基于TDA2030A功放制作详细教程

基于TDA2030A功放制作详细教程
基于TDA2030A功放制作详细教程

TDA2030A功放教程

一:制作要求

运用TDA2030A与简单外围电路制作一个音频功放电路,把来自信号源的微弱电信号进行放大,以此驱动扬声器发出声音。

二:制作目的

1、让会员们接触TDA2030A这款芯片,熟悉并掌握TDA2030A的工作原理,及其简单应用。

2、让会员们学会分析电路并且能读懂电路,培养会员们的识图能力。

3、通过这次制作活动,还可以让会员们与之前的语音录放仪结合起来,进一步让他们进行扩展。

让会员们学会合作,提高我们协会整体团结、合作的工作能力,培养协会的团结精神。

三:制作方案

【1】总电路图

本电路可以将是利用运放TDA2030A 制作的功率放大器。电源电压为±12V 至±22V 。输出的最大功率为18W 。

该电路为深度负反馈电路,输出电压的放大倍数约为Av=R1/R2=32.3(具体放大倍数请参考模电书籍负反馈部分)。其中R4选用大功率水泥电阻,因为空载时流过R4的电流会过大。D1与D2为二极管,有黑线或者银色线的一端为负极。没有标有正负号的电容为无极电容,不需要区别正负极。标有正负极的电容要区分正负。电容接错会爆炸。

【2】电路元器件

2.1 TDA2030A 芯片

本次制作的功放是基于集成运放芯片TDA2030A 芯

片,该芯片有5个引脚,分别是:1、正相输入端 2、

反相输入端 3、电源负极 4、输出端 5、电源正极。

信号从正相输入端输入时,输出端的放大信号与正相 输入端的相位相同;信号从反相输入端输入时,输出

端的放大信号与反相输入端的相位相反。5脚和3脚分

别与电源正负极相连,为运放提供能量。

2.2 单联电位器

电位器是具有三个引出端、阻值可按某种变化 规律调节的电阻元件。电位器通常由电阻体和可移

动的电刷组成。当电刷沿电阻体移动时,在输出端

即获得与位移量成一定关系的电阻值或电压。电位

器既可作三端元件使用也可作二端元件使用。后者

可视作一可变电阻器。而双联电位器简单来说就是

有两个三脚电位器构成。

2.3 立体声插座和插头

这是我们在电子市场上买到的3.5mm 立体声耳机插座。它

的机械尺寸如下:

从耳机插座底面的管脚旁边会有①②③④⑤的编号,对应

尺寸图。

TDA2030A 实物图

单联电位器

立体声插座

一般来说耳机采用3段式的插头,插头直径一般有3.5mm和2.5mm,不同直径的插

头对应不同直径孔的耳机插座,所以“公”和“母”要对应。

根据三段式的耳机插头的接线,就可以确定耳机插座的连接:

1脚接地,2脚接右声道(Right),5脚接左声道(Left)。在耳机接头没插入插座的时候,2脚和3脚,4脚和5脚是接在一起的,而一旦接头插入插座的时候,2脚和3脚,4脚和5脚会分开。所以从系统可靠性的角度来说,3脚和4脚应该接地,这样的话,耳机没插的时候,左右声道输入接地,系统输入为0。很多时候,我们都会把不用的3脚4脚悬空,那么2脚和5脚也是悬空的,这样带来的风险就是,万一会从外界串

入一个大电流,会从2脚和5脚传到板子上,从而会烧毁芯片。

【3】原理简介

3.1功放介绍

功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。

3.2 半导体和三极管

P型半导体:在纯净的硅晶体中掺入少量的三价元素(如硼),是指取代晶格中硅原子的位置,就形成P型半导体。由于杂质原子的最外层有3个价电子,所以当他们与周围的硅原子形成共价键是,就产生了一个“空穴”。

N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。有杂质原子的最外层有五个价电子,所以除了与其周围硅原子形成共价键外,还多出一个电子。多出的电子不收共价键的束缚,只需获得很少的能量,就成为自由电子。

PN结:P型半导体与N型半导体相互接触时,其交界区域称为PN结。P区中的自由空穴和N区中的自由电子要向对方区域扩散,造成正负电荷在PN 结两侧的积累,形成电偶极层。

P端接电源的正极,N端接电源的负极称之为PN结正偏。此时PN结如同一个开关合上,呈现很小的电阻,称之为导通状态。

P端接电源的负极,N端接电源的正极称之为PN结反偏,此时PN结处于截止状态,如同开关打开。结电阻很大,当反向电压加大到一定程度,PN结会发生击穿而损坏。

三极管:半导体三极管也称为晶体三极管。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。

三极管功能:在数字电路中,三极管实质上是一个受基极信号控制的无触头开关。只要在三极管的基极输入相应的控制信号,就能使三极管处于截止(相当于开关断开)和饱和(相当开关接通)状态,起到开关的作用;在模拟电路中,三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。

3.2 运算放大器

集成运放有同相输入端和反向输入端,这里的“同相”和“反相”是指运放的输入电压与输出电压之间的相位关系。

3.3 虚短和虚短的概念(分析运放的重要依据):

运放工作在线性状态时,利用运放的理想模型可以推出两条结论:

1、运放两输入端的电位箱等,即:U+ = U-,

U+和U-分别为运放同相输入端和反向输入端的电位。从上式看,运放两输入端好像是短路,但并不是真正的短路,因此成为虚短。只有运放工作在线性状态下时,才存在虚短。

2、运放量输入端的输入电流为0,即:i+ =i- = 0,

上式中,i+和i-分别成为运放同相输入端和反相输入端的输入电流。从上式可见,运放输入端像开(短)路,但并不是真正的断路,因此成为虚断。

3.4 保护措施:

集成运放在使用中常常因为以下三种原因被损坏:输入信号过大,使PN结击穿;电源电压极性接反,使PN结击穿;电源电压极性接反或过高;输出端直接接“地”或接电源,运放将因输出级功耗过大而损坏。因此,为使运放安全工作,需从三个方面进行保护。

1、输入保护

一般情况下,运放工作在开环(即未引入反馈)状态时,易因差模电压过大而损坏;在闭环状态时,易因共模电压超过极限值二损坏。下图是防止差模电压过大的保护电路和防止共模电压过大的保护电路。

图5-4-2 输入端保护电路

2、输出电路

下图为输出端保护电路,限流电阻R与稳压管Dz构成限幅电路。一方面将负载与集成运放输出端隔离开来,限制了运放的输出电流;另一方面也限制了输出电压的幅值。当然,任何保护措施都是有限度的,若将输出端直接接电源,则稳压管会损坏,使电路的输出电阻大大提高,影响电路的性能。

图5-4-3 输出端保护电路

3、电源端保护措施

为了防止电源极性接反,可利用二极管的单向导电性,在电源端串联二极管来实现保护。

图5-4-4电源端保护电路

3.5反馈

反馈分为正反馈和负反馈。引入了反馈后,放大电路的输入回路中除了原有的输入信号外,还增加了反馈信号。如果反馈信号削弱了原来的输入信号,使净输入信号减小,从而使放大电路的放大倍数降低,则称为负反馈;如果反馈信号增强了原来的输入信号,反而使原来的净输入信号增大,相应地使放大电路的放大倍数提高,则称为正反馈。

正反馈和负反馈通常称为放大电路的反馈极性,一般采用瞬时极性法判断反馈放大电路的极性。这里的瞬时极性不是电压的正负极性,而是电压的有关变化趋势。打个电压增加的方向变化时为正斜率,及瞬时极性为“正”,用“+”或“↑”表示;当电压向减小的方向变化时为负斜率,即瞬时极性为“负”,用“-”或“↓”表示。

3.6 TDA2030A功放原理

图5-4-5 TDA2030A芯片图5-4-6实物图

功放电路的简单工作原理:

首先信号经过立体声插座输入到电位器,以此得到信号Vi(信号Vi的大小可以经

过电位器来调节),,然后信号Vi从1脚正相输入端输入,从后1脚输入之后,紧接着信号Vi经过 C1(电容C1作用:将正相输入端的直流电压截去仅让交流成分进行输入)后到达TDA2030A的正相输入端(信号从正相输入端输入时,输出端的放大信号与正相输入端的相位相同)。经过TDA2030A的作用,信号从4号脚输出,并且输出信号已经得到放大,在经过电容C2(电容C2的作用是隔去直流成分)作用后输出驱动负载。

下面我们简单地分析一下功放的其他外围电路,首先我们先分析一下功放的电源供电部分,此次制作的功放需要的电压为±12V,分别接到5脚和3脚,与电源正极相连的电容C5、C3是电源的去耦电容,即降低电源对GND的交流阻抗用的电容(称为旁路电容),与电源负极相连的电容C4、C6的作用与C5、C3相同。

另外,由R1、R2构成了反馈通路,将反馈电压引回到反相输入端,负反馈的作用是使系统输出与系统目标的误差减小,系统趋于稳定。而在与负载并联的R4与C7的串联电路中,R4选用大功率水泥电阻,因为空载时流过R4的电流会过大。电容C7的作用是滤去高频电压。两个二极管的作用则是为了保护输出电路。

【4】电路制作过程中的注意事项

4.1制作之前的电路排版

排版的重要性有多少,可以这样讲,在模拟电路制作活动中,排版的好坏直接决定你制作的结果,所以大家在准备焊接之前,一定要在深思熟虑的排版之后再开始。下面是在排版过程中的一些技巧:

A.在排版之前,你首先要做的任务是在自己的大脑里面简单地安排一下电路元件的大致位置,自己要先想一下自己排版的大致框架。

B.在确定自己排版的大致框架之后,你需要做的就是拿铅笔将自己想的排版电路按照实际情况画出来,在你实际画图的过程中,你可能还会遇到排版的问题,

那么你就需要临时改动了。

C.在排版任务完成之后,不要急着去焊接电路,先看一下自己的排版电路跟实际的理论电路是不是完全一样,,只有在确保一切都没问题的情况下,才能开始正

式的焊接任务。

4.2焊接过程中的问题

在焊接工程中,你们会充分认识到“磨刀不误砍柴工”的意义。排版可能会占用大家的一些时间,但是在焊接过程中,排版会帮你省好多的时间,更重要的一点是能帮你提高制作的成功率。

另外,在焊接过程中,你们要养成良好的焊接习惯,以我之前的焊接经验来看,在我焊接的工程中,往往会漏掉一些线没焊接上,这样的漏焊情况是经常出现,解决种问题的一般方法就是,在你焊接的过程中,没焊接完一根线的话,就将自己排好的电路版上对应的那根线做一下标记,等自己焊接完了之后,看一下自己的排版电路上是否有那根线漏掉,如有就可以及时的改正,这样一来就可以简单而又快速的解决种问题。

除此之外的另一个比较常见的问题就是虚焊问题。虚焊是一个十分麻烦的问题,因为平直观看的话,有时候很难发现问题,所以这就要求各位同志们将自己的焊工加强训练一下,尽量避免这样的情况发生。

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

KSA50甲类功放详细制作流程

这里是事先声明: (1)我是第一次装机子而且是甲类机---别人会问:第一次就装甲,你厉害啊----不是甲我有必要装么?我以前用的国产乙类,甲乙类厂机。 (2)买了四块KSA50---烧毁了一块,另外一块电源接反烧了俩二极管以及电源输入线路上的铜箔,重新弄好,正式上机是后来的两块,板子是惠州老刘的KSA50 (3)我的目的是听音乐,不是焊机为娱乐滴人----我不折腾,可能的话一块线路调到我要的声音,如果可能的话。 (4)老鸟可以无视我的经验,以下的只对菜鸟起作用,因为我连电路图差不多都看不懂,我是个吃现成的人---老鸟可以鄙视下 (5)发帖的目的是为了别人少走弯路,以下经验所诉只针对KSA50,以前开过贴不全面问题没有表述清楚,这次汇总下,终于挂上双声道了----这说明声音接近自己调试目的了,这点很重要。目的是个人准备给滤波电容最后拍定,测试声场定位,高中音 表现很理想了已经。(个人意见) 以下是正文: (1)选择之前很困惑,到底什么线路好?论坛上放水得多,冒充大侠的不少,真理只在少部分人手里---我相信这句话,但是群总的眼睛是雪亮的—我也相信这句话。既然 卖了那么多,买了那么多,存在即是道理,所以我选择了KSA50(也是因为群里的 朋友在推荐),想装PASS但是很多人对低音有微词,所以暂不考虑, (2)备料----KSA50整个淘宝就那么几款板子,直刻原厂的还是算了吧,我自问没那水平,我要的是KSA50基本框架,有些卖家适当的改进未必不见得是坏事,适合国情。 滤波电容的选择因为之前只对ELNA有所耳闻所以找了几个库存全新的JVC定制品 (这是第一次买料),机箱找遍淘宝只能是这个小甲箱(散热面积最大),那些个动 辄几十斤散热的大侠你还是别忽悠了,除非你想让你的散热片工作在50度以下!经过推算,淘宝上卖的最多的大甲箱A1000A998之类的绝对可以对付50W甲类!但 是由于是多块拼接所以紫铜均热板是必需的!!越大越好!(当然这样搞成本很高) 以之前对于音响系统的了解,双单声道无疑是最好的,干扰最低,而且这样搞散热 也很大---事实证明我的选择是对的!变压器是定制的,基本不叫—开机一瞬间微哼,后面听不到了,初级和次级大电流线径很重要,国内的牛和外国的还是有差距,因 为做的是甲类,线径不到大电流输出不能保证,我定制的是800W36V四线线径不 过1.5mm而已,勉强达标。IR桥上面散热片是用硅胶粘的牢靠的很(记住是硅胶不是硅脂)另外又买了一小盒含银硅脂,桥装在底板或者上盖板散热效率确实比 散热片强些,当然大型的散热片除外,桥的发热比散热片低,要是劣质产品那就超 标了。第二次备料----日化滤波18000uf四只,飞利浦23000uf四只,尼康BP-S 无极一堆,思碧等等小容量电容一堆,还有负反馈各种各样(我就不说了,个人听 音取向不同选择不同)。整流桥我都是买的IR,整个淘宝适合IR的整流桥电路板就一家,我后来发现很多朋友选择的螺栓型无电路板滤波和整流其实是很方便的,用电源板局限性很大。。。线材的选择---这里有必要说下,淘宝里铜镀银特氟龙基本都是很硬的那种,多股线芯很粗铜质有待考证,而且不符合线径一定线芯越多越 好的原则。老刘的和另外两家都一样,说实话我很不喜欢,因为我的是引线连接, 硬线非常不好用,后来别家买了软的特氟龙(有点水,不是说线水,线很好铜的纯 度高很软,这个外皮是透明的不燃但是60W烙铁温度高了外皮会化的很软但是还没融掉)最终测试用的是这种,对于外接线的大管要像我这样给上标记,我用的是热 缩管,避免线接错的悲剧发生。喇叭走线是4mm的怪兽,这线也不能焊,物理直连。 开关是红波的19mm开孔自复位开关,因为有软启动,没有软启动的选择机箱自带

音频功率放大器实验报告_音频功率放大器课程设计报告.docx

音频功率放大器实验报告_音频功率放大器课程设计报告 本科实验报告 课程名称:姓名:学院:系:专业:学号:指导教师: 电子电路安装与调试 信息与电子工程学院 电子科学与技术 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备五、实验步骤与过程六、实验调试、实验数据记录七、实验结果和分析处理八、讨论、心得 一、实验目的 1、学习并初步掌握音频功率放大器的设计、调试方法。 2、学习并掌握电路布线、元器件安装和焊接。 3、掌握音频功率放大器各项主要性能及指标的调试方法。 二、实验任务与要求 1、设计 (1)设计一音频功率放大器,使其达到如下主要技术指标:负载阻抗:R L =4Ω额定功率:P o =10W 带宽:BW ≥(50~15000) Hz 音调控制: 低音:100Hz ±12dB 高音:10kHz ±12dB 失真度:γ≤3% 输入灵敏度:U " i (2)设计满足以上设计要求的稳压电源。 2、在Altium Designer中画出原理图, 并进行PCB 板的编辑与设计。 3、根据给定的功率放大器的原理图(三),做如下工作: (1)分析计算晶体管前置放大器的直流工作电压、电流、输入电阻、输出电阻、各级放大器的交流增益。 (2)分析音调控制电路的工作原理,计算4个极端情况下的交流增益。(3)安装实验电路板 (4)调试和测试实验电路的增益、频响特性曲线、输入电阻和输出电阻、以及改变某实验名称:音频功率放大器的设计、安装和调试姓名:陈肖苇学号:3140104580_ 些电路参数后的性能测试(电路图中括号内的数字)。 (5)分析实验数据,并与理论计算值比较,讨论二者之间的误差和产生误差的原因。三、实验原理和实验方案设计 作为音频放大器的音源部分,其输出电平既有高至数百毫伏(如调谐器:50~500mV,线路输出:100~500mV),也有低至1mV (如话筒:1~5mV),相差达几百倍。音频放大器就是要把这些不同大小的音源放大后驱动喇叭,发出同等强度的声音。因此,根据不同音源的需要,可以画出音频放大器的原理框图,如图1所示。 P.2 装订线 图1音频功率放大器框图 1、各部分电路电压增益的确定 根据额定输出功率P o =10W和负载R L =4Ω,可求得输出电压为 : V o ===6.32V 所以整机中频电压增益为:A O um =

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路 许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3886、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好*的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试以上6种后级电路可根据P甲=2I02RL计算其所需甲类功率或末级静态电流,从而根据需要调试末级静态电流。如一台在8Ω负载下输出功率为80W的纯甲类机,末级静态电流为Io=2.236,则流过每管的静态电流为Io′=Io/n=2.236/3A=0.745A,即0.25Ω/5W电阻上直流压降为V=Io′?R=745×0.25≈186(Mv)。 虽然纯甲类功放声音柔和、甜美,但是它对变压器、滤波电容、功率管及散热片都有极其严格的要求。听一个月下来,电费负担重。在这种情况下,不妨把功放制作成高偏置甲乙类功放,比如20W以下为甲类输出,20W~100W为甲乙类输出。此时功放总静态电路为Io=1.118A,其实一般居室环境,20W左右的纯甲类输出,可满足大多数烧友的听音要求。 由于电压放大部分已被厂家调试好,只需装配好末级电流放大部分及相关接口。微调电压放大部分的W1使输出为0mV,再调节电流放大部分的多圈电位器W2,测量0.25Ω/5W电阻两端的直流电压,使其符合自己的要求,对图3、图4可直接测量0.25Ω/5W两端的电压,对图5应测量SAP15N④、⑤脚或SAP15P①、②脚两端的电压。 若测试一切正常,即可煲机1~2小时,重复检查各项参数,若无误,即可放音试听。若想装配纯甲类功放,可把整机先调成高偏置甲乙类功放,试听正常,再逐步加大静态电流至所需值,使该机成为纯甲类功放。 以上五种电流放大板,所配散热器尺寸均为360mm×120mm×50mm,成品板均调试成高偏置甲乙类功放(甲类20W+20W),若要装配80W+80W纯甲类功放,只需换掉散热片,把功放板装入两边外露散热器式专业功放机箱(480mm×430mm×150mm)调试好即可。 以上线路,稍作调整(如改变变压器功率及供电电压、功率管对数及静态电流)即可有多种用途使用。如:制作大功率功放(250W/4Ω);制作电子分频功放;制作高品质耳机放大器(用本电压放大板推动K214/J77或K2013/J313);用电压放大部分对一些分立元件中、低档功放进行摩机;制作顶级8声道纯后级功放(如用4块电压放大板,共用电源,每声道一对三肯2SC3858、2SA1494等)

OTL功率放大器实验报告(DOC)

课程设计 课程名称模拟电子技术 题目名称功率放大器 专业班级12网络工程本2 学生姓名郭能 学号51202032019 指导教师孙艳孙长伟 二○一三年十二月二十三日 目录 引言 (2)

一、设计任务与要求 (2) 1.1 设计任务 (2) 1.2 设计要求 (2) 二、方案设计 (3) 三、总原理图及元器件清单 (4) 四、电路仿真与调试 (6) 五、性能测试与分析 (7) 六、总结 (8) 七、参考文献 (8)

OTL功率放大器 引言:OTL(Output transformerless )电路是一种没有输出变压器的功率放大电路。过去大功率的功率放大器多采用变压器耦合方式,以解决阻抗变换问题,使电路得到最佳负载值。但是,这种电路有体积大、笨重、频率特性不好等缺点,目前已较少使用。OTL电路不再用输出变压器,而采用输出电容与负载连接的互补对称功率放大电路,使电路轻便、适于电路的集成化,只要输出电容的容量足够大,电路的频率特性也能保证,是目前常见的一种功率放大电路。它的特点是:采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出),有输出电容,单电源供电,电路轻便可靠。两组串联的输出中点”可理解为采用互补对称电路(NPN、PNP参数一致,互补对称,均为射随组态,串联,中间两管子的射极作为输出)。 1:设计任务与要求 1.1设计任务: 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.培养实践技能,提高分析和解决实际问题的能力。 3.掌握OTL音频功率放大器的设计方法,基本工作原理和性能指标测试方法。 4. 通过一个OTL功率放大器的设计、安装和调试,进一步加深对互补对称功率放大电路的理解,增强实际动手能力。 1.2 设计要求: 1.设计时要综合考虑实用,经济并满足性能指标的要求,合理选用元器件。 2.广泛查阅相关的资料,不懂的地方积极向老师同学请教,讨论。认真独立的完成课题的设计。 3.按时完成课程设计并提交设计报告。 2:方案设计 要求设计一个由二极管,三极管,电容,电阻等元件组合而成的OTL音频功

LM386 电路原理 音频放大器

LM386 电路原理 LM386是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 一、 LM386内部电路 LM386内部电路原理图如图所示。与通用型集成运放相类似,它是一个三级放大电路。 第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。 第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。

引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。 电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。 二、 LM386的引脚图 LM386的外形和引脚的排列如右图所示。引脚 2为反相输入端,3为同相输入端;引脚5为 输出端;引脚6和4分别为电源和地;引脚1 和8为电压增益设定端;使用时在引脚7和地 之间接旁路电容,通常取10μF。 LM386的外形和引脚的排列如右图所示。引脚2为反相输入端,3为同相输入端;引脚5为输出端;引脚6和4分别为电源和地;引脚1和8为电压增益设定端;使用时在引脚7和地之间接旁路电容,通常取10μF。 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声 查LM386的datasheet,电源电压4-12V或5-18V(LM386N-4);静态消耗电流为4mA;电压增益为20-200dB;在1、8脚开路时,带宽为300KHz;输入阻抗为50K;音频功率0.5W。 尽管LM386的应用非常简单,但稍不注意,特别是器件上电、断电瞬间,甚至工作稳定后,一些操作(如插拔音频插头、旋音量调节钮)都会带来的瞬态冲击,在输出喇叭上会产生非常讨厌的噪声。 1、通过接在1脚、8脚间的电容(1脚接电容+极)来改变增益,断开时增益为20dB。因此用不到大的增益,电容就不要接了,不光省了成本,还会带来好处--噪音减少,何乐而不为? 2、PCB设计时,所有外围元件尽可能靠近LM386;地线尽可能粗一些;输入音频信号通路尽可能平行走线,输出亦如此。这是死理,不用多说了吧。 3、选好调节音量的电位器。质量太差的不要,否则受害的是耳朵;阻值不要太大,10K最合适,太大也会影响音质,转那么多圈圈,不烦那! 4、尽可能采用双音频输入/输出。好处是:“+”、“-”输出端可以很好地抵消共模信号,故能有效抑制共模噪声。 5、第7脚(BYPASS)的旁路电容不可少!实际应用时,BYPASS端必须外接一个电解电容到地,起滤除噪声的作用。工作稳定后,该管脚电压值约等于电源电压的一半。增大这个电容

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音频功率放大器模拟电路设计

1方案设计 (4) 2方案比较 (7) 3单元模块设计 (8) 3.1直流稳压电源 (8) 3.2前置放大 (10) 3.3 滤波器设计 (11) 3.3.1主要元器件 (11) 3.3.2 低频滤波器电路 (13) 3.3.3 带频滤波器电路 (13) 3.3.3 带频滤波器电路 (14) 3.4功率放大器电路 (14) 3.4.1主要元器件介绍 (14) 3.4.2 电路工作原理介绍 (16) 4 软件设计 (16) 4.1P ROTEL 99SE软件 (17) 4.2W ORD 2003软件 (17) 5系统调试 (17) 系统总图 (17) 6 系统功能 (18) 7.总结与体会 (19) 文献 (20) 附录:电路原理图 (21) 相关设计图 (21) 相关设计软件 (21)

- 2 - 音频功率放大器 摘要:本音频功率放大器由四部分组成:电源,前置放大级,滤波器,功率放 大电路。电源电路输入交流电,输出18V 的直流电,为集成功率放大器供电;再经过变换输出+12V 与-12V 的直流电,为滤波器及前置放大级的运算放大器的供电。前置放大级将音频信号放大至功率放大器所能接受的范围。滤波器电路,分为高通滤波器、中通滤波器、低通滤波器,将输入的音频信号分为不同频率音频信号,并设有开关可以按个人喜好调节输出音频信号。功率放大电路,将输入的信号功率放大。 关键字:音频功率放大器、电源、滤波器、功放电路 Abstract: The audio power amplifier consists of four parts: power supply, level preamp, filter, power amplifier circuit. AC input power supply circuit, output DC 18V, power supply for the integrated power amplifier; another transform output +12 V and-12V DC, in order to filter and preamp-level op-amp power supply. Preamp-level audio signal amplification will be acceptable to the scope of power amplifier. Filter circuit, is divided into high-pass filter, in-pass filter, low pass filter, the input audio signal into different frequency audio signal and a switching regulator in accordance with personal preference, audio output. Power amplifier circuit, the input signal power amplifier. Key words: Audio power amplifier, power supply, filter, power amplifier circuit

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

音频功率放大电路的设计

音频功率放大电路的设计 王##(安庆师范大学物理与电气工程学院安徽安庆246011) 指导老师:祝祖送 摘要:本文的内容是音频功率放大电路的设计,其有操控简单、音质好等特点。本设计电路使用的是TDA2030为音频功率放大器,其工作电压为+15V。它将输入电路的电流放大,之后再将扬声器驱动工作。采用LF353对输入的音频信号前级放大,采用DAC0832对前级放大进行控制,采用STC89C52单片机控制电路的放大倍数,最后由液晶显示器显示出放大倍数。 关键词:功率放大器,前级放大,保护电路 1引言 对音频功率放大电路进行研究,其意义是目前在该领域有很好的发展前景,在我们的实际生活中的应用也是十分广泛的。小至我们经常使用的音乐MP4,大到城市报警系统。该设计的研究分别为硬件及软件两部分。扬声器输入电路、功率放大电路、前级放大电路、以及单片机电路构成本设计的硬件电路;液晶显示、键盘扫描、单片机控制等构成本设计的软件部分。 音频功率放大电路设计过程中困难的是选择各部分硬件电路,由于功率放大器的技术要求比较详细,电路各部分的数据选择及硬件的选择会更加复杂,为达到相应的技术指标,需要多次对电路进行调试。熟练使用C语言,加强分层设计编程能力和程序编写程序的可读性,不断修改程序,以达到设计目的。 2 总体方案 2.1设计思路概述 2.1.1设计要求及目的 (1)学习电路的设计及C语言编程。 (2)了解功率放大电路的工作原理,绘制相应的功率放大电路。 (3)完成硬件电路的制作,完成软件程序的编辑。 (4)完成论文。 2.1.2技术指标 (1)由麦克风输入音频信号,音频功率的范围是10Hz-10KHz。 (2)失真度为0.4%-1%。 (3)输入电压范围为150mV-5V。 (4)输出负载能力为7Ω/3Ω。 2.2总体设计方案 方案一:音频功率放大器使用模电设计,硬件原理图见图1。主要设计电源和功放两部分,稳压电源由稳压电路、整流电路、滤波电路等部分组成;功放电路由TDA2030、耦合电容等部分组成。电源电压可以根据电路需要来改变电压值,而不同的电压值对应的放大器的承载能力是不同的。由扬声器提供信号源,通过功放管进行功率放大,从而达到目的,最后结果由示波器显示出来。 优点:电路中设计了电源部分,所以在连接电源的的时候方便快捷。 缺点:由于元器件较多,在选择时就比较困难,在焊接时难度较大。

[整理]NE5532并联驱动的20W纯甲类功放.

NE5532并联驱动的20W纯甲类功放 这个电路由爱山乐水网友提供。好象是来源于日本发烧友 国外有很多制作精良的功率放大器,输出功率并不大,但其甜美优雅的音乐往往是很多大功率放大器所无法比拟的。 本文介绍的这款功放,虽然它的元件用得可算一般,其输出功率也只有20W,但其音乐表现力却极为出众,特别是对于古典音乐的重放尤其神韵。 【电路原理】 电路如图6-1所示,本机电路中使用两组独立的运算放大器(NE5532)分别构成两路完整的单端放大器,它们都工作在纯甲类方式下,各自独立构成性能优良的全波形放大器。放大后的信号在输出点再有机地混合,有效地降低了对音质危害极大的奇次谐波失真。激励级的双极二极管(VT1和VT2)作为电流控制器件,直接从运放的输出端吸取所需的基极电流,是一种较为理想的使用方式。VT3和VT4分别用作VT2、VT1的恒流源负载,保证了整机的稳定性,也使得本机可免去麻烦的调试手续。 激励级的VT1、VT2与输出级的两个大功率三极管构成交叉耦合方式。由于各二极管工作点之间的钳位作用,使得此电路的稳定性极好,在电源接通瞬间也不会出现冲击电流声。交叉耦合的另一个好处是激励级和输出级分别从正负电源端索取工作电流,这对提高放大器的共模抑制比十分有利。激励级的工作电流高达85mA,输出级的工作电流更是高达 1.7A 之巨(两管并联)。由于本机电流很大,制作时一定要给每一个三极管(包括激励级和恒流源负载三极管)都加上足够大的散热器,且电源变压器一定要有充足的余量(推荐为150W)。由于本机对电源的适应性很强,故电源电路只需简单的整流、滤波即可。有条件者可在供电

回路串入1~2H的电感以获得更佳的效果。

6低频功率放大器实验报告1

实验报告 姓名: 学号: 日期: 成绩 : 课程名称 模拟电子实验 实验室名称 模电实验室 实验 名称 低频功率放大器 同组 同学 指导 老师 一、实验目的 1、进一步理解OTL 功率放大器的工作原理 2、学会OTL 电路的调试及主要性能指标的测试方法 二、实验原理 图7-1所示为OTL 低频功率放大器。其中由晶体三极管T 1组成推动级(也称前置放大级),T 2、T 3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具 图7-1 OTL 功率放大器实验电路 有输出电阻低,负载能力强等优点,适合于作功率输出级。T 1管工作于甲类状态,它的集电极电流I C1由电位器R W1进行调节。I C1 的一部分流经电位器R W2及二极管

D , 给T 2、T 3提供偏压。调节R W2,可以使T 2、T 3得到合适的静态电流而工作于甲、 乙类状态,以克服交越失真。静态时要求输出端中点A 的电位CC A U 21 U =,可以 通过调节R W1来实现,又由于R W1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号u i 时,经T 1放大、倒相后同时作用于T 2、T 3的基极,u i 的负半周使T 2管导通(T 3管截止),有电流通过负载R L ,同时向电容C 0充电,在u i 的正半周,T 3导通(T 2截止),则已充好电的电容器C 0起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C 2和R 构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 OTL 电路的主要性能指标 1、最大不失真输出功率P 0m 理想情况下,L 2CC om R U 81P =,在实验中可通过测量R L 两端的电压有效值,来 求得实际的L 2 O om R U P =。 2、 效率η 100%P P ηE om = P E —直流电源供给的平均功率 理想情况下,ηmax = 78.5% 。在实验中,可测量电源供给的平均电流I dC , 从而求得P E =U CC ·I dC ,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、 频率响应 详见实验二有关部分内容 4、 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号U i 之值。 三、实验设备与器件 1、 +5V 直流电源 5、 直流电压表 2、 函数信号发生器 6、 直流毫安表

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

音频功率放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 专业: 姓名: 学号: 日期: 地点: 桌号 装 订 线 点名册上的序号 前置 放大级 音调控制 放大级 功率 放大级

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端;5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2

相关文档
最新文档