓轮逆时针旋转时,分划板在弹簧恢复力的作

用下,向右移动,准线交点和平行双线亦向右平移。读数鼓轮每转动一圈,准线交点及平

行双线便平移1mm。在鼓轮轮周上均匀地刻有100条线,即分成100小格,所以鼓轮每转过1小格,平行双线及斜准线交点相应地平移0.01mm。当准线交点(或平行双线中的某一

条)对准待测物上某一标志(如长度的起始点或终点)时,该标志位置的读数等于玻璃标尺上

的整数毫米值,加上鼓轮上小数位的读数值,以mm为单位时,应估读到小数点后3位。由于测得的结果为初读数和末读数之差,因此,在实际测量中,为方便计,常常以平行双

线中的某一条为测量准线。

使用测微目镜时应注意以下几点:

(1)测量时先调节目镜与活动分划板的间距,看清楚准线和平行双线。

(2)调节整个目镜筒与被测实像的间距,使在视场中看到被测的像最清晰,且与准线

无视差,即二者处在同一平面上,当测量者上下或左右稍微改变视线方向时,两者间没有

相对位移,这是测微目镜已调整好的标志。只有无视差,才能保证测量精度。

(3)测量过程中,应缓慢转动鼓轮,且沿一个方向转动,中途不要反向。因为丝杠与

螺母纹间有空隙,称为螺距差(也称空程差)。当反向旋转时,必须转过此间隙后活动分

划板(准线)才能跟着螺旋移动。因此若旋过了头,必须退回一圈,再从原方向旋转推进,

重测。

(4)要求准线交点不得移出刻度尺所示的刻度范围,如准线已达到刻度尺一端,则不

能再强行旋转测微鼓轮。

图1–2 测微目镜结构图图1–2 分划板

1.目镜

2.本体盒

3.玻璃标尺

4.活动分划板

5.丝杆

6.读数鼓轮

7.接头套筒

8.固定螺丝

3.螺旋测微计(千分尺)

螺旋测微计结构如图1-4所示,它的量程是25mm,分度值是0.01mm,当转动棘轮8使砧台3和测量螺杆4的端面刚好接触时,微分套筒7的左端面就应与固定套筒6上的”0”线对齐,同时微分套筒上的“0”线也应与固定套筒上的水平线对齐(否则将有零点误差),这时的读数是0.000mm。

图 1–4螺旋测微计结构图

L.绝热板; 2.尺架;3.测量砧台; 4.测量螺杆; 5.锁紧装置; 6.固定套简;7.微分套筒;8.棘轮

当微分套筒7旋转一周时,与之相连的测量螺杆沿轴线方向前进(或后退)0.5mm,微分套筒上附有沿圆周的刻度,共有50个分格,当微分套筒上的刻度转过一分格时,测量螺

杆沿轴线方向前进0.5

0.01

50

mm mm,所以螺旋测微计的最小分度(精度)值为0.0lmm。

使用螺旋测微计时,必须先检查螺旋测微计是否有零点读数△:转动棘轮使砧台和测

量螺杆的端面刚好接触,此时,如果微分套筒上的“0”刻度线与固定套筒上的水平线没

有对齐,则说明螺旋测微计具有零点读数△,测量值D1。需作零点修正,修正后的测量值

D为:

D=1

D(1-5) △可能为正,也可能为负,当微分套筒上的“O"刻度线位于固定套筒上的水平线之下

(图1-4a)时,则△为正,反之,则△为负(图1-4b)。零点读数△属于系统误差。

固定套筒上的标尺刻度分列于水平线的上下两端,上面的刻度线是毫米数,下面的刻度线

是半毫米数。读数时,如果微分套筒前沿未超过半毫米线,则读出整毫米数再加上微分套

筒上的读数即可;如果微分套筒前沿超过了半毫米线,则需读出整毫米数值后加0.5mm,再加上微分套筒上的读数才是完整的测量数据。

图 0–3螺旋测微计零点读数

(a)零点读数为+0.005mm (b)零点读数为-0.005mm

测量物体线度时,应手持螺旋测微计的绝热板部分,先将测量螺杆退开,把待测物体

放在砧台和测量螺杆的端面之间,然后轻轻转动棘轮旋柄,使测量螺杆和砧台的测量面与物体接触,当听到喀喀声响时,表示待测物体已被夹住,即停止转动棘轮。读数时,以微分套筒前沿为读数准线,读出固定套筒上的分度数,读准到0.5mm ,再以固定套筒上的水

平线为基准线,读出微分套筒圆周上的刻度数,估读到最小分度的十分之一,即毫米的千

分位上,例如图

1-3读数为 6.282mm 。用毕还原仪器时,应将螺杆退回几转,留出空隙,

以免热胀使螺杆变形。

【实验内容与要求】

1.

杨氏模量测量仪的调整

(1)调节金属丝铅直:首先调节底脚螺丝,使仪器底座水平(可用水准器)

;在砝码盘

上加100g 砝码,使金属丝被拉直;再调节上梁的微调旋钮使上梁夹板水平,直到穿过夹板的金属丝不靠贴小孔内壁;然后调节下梁一侧的防摆动装置,将两个螺丝分别旋进铅直金属丝下连接框两侧的“V ”形槽,并与框体之间形成两个很小的间隙,以便能够上下自由移动,又能避免发生扭转和摆动现象。(2)调节读数显微镜

:将读数显微镜装到支架上,插入磁性底座,紧靠定位板直边。

先粗调显微镜高度,使之与图

1-1十字叉丝板6基本等高,再细调显微镜显微镜。细调步

骤是先调节目镜看清读数显微镜分划板上的叉丝和整数部分刻度,再移动镜筒看清十字叉

丝板6的放大的十字叉丝像,使十字叉丝像与分划板上的准丝和平行双线无视差(即当视

线略微上下移动时,十字叉丝与分划板准线之间无相对移动。详见附录),最后锁住磁性

底座。因读数显微镜成倒像,所以待测金属丝受力伸长时,视场内的十字叉丝像向上移动,

金属丝回缩时,十字叉丝向下移动。2.测定金属丝的杨氏模量E

(1)观察并测定金属丝伸缩变化量:通过读数显微镜观察下拉金属丝的十字叉丝板,

记录砝码盘加

100g 砝码时十字叉丝像的位置读数

x 1(一般情况下调整

x 1=4mm 附近),以后在砝码盘上每增加一个

200g 的砝码,测读一次十字叉丝像数据

x i (i=2,

3,……,11),一直加到2100g ;然后逐一减掉砝码,再测读出一组数据

i x (i=11,10,……,2)。并用

钢卷尺测量金属丝长度,只测一次。将所得数据记录在以下的数据表格中,并用逐差法处理数据。。金属丝长度L= mm ,重力加速度(广州)

g=9.7833m/s 2

,读数显微镜物镜放大率

X= 序号

m i (g) i x (mm )i x (mm )

2

i

i

i

x x x (mm)

5

5

i i

i

x x L (mm)

增砝码

减砝码

1 100

2 300

3 500 4

700

5 900

6 1100 L

7 1300 8 1500 9 1700 10 1900 11

2100

计算伸长量

L 的不确定度时,由于

L 是间接测量量,必须考虑误差的传递,但由于使用逐差法进行处理数据,可将)5,,

2,1(i

L i 看作一组等精度测量列,则不确定度评

定如下处理:

A 类分量:

)

1()

(2

n n L L u i

LA

B 类分量:由函数关系式

10

)

()

(5

5

5

5

i i i

i

i i

i

x x x x x x L 可得

mm u u

xB

LB

4

107.43004.010210

4

(其中

0.004mm 为读数显微镜仪

器误差限);

则总不确定度为

22LB

LA

L

u

u

u 。

(2)用螺旋测微计在金属丝的不同部位测量直径d ,测6次,并在测量前后记录螺旋

测微计的零点读数各3次。

测定螺旋测微计的零点(单位为mm ):测量前

;测量后,,;平均值= mm 。

序号

1

2

3

4

5

6

测量值)(mm D i 修

)

(mm D d i

i )

(mm d

并计算其不确定度

22dB

dA

d

u

u

u ,其中

)

1()

(2

n n d d u i dA

,螺旋测微计的

仪器误差为0.004mm ,则

mm

u dB

3

004.0(3)根据(1-3)计算杨氏模量E 。

(4)根据(1-4)计算不确定度

E u ,写出测量结果

E u E

E 。其中实验室给出

%1.0m

u m ,

%3.0X

u X ,mm u L

3。

(5)用作图法验证胡克定律:将(

1-3)改写成

C Km x i

i

,式中E

d gLX

K

2

4,

0Km C

(0m 是未放砝码时金属丝所受到重力对应的质量)

;用坐标纸作

i i m x 图线,

从图上找出斜率K (或用最小二乘法计算),并计算出E 。

3.

分析和讨论实验结果。

【注意事项】

1.在增减砝码时,应该轻拿轻放,等金属丝不晃动且形变稳定后测量。

2.

注意维护金属丝的平直状态,在用螺旋测微计测量其直径时勿将其扭折,如果作实验

前发现金属丝略有弯折,可在砝码盘上先加上一定量的本底砝码(约几百克),使它在伸

直的状态下开始做实验。3.正确使用和维护读数显微镜。调节读数显微镜要轻、慢,不要用手触摸物镜和目镜的光学表面。调好后,在整个测量过程中不得再碰动显微镜。4.

测量时注意消除目镜丝杆空程带来的误差。整个测量过程中读数鼓轮不能中途反转,

从增砝码变到减砝码时更要注意消除空程差的影响。

【思考问题】

1.杨氏弹性模量的物理意义是什么?它反映了材料的什么性质?

2.

材料相同,但粗细、长短不同的两根金属丝,它们的杨氏模量是否相同?

3.实验装置使得L 不易测准,可能在毫米位就欠准了,这会成为影响E 测准的主要因素

吗?

4.逐差法处理数据有什么好处?逐差法的使用条件是什么?

5.在进行实验时,如果出现下列情况,将分别对实验有何影响?是否要从头重测i x?如何从测量数据中发现这些问题?

(1) 金属丝有弯曲;(2) 碰动了读数显微镜。

【附录】

视差

在做光学实验和使用光学仪器时,测量像的位置和大小时需注意消除视差。我们知道,在测量物体的大小时,必须将标度尺与被测物体紧贴在一起,这样才能测准,但如果标尺

与被测物体间有距离,则读数将随眼睛位置的不同而有所改变(见图1-5),这种现象叫视差。在使用显微镜、望远镜等光学仪器时,如果标度尺与被测像不共面(不在同一平面上),将产生视差,这时应适当调节目镜和物镜(即调节标尺或像)的位置,使眼睛上下、左右移动时,读数无视差现象,方可开始测量。这一调节步骤,称为“消视差”。“消视差"是实验操作基本技能之一,也是光学实验中必不可少的操作环节。

图 1–4视差

大学物理实验(二)讲义

大学物理实验(I I)实验讲义 华中科技大学物理学院实验教学中心

目录 实验1:偏振光实验 (1) 实验2:迈克尔逊和法布里-珀罗干涉仪 (5) 实验3:振动力学综合实验 (13) 实验4:RLC电路和滤波器 (22)

实验1:偏振光实验 【实验目的】 1.观察光的偏振现象,加深对其规律认识。 2.了解产生和检验偏振光的光学元件及光电探测器的工作原理。 3.掌握一些光的偏振态(自然光、线偏振光、部分偏振光、椭圆偏振光、圆偏振光)的鉴别方 法以及相互的转化。 【课前预习】 1.光的波动方程以及麦克斯韦方程组。 2.电磁波的偏振性及波片的性质。 【实验原理】 1、自然光与偏振光 麦克斯韦指出光波是一种电磁波,电磁波是横波。由于光与物质相互作用过程中反应比较明显的是电矢量E,故此,常用E表征光波振动矢量,简称光矢量。一般光源发射的光波,其光矢量在垂直于传播方向上的各向分布几率相等,这种光就称为自然光。光矢量在垂直于传播方向上有规则变化则体现了光波的偏振特性。如果光矢量方向不变,大小随相位变化,这时在垂直于光波传播方向的平面上光矢量端点轨迹是一直线,则称此光为线偏振光(平面偏振光),光矢量与传播方向构成的平面叫振动面如图1(a)。图1(b)是线偏振光的图示法,其中短线表示光矢量平行于纸面,圆点表示光矢量与纸面垂直。如果其光矢量是随时间作有规律的改变,光矢量的末端在垂直于传播方向的平面上的轨迹是圆或者椭圆,这样的光相应的被称为圆偏振光或者椭圆偏振光,如图1(c)。介于偏振光和自然光之间的还有一种叫部分偏振光,其光矢量在某一确定方向上最强,亦即有更多的光矢量趋于该方向,如图1(d)。任一偏振光都可以用两个振动方向互相垂直,相位有关联的线偏振光来表示。 2、双折射现象 当一束光入射到光学各向异性的介质时,折射光往往有两束,这种现象称为双折射。冰洲石(方解石)就是典型的双折射晶体,如通过它观察物体可以看到两个像。当一束激光正入射于冰洲石时,若表面已抛光则将有两束光出射,其中一束光不偏折,即o光,它遵守通常的折射定律,称为寻常光。另一束发生了偏折,即e光,它不遵守通常的折射定律,称为非常光。用偏振片检查可以发现,这两束光都是线偏振光,但其振动方向不同,其两束光的光矢量近于垂直。晶体中可以找到一个特殊方向,在这个方向上无双折射现象,这个方向称为晶体的光轴,也就是说在光轴方向o光和e光的传播速度、折射率是相等的。此处特别强调光轴是一个方向,不是一条直线。只有一个光轴的晶体称为单轴晶体,如冰洲石,石英,红宝石,冰等,其中又分为负晶体(o光折射率大于e光折射率,即n o>n e)和正晶体(n o

金属的杨氏模量的测量

金属的杨氏模量的测量 当固体受外力作用时,它的体积和形状将要发生变化,这种变化,称为形变。当外力不太大时,物体的形变与外力成正比,且外力停止作用物体立即恢复原来的形状和体积,这种形变称为弹性形变。当外力较大时,物体的形变与外力不成比例,且外力停止作用,物体形变不能恢复原来的形状和体积,这种形变称为范性形变。范性形变的产生,是由于物体形变而产生的内应力超过了物体的弹性限度的缘故。如果再继续增大外力,物体内产生的内应力将会超过物体的强度极限时,物体便被破坏了。 固体材料的弹性形变可以分为纵向、切变、扭转、弯曲等,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。杨氏模量是反映材料形变与内应力关系的一个重要的物理量。杨氏模量越大,越不易发生形变。杨氏模量一般只与材料的性质和温度有关,与其几何形状无关。材料杨氏模量测量方法很多,有静态法和动态法。对于静态法来说,又可分为拉伸法和弯曲法。 I .拉伸法测定钢丝的杨氏弹性模量 【实验目的】 1. 学会用拉伸法测定钢丝的杨氏弹性模量。 2. 掌握几种长度测量工具的使用方法及其不确定度的分析和计算。 3. 进一步掌握逐差法、作图法和最小二乘法的数据处理方法。。 【实验仪器】 杨氏模量测量仪、螺旋测微器、钢卷尺、读数显微镜装置等。 【实验原理】 一、拉伸法测金属丝的杨氏弹性模量 设有一根粗细均匀的金属丝,长度为L,截面积为S ,将其上端紧固, 下端悬挂质量为m的砝码。当金属丝受外力F= mg作用而发生形变L时,金属丝受外力作用发生形变而产生的内应力RS,其应变为LL,根据虎克

定律有:在弹性限度内,物体的应力 F 「S 与产生的应变成正比,即 Fl S L 式中E 为比例恒量,将上式改写为 L F EwlL 其中E 为该材料的杨氏弹性模量 (又称杨氏模量) 变的应力。实验证明,杨氏模量 E 与外力 F 、金属丝的长度L 、横截面积S 的 大小无关,它只与制成金属丝的材料有关。 1 若金属丝的直径为d ,则S = - Q ?d 2 ,将其代入(I .2 )式中可得 4 4F L 二 d 2 .丄 (I .3 )式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝 伸长量较 小,杨氏模量小的金属丝伸长量较大。 因此,杨氏模量反映了材料抵抗 外力引起的拉伸(或压缩)形变的能力。实验中,测量出 F 、L 、d 和厶L 值就 可以计算出金属丝的杨氏模量 E 。其中F 、L 、d 都可用一般方法测得,唯有 L 是一个微小的变化量,约 10‘mm 数量级,用普通量具如钢尺或游标卡尺 是难以测准的。因此,实验的核心问题是对微小变化量 L 的测量。在本实验 中用读数显微镜测量(也可利用光杠杆法或其他方法测量) 二、杨氏模量测量仪 杨氏模量测量仪的基本结构如图1所示。在一个较重的三脚底座上固定有两 根立柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个 支架受力后变形极小,可以忽略。通过调节三角底座的水平调节螺母13使整个支 架铅直。待测样品是一根粗细均匀的金属丝(长约 90Cn )O 金属丝上端用上端紧 固座2夹紧并固定在上横梁上,钢丝下端也用一个钳形平台5夹紧并穿过平台的中 心孔,使金属丝自由悬挂。钢丝的总长度 L 就是从上端固定座2的下端面至钳形 平台5的上端面之间的长度。钳形平台5下方的挂钩上挂一个砝码盘,当盘上逐次 加上一定质量的砝码后,钢丝就被拉伸,标尺刻线6也跟着下降。读数标尺9相对 (I .1 ) (I .2 ) ,在数值上等于产生单位应 (I ?3 )

动态悬挂法测杨氏模量数据处理参考范例

动态悬挂法测杨氏模量数据处理参考范例 1. 数据记录 表1 各测量量测量值 样品 () L m m () m L m m ? ()m g ()m m g ? () 1f H z ()1 m f H z ? 黄铜 0.05 0.01 0.1 不锈钢 0.05 0.01 1 表2 样品直径测量值 次数 黄铜直径 () d m m () m d m m ? 不锈钢直径 () d m m () m d m m ? 1 0.005 0.005 2 3 4 5 6 2. 数据处理 (1)黄铜: L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f :0.10.058B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.998d m m = 1.110.0170.019A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.020u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001037.9310 701.0 1.6067 1.6067 5.99810 L m f Y d ---????==? ? 10 2 9.47710 N m = ?Y E = =

1.3%= 则101029.47710 1.3%0.1310Y Y u Y E N m =?=??=? (2)不锈钢 L :0.029B u u m m ?== = = m :0.010.00333 3 m B u u g ?== = = 1 f : 10.58B u u H z ?== = = d :用肖维涅准则检查无坏值出现 5.945d m m = 1.110.0210.024A p X u k s m m ==?= 0.005 0.0029B m u m m ?= = = 0.025u m m = = = Y : () () 3 3 3 2 3 2 1 4 43 160.001034.4310 1014 1.6067 1.6067 5.94510L m f Y d ---????==? ? 11 2 1.86510 N m =?Y E = = 1.7%= 则11 11 2 1.86510 1.7%0.03210 Y Y u Y E N m =?=??=? 3. 实验结果 (1)室温下测得黄铜样品的杨氏模量为: ()10 2 9.50.210Y N m =±? () 0.683p = 1.3% Y E = (2)室温下测得不锈钢样品的杨氏模量为: ()11 2 1.860.0410Y N m =±? () 0.683p = 1.7% Y E = 备注:不确定度u 在计算过程中保留两位有效数字,在最后计算结果中保留一位有效数字。

大学物理实验讲义(密度测定)

大学物理实验讲义(密度测定)

不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体 密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比 水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理 和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 密 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天

1 m 图3 静力 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m =ρ ( 1 ) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m 物

(空气浮力忽略不计),全部 浸没在水中(悬吊,不接触 烧杯壁和底)的表观质量为 m 1(如图3示),体积为V , 水的密度为ρ水 。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1m m V ρ-=水 被测物密度: 1m m V m m ρρ==-水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1 m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:1m 图4 静力称衡法和助待 测物块m

大学物理实验讲义实验牛顿环.docx

实验09用牛顿环测曲率半径 光的干涉现象证实了光在传播过程中具有波动性。光的干涉现象在工程技术和科学研究方面有着广 泛的应用。获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和 分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。本实验主要研究光的等厚干涉中的两个典型 干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹 处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。在实际工作中,通常利用牛顿环来测量 光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度 和固体的热膨胀系数等。 【实验目的】 1.观察光的干涉现象及其特点。 2.学习使用读数显微镜。 3.利用牛顿环干涉测量平凸透镜的曲率半径R 。入射光 4.利用劈尖干涉测量微小厚度。 【仪器用具】 R 读数显微镜、钠光灯、牛顿环装置、劈尖 r K d K 【实验原理】O (a) 1.牛顿环 牛顿环干涉现象是 1675 年牛顿在制作天文望远镜时,偶 然地将一个望远镜的物镜放在平面玻璃上而发现的。 如图 8-1 所示,将一个曲率半径为R(R很大)的平凸 透镜的凸面放在一块平面玻璃板上,即组成了一个牛 顿环装置。在透镜的凸面与平面玻璃板上表面间,构成了 一个空气薄层,其厚度从中心触点O (该处厚度为零) 向外逐渐增加,在以中心触点O 为圆心的任一圆周上的各点,薄空气层的厚度都相等。因此,当波长为的单色 光垂直入射时,经空气薄层上、下表面反射的两束相干光 形成的干涉图象应是中心为暗斑的宽窄不等的明暗相间 的同心圆环。此圆环即被称之为牛顿环。由于这种干涉条 纹的特点是在空气薄层同一厚度处形成同一级干涉条纹,因 此牛顿环干涉属于等厚干涉。 D 1 X (左)X(右 ) 11 D 4 X 4(左)X 4(右 ) (b) 图8-1 牛顿环的产生 设距离中心触点O 半径为 r K的圆周上某处,对应的空气薄层厚度为 d K,则由空气薄层上、下表面反射的两束相干光的光程差为 K 2d K 2 ( 8-1)

实验报告-杨氏模量测量

实验报告:杨氏模量的测定

杨氏模量的测定(伸长法) 【实验目的】 1.用伸长法测定金属丝的杨氏模量 2.学习光杠杆原理并掌握使用方法 【实验仪器】 伸长仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。 【实验原理】 物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。 设有一截面为S ,长度为l 的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了δ,其单位面积截面 所受到的拉力S F 称为胁强,而单位长度的伸长量l δ称为胁变。根据胡克定律,在弹性形变范围内,棒状 (或线状)固体胁变与它所受的胁强成正比: F E S l δ = 其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。 Fl E S δ = (1) 右图是光杠杆镜测微小长度变化量的原理图。左侧曲尺状物为光杠杆镜,M 是反射镜,b 为光杠杆镜短臂的杆长,B 为光杆杆平面镜到尺的距离,当加减砝码时,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为l 时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为0h ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为i h 。这样,钢丝的微小伸长量δ,对应光杠杆镜的角度变化量θ,而对应的光杠杆镜中标尺读数变化则为Δh 。由光路可逆可以得知,h ?对光杠杆镜的张角应为θ2。从图中用几何方法可以得出: tg b δ θθ≈= (1) tg22h B θθ?≈= (2) 将(1)式和(2)式联列后得: 2b h B δ= ? (3) 考虑到2 =/4S D π,F mg = 所以:2 8Bmgl E D b h π=? 这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。 图 光杠杆原理 A

杨氏模量数据表格及数据处理要求

杨氏模量测定(横梁弯曲法) 一、实验目的 1.学会用横梁弯曲法测定金属材料的杨氏模量; 2.学会读数显微镜的使用方法,掌握测量微小长度变化的方法; 二、实验仪器及用具 FD-YZ-MT杨氏模量测试仪1套JC—10读数显微镜米尺游标卡尺千分尺待测矩形金属条 三、实验原理 这部分内容请同学们按照实验报告写作要求来写 四、实验步骤(供参考) (1)将矩形待测材料安放在仪器的刀口上,套上铜刀口(下端挂一砝码盘)并使其刀刃恰 好在仪器两刀口的中间。 (2)调节显微镜的目镜,看清楚镜简内的叉丝.松开显微镜的底座并使镜筒轴线正对着铜 刀上的基线,前后移动底座,直到从镜中看清楚铜刀基线,锁定底座和升降杆;转动读数显微镜的镜筒使得目镜中看到直尺方向与竖直方向一致,读数显微镜的手轮朝上,锁紧读数显微镜镜筒,转动手轮移动十字叉丝与基线像完全重合,记下读数.(3)在砝码盘上顺序地加法码.共加7次,每次砝码的质量为10 g,同时,每次转动显微 镜的手轮,使得十字叉丝水平线与目镜中基线像重合,记下相应读数. (4)由梁上每取下一片砝码,仿照步骤(3)记下相应的读数. (5)测出仪器两刀口间的距离l,测量1—3次,再测出待测样品的厚度h和宽度a,各测 量6次,记录下相应的测量结果. (6)实验完毕整理好实验仪器 (7)利用逐差法求出对应10g的弛垂度λ ?,代入表达式(1)计算杨氏模量并求出其测量不确定度。 注意事项: 1.从初始读数到增加每一片砝码,转动读数显微镜的手轮使得叉丝与基线像重合过 程中叉丝移动方向要保持一致 2.整个测量过程确保读数显微镜或者铜刀口位置不发生移动,因此调节好读数显微 镜一定锁紧相应部位以免测量产生转动,增加砝码或减少砝码时要谨慎切莫碰动 铜刀口的位置。倘若发生了它们的位置有一个发生了变化,就必须从头开始测量。 3.使用千分尺和游标卡尺之前先记下相应的零点读数;再则,使用千分尺测量样品 厚度时应注意测量杆与固定砧别卡得太紧以免样品发生形变,使用游标卡尺测量 样品宽度时内量爪也别卡得太紧。 五、数据表格 表1 待测样品及支架两刀口距离测量 支架两刀口距离d度为:cm 千分尺零点读数:mm

金属丝杨氏模量的测定

物理实验报告 【实验名称】 杨氏模量的测定 【实验目的】 1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。 2. 掌握各种长度测量工具的选择和使用。 3. 学习用逐差法和作图法处理实验数据。 【实验仪器】 MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。 【实验原理】 一、杨氏弹性模量 设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即 L L Y S F ?= (1) 则 E L L S F Y ?= (2) 比例系数E 即为杨氏弹性模量。在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。Y 的国际单位制单位为帕斯 卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。 本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S 42d S π= 则(2)式可变为 E L d FL Y ?=24π (3) 可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量, F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时, F 每变化1kg 相应的ΔL 约为mm)。因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。 二、光杠杆测微小长度变化 尺读望远镜和光杠杆组成如图2所示的测量系统。光杠杆系统是由光杠杆镜架与尺读望远镜组成的。光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。三个尖足的边线为一等腰三角形。前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

大学物理实验讲义实验用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

实验 杨氏模量的测定(梁弯曲法)

实验 杨氏模量的测定(梁弯曲法) 【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为a 、宽为b 的金属棒放在相距为l 的二刀刃上(图1),在棒上二刀刃的中点处挂上质量为m 的砝码,棒被压弯,设挂砝码处下降λ,称此λ为弛垂度,这时棒材的杨氏模量 λ b a mgl E 3 3 4= . (1) 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在相距dx 的21O O 二点上的横断面, 在棒弯曲前互相平行,弯曲后则成一小角度?d 。显然在棒弯曲后,棒的下半部呈现拉伸状态,上半部为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了?yd ,它受到的拉力为dF ,根据胡克定律有 dx yd E dS dF ? =. 式中dS 表示形变层的横截面积,即bdy dS =。于是

y d y d x d Eb dF ?=. 此力对中间层的转矩为dM ,即 dy y dx d Eb dM 2 ?=. 而整个横断面的转矩M 应是 dx d b Ea dy y dx d Eb M a ??3 2 2 12 12= =? . (2) 如果将棒的中点C 固定,在中点两侧各为2 l 处分别施以向上的力 mg 2 1(图3),则棒的弯曲情 况当和图1所示的完全相同。棒上距中点C 为x 、长为dx 的一段,由于弯曲产生的下降λd 等于 ?λd x l d )2 ( -= (3) 当棒平衡时,由外力mg 2 1对该处产生的力距 )2 ( 21x l mg -应当等于由式(2)求出的转距M , 即 dx d b Ea x l mg ?3 12 1)2 ( 2 1= -. 由此式求出?d 代入式(3)中并积分,可求出弛垂度 b Ea mgl dx x l b Ea mg 3 3210 2 3 4)2 ( 6= -=?λ, (4) 即 λ b a m g l E 3 3 4= . (1)

大学物理实验讲义Word版

大学物理实验讲义 普通物理教研室编 班级: 学号: 姓名:

学生实验守则 1、进实验室前,必须根据每个实验的预习要求,阅读有关资料。 2、按时进入实验室,保持安静和整洁,独立完成实验。 3、实验开始前,应仔细检查仪器、设备是否齐备和完好。若有不全或损坏情况,应及时报告指导教师。 4、爱护公物,正确使用实验仪器和设备,不得随意动用与本实验无关的仪器和设备。 5、接线完毕,先自行检查,再请指导教师检查,确认无误后,方可接通电源。 6、在实验过程中必须服从教师指导,严格遵守操作规程,精力高度集中,操作认真,要有严格的科学态度。 7、实验进行中,严禁用手触摸线路中带电部分,严禁在未切断电源的情况下改接线路;若有分工合作的情况,必须要分工明确,责任分明,操作要有序,以确保人身安全和设备安全。 8、实验中若出现事故或发现异常情况,应立即关断电源,报告指导教师,共同分析事故原因。 9、实验完毕,应报请指导教师检查实验报告,认为达到要求后,方可切断电源。并整理好实验装置,经指导教师检查后才能离开实验室。

目录 序言 (1) 绪论 (2) 测量误差与实验数据处理基础知识 (4) 实验一长度的测量 (15) 实验二牛顿第二定律的验证 (20) 实验三固体和液体密度的测量 (23) 实验四测量比热容 (25) 4-1 混合法测固体比热容 (25) 4-2 冷却法测液体比热容 (26) 实验五测量冰的熔解热 (28) 实验六测量线胀系数 (30) 实验七万用电表的使用 (32) 实验八磁场的描绘 (36) 实验九惠斯登电桥测中值电阻 (40) 实验十伏安法测电阻 (43) 实验十一电位差计测电池的电动势和内阻 (45) 实验十二示波器的使用 (48) 实验十三静电场的描绘 (52) 实验十四测量薄透镜焦距 (55) 实验十五等厚干涉现象的研究 (58) 【参考文献】 (60)

动态法测量杨氏模量教案资料

实验四 动态法测定材料杨氏模量 杨氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。 杨氏模量测量方法有多种,最常用的有拉伸法测量金属材料的杨氏模量,这属于静态法测量,这种方法一般仅适用于测量形变较大、延展性较好的材料,对如玻璃及陶瓷之类的脆性材料就无法用此方法测量。动态法由于其在测量上的优越性,在实际应用中已经被广泛采用,也是国家标准指定的一种杨氏模量的测量方法。本实验用悬挂、支撑二种“动态法”测出试样振动时的固有基频,并根据试样的几何参数测得材料的杨氏模量。 一、实验目的 1.理解动态法测量杨氏模量的基本原理。 2.掌握动态法测量杨氏模量的基本方法,学会用动态法测量杨氏模量。 3.培养综合运用知识和使用常用实验仪器的能力。 4.进一步了解信号发生器和示波器的使用方法。 二、实验原理 长度L 远远大于直径d (L>>d )的一细长棒,作微小横振动(弯曲振动)时满足的动 解以上方程的具体过程如下(不要求掌握): 用分离变量法:令)()(),(t T x X t x y = 代入方程(1)得: 2 244d d 1d d 1t T T YJ s x X X ρ-= 等式两边分别是x 和t 的函数,这只有都等于一个常数才有可能,设该常数为4 K ,于是得:

0d d 444=-X K x X 0d d 422=+T s YJ K t T ρ 这两个线形常微分方程的通解分别为: Kx B Kx B shKx B chKx B x X sin cos )(4321+++= ) cos()(?ω+=t A t T 于是解振动方程式得通解为: ) cos()sin cos (),(4321?ω++++=t A Kx B Kx B shKx B chKx B t x y 其中式(2)称为频率公式: 2 14??????=s YJ K ρω (2) 该公式对任意形状的截面,不同边界条件的试样都是成立的。我们只要用特定的边界条件定出常数K ,并将其代入特定截面的转动惯量J ,就可以得到具体条件下的计算公式了。 如果悬线悬挂(支撑点)在试样的节点附近,则其边界条件为自由端横向作用力: 033=??-=??-=x y YJ x M F 弯矩 : 02 2=??=x y YJ M 即 0x d X d 0x 3 3== 0x d X d l x 33== 0x d X d 0x 2 2== 0x d X d l x 22== 将通解代入边界条件,得到1cos =KLchKL ,用数值解法求得本征值K 和棒长L 应满足:ΛΛ420.20 ,279.17 ,137.14 ,9956.10 ,8532.7 ,7300.4 ,0=KL , 由于其中第一个根“0”对应于静态情况,故将其舍去。将第二个根作为第一个根,记作L K 1。一般将7300.4 1=L K 所对应的共振频率称为基频(或称作固有频率)。在上述L K n 值中,1,3,5…个数值对应着“对称形振动”, 第2、4、6…个数值对应着“反对称形振动”。图1给出了当4 ,3 ,2 ,1n =时的振动波形。由1n =图可以看出,试样在作基频振动时,存在两个节点,它们的位置距离端面分别为L 224.0和L 776.0处。理论上悬

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

2 用拉伸法测金属丝的杨氏弹性模量 一、 实验目的 1. 学会用光杠杆法测量杨氏弹性模量; 2. 掌握光杠杆法测量微小伸长量的原理; 3. 学会用逐差法处理实验数据; 4. 学会不确定的计算方法,结果的正确表达; 5. 学会实验报告的正确书写。 二、 实验仪器 杨氏弹性模量测量仪 ( 型号见仪器上 )(包括望远镜、测量架、光杠杆、标尺、砝 码)、 钢卷尺(0-200cm ,0.1 、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01) 三、 实验原理 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。 本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体 能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度 方向施力F 后,物体的伸长 L ,则在金属丝的弹性限度内,有: L 我们把E 称为杨氏弹性模量。 如上图: E = S L L x n tg L = 2x D n n = n - n )

4 四、 实验内容 < 一> 仪器调整 1. 杨氏弹性模量测定仪底座调节水平; 2. 平面镜镜面放置与测定仪平面垂直; 3. 将望远镜放置在平面镜正前方 1.5-2.0m 左右位置上; 4. 粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、 准 星对准平面镜中心,并能在望远镜上方看到尺子的像; 5. 细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜, 然后继续调节物镜焦距并能看到尺子清晰的像; 6. n 0 一般要求调节到零刻度。 <二>测量 7. 计下无挂物时刻度尺的读数n 0 ; 8. 依次挂上1kg 的砝码,七次,计下n 1,n 2,n 3,n 4,n 5,n 6,n 7 ; 9. 依次取下1kg 的砝码,七次,计下 n 1',n 2',n 3',n 4',n 5 ,n 6',n 7'; 10. 用米尺测量出金属丝的长度 L (两卡口之间的金属丝)、镜面到尺子的距离D ; 11. 用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处 理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是 不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: (n 4-n 0)+(n 5-n 1)+(n 6-n 2)+(n 7 -n 3) 五、 实验数据记录处理 4 8 FLD x d 2 x n 2D 3. 注:上式中的 n 为增重4kg 的金属丝的伸长量。

大学物理实验讲义(密度测定)

图3 静力称衡法测密度 不规则物体密度的测定 【实验目的】 1、学习物理天平的使用方法; 2、掌握用流体静力称衡法测定不规则固体密度的原理和方法; 3、掌握用助沉法测定不规则固体密度(比水的密度小)的原理和方法; 4、掌握用密度瓶测定碎小固体密度的原理和方法 。 【实验仪器和用品】 物理天平(500g 、50mg )、密度瓶(50ml )、烧杯(500ml )、不规则金属块(被测物)、石蜡块(被测物)、碎小石子(被测物)、清水、细线。 【实验原理】 某种物质单位体积的质量叫做这种物质的密度。对一密度均匀的物体,若其质量为m,体积为V ,则该物体的密度: V m = ρ (1) 实验中,测出物体的质量m 和体积V ,由上式可求出样品的密度。 1、用流体静力称衡法测定不规则固体的密度(比水的密度大) 设被测物在空气中的质量为m (空气浮力忽略不计),吊,不接触烧杯壁和底)的表观质量为m 1(如图3示),体积为水的密度为ρ水。根据阿基米德定律,有: 1()Vg m m g ρ=-水 1 m m V ρ-= 水 密度瓶 游码 平衡螺母 边刀托 杯托盘 底座 度盘 指针 中刀托 手轮 调平螺母 挂钩 吊耳 水准泡 托盘 托盘 横梁 物理天平

被测物密度: 1 m m V m m ρρ= = -水 (2) 2、流体静力称衡法和助沉法相结合测定密度小于水的不规则固体的密度 设被测物在空气中的质量为m ,用细线将被测物与另一助沉物串系起来:被测物在上,助沉物在下。设仅将助沉物没入水中而被测物在水面上时系统的表观质量为1m ,二者均没入水中(注意悬吊,不接触烧杯壁和底)时的表观质量为2m ,如图4所示: 根据阿基米德定律,被测物受到的浮力为:12()Vg m m g ρ=-水,则被测物体积为: 12 m m V ρ-= 水 被测物密度为: 12 m m V m m ρρ= = -水 (3) 3、用密度瓶测定碎小固体(小石子)的密度 假设密度瓶的质量为1m ,将瓶内装满待测的小石子后的质量为2m ,则待测小石子的质量:21m m m =-。 然后将装有小石子的密度瓶加满水,再称其总质量3m ,为了得到小石子排开水的体积,还需要将密度瓶里的小石子倒出,再加满水称得其质量为4m 。 这样可得小石子排开水的质量为:43214321(())m m m m m m m m ---=-+- 图5 密度瓶法测小石子的密度 123 4图4 静力称衡法和助沉法测石蜡块的密度 待测物块(石蜡块) 2

大学物理实验讲义汇总

大学物理实验讲义 ()

目录 实验1 复摆 (4) 预习报告 (8) 实验2 弦振动的研究 (9) 预习报告 (13) 实验3 速度和加速度的测量 (14) 预习报告 (21) 实验4 动量守恒定律的验证 (22) 预习报告 (27) 实验5 空气中声速的测量 (28) 预习报告...................................................... 错误!未定义书签。实验6 RLC电路的稳态特性 (24) 预习报告...................................................... 错误!未定义书签。实验报告.. (34) 实验7 油滴法测定基元电荷 (46) 预习报告 (53) 实验8 用双臂电桥测量低值电阻 (54) 预习报告...................................................... 错误!未定义书签。实验9 牛顿环. (60) 预习报告 (67) 实验10 光电效应及普朗克常数的测定 (68) 预习报告 (73) 实验11 单缝衍射 (60) 预习报告...................................................... 错误!未定义书签。实验12 多缝的夫琅和费衍射. (79) 预习报告...................................................... 错误!未定义书签。

实验报告——速度和加速度的测量 (83) 实验报告——牛顿环 (88)

钢丝杨氏模量的测定-实验报告

钢丝氏模量的测定 创建人:系统管理员 总分:100 实验目的 本实验采用拉伸法测量氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 实验仪器 MYC-1型金属丝氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 实验原理 在胡克定律成立的围,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的氏模量,又因为ΔL 很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,L/l tan ?=≈θθ,其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有:

实验容 1.调节仪器 (1)调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽,支脚放在管制器的槽,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数i r ,然后再将砝码逐次减去,记下对应的读数' i r ,取两组对应数据的平均值i r 。 (3)用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3.数据处理 (1)逐差法 (2)作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2(6) 其中)/(2SlM DL M =,在一定的实验条件下,M 是一个常量,若以i r 为纵坐标,i F 为横坐标作图应得一直线,其斜率为M 。由图上得到M 的数据后可由式(7)计算氏模量 )/(2SlM DL E = (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

杨氏模量实验报告

钢丝的杨氏模量 【预习重点】 (1)杨氏模量的定义。 (2)利用光杠杆测量微小长度变化的原理和方法。 (3)用逐差法和作图法处理实验数据的方法。 【仪器】 杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。 【原理】 1)杨氏模量 物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。在弹性形变范围内,按照胡克(HookeRobert1635—1703)定律,物体内部的应力正比于应变,其比值 (5—1) 称为杨氏模量。 实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。 2)用静态拉伸法测金属丝的杨氏模量 杨氏模量测量有静态法和动态法之分。动态法是基于振动的方法,静态法是对试样直接加力,测量形变。动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。静态法原理直观,设备简单。 用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。待测样品是一根粗细均匀的钢丝。钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B夹紧并穿过平台C的中心孔,使钢丝自由悬挂。通过调节三角底座螺丝,使整个支架铅直。下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。 3)光杠杆

相关文档
最新文档