溶解氧的测定

溶解氧的测定
溶解氧的测定

水质 溶解氧的测定 电化学探头法

编制说明

(征求意见稿)

沈阳市环境监测中心站

沈阳市东陵区环境保护监测站

2008年4月

一、任务来源

2006年国家质检总局(国质检财函[2006]909号)和2007年国家质检总局(国质检财函[2007]971号)下达了本标准的制修订任务,项目序号为978。本标准由国家环境保护总局科技标准司提出,由沈阳市环境监测中心站和沈阳市东陵区环境保护监测站起草,计划于2008年4月完成。

该标准由沈阳市环境监测中心站组织,沈阳市东陵区环境保护监测站起草完成,负责人白莹莹,指导专家沈阳市环境监测中心站王玉平总工程师,沈阳市东陵区环境保护监测站参与人员有张娜和李光。

二、制定标准的目的和意义

溶解氧(DO)是指溶解于水中的氧的含量,它以每升水中氧气的毫克数表示。溶解在水中的氧称为溶解氧,溶解氧以分子状态存在于水中。水中溶解氧量是水质重要指标之一,也是水体净化的重要因素之一,溶解氧高有利于对水体中各类污染物的降解,从而使水体较快得以净化;反之,溶解氧低,水体中污染物降解较缓慢。

水中溶解氧含量受到两种作用的影响:一种是使DO下降的耗氧作甩,包括好氧有机物降解的耗氧,生物呼吸耗氧;另一种是使DO增加的复氧作用,主要有空气中氧的溶解,水生植物的光合作用等。这两种作用的相互消长,使水中溶解氧含量呈现出时空变化。

水中溶解氧主要来源于两方面:一方面是在水体中溶解氧(DO)小于其溶解度时,大气中的氧溶入水体。在水体和大气之间的界面上经常进行气体交换,水体将二氧化碳排入大气,大气中的氧溶入水体。这与生物的呼吸作用十分相似,是水体中氧的主要来源。另一方面是水生植物通过光合作用向水中放出的氧。但是由于水体中经常发生氧化作用,从而消耗水中的氧,特别是有机质的降解,对氧的消耗量很大,因此,水体中不断进行着脱氧(溶解氧减少)和复氧(溶解氧增加)的过程。在自然条件下,水在流动时,复氧过程比较迅速,较易补充水中氧的消耗,使水体中溶解氧保持一定的水平,反之,在静水条件下,复氧过程缓慢,水中含氧得不到及时补充,处于嫌气状态。当工业废水和生活污水携带大量有机物质进入水体时,水体脱氧严重,这时即使在流动的河水中,由于复氧过程弥补不了这样大幅度的脱氧,也会出现溶解氧迅速下降,造成鱼类和需氧生物死

亡及水质恶化。水体受有机物及还原物质污染,可使溶解氧降低与空气中氧的分压。天然水体中DO的数量,除与水体中的生物数量和有机物的数量有关外,还与水温和水层有关。在正常情况下地表水中溶解氧量为5-10mg/L,在有风浪时,海水中溶解氧可达14 mg/L,在水藻繁生的水体中,由于光合作用使放氧量增加,也可能使水中的氧达到过饱和状态,地下水中一般溶解氧较少,深层水中甚至完全无氧。

水中溶解氧的含量与大气压力、水温及含盐量等因素有关。没有受到污染的水中,溶解氧呈饱和状态。清洁地表水溶解氧接近饱和。当有大量藻类繁殖时,溶解氧可能过饱和。适量的氧是鱼类和好氧菌生存和繁殖的基本条件。在—个大气压、温度为0℃的淡水中,溶解氧呈饱和状态时的含量为10mg/L。在溶解氧低于4mg/L时,鱼类就难以生存。如果水中有机物含量较多,其耗氧速度超过氧的补给速度,则水中DO量将不断减少,当水体受到有机物的污染时,水中溶解氧量甚至可接近于零,这时有机物在缺氧条件下分解就出现腐败发酵现象,使水质严重恶化。水被有机物污染后,由于好氧菌作用使其氧化,消耗掉溶解氧。如果得不到空气中氧的及时补充,那么水的溶解氧就减少,最终导致水体变质。所以把溶解氧作为水质污染程度的一项指标。溶解氧越少,表明污染程度越严重。

我国的检测方法标准GB 11913-89《水质 溶解氧的测定 电化学探头法》制定时间是1989年,编制是采用了国际标准ISO 5814-1984,距离目前时间已有18年之久,没有进行过重新修订,而且国际标准ISO 5814-1984已经在1990年进行过修订,现在国际采用的标准版号是ISO 5814-1990。ISO 5814-1990的文本中简化了计算工作,所采用的数据表方便快捷,提高了对仪器的性能要求,并强调了仪器线性检验的程序,这些内容在我国标准中都没有进行更新,所以我国非常有必要对此标准进行重新编制,这将对实际工作具有指导意义。

为了控制水体中溶解氧,切实提高我国地表水、海水等水体的环境质量,在借鉴国外相关指标、标准的基础上,结合我国的实际情况,修改采取国际标准和国家标准,特制定《水质 溶解氧的测定 电化学探头法》。

三、国内外检测现状

我国目前对水质检验的常规程序是取样后拿到实验室检验分析,中间的工作环节复杂,导致检测时间长,不能及时得到水质情况。国内目前一些单位和研究

机构已经开发研制出一些小型溶解氧检测仪,一般都基于电流测定法,如上海雷磁仪器厂生产的JPSJ-605型溶解氧分析仪,北京北斗星工业化学研究所研制的H-BD5W手持式水质通用测试仪等,其速度方面同国外同类仪器还有一定的差距;国内对荧光溶解氧传感器也有一些研究,技术已经达到国外平均水平,但研究实现商品化的较少。国外采用膜电极测量溶解氧的代表性产品有美国哈希sension 系列溶解氧测量仪,可以对压力、温度和盐分进行自动校正;国外一般采用新型的基于荧光淬灭效应的溶解氧测量仪,代表产品有瑞士DMP公司的MICROXI型的溶解氧测量仪,美国OXYMON氧气测量系统等等,测量精确,快速,并可以远程测量等。但总的来说,目前市场上大多数商品化溶解氧测量仪都是基于Clark溶氧电极的,基于荧光淬灭法的光纤溶解氧传感器较少。我国标准GB/T 11913─89《水质 溶解氧的测定 电化学探头法》制定时间较早,是1989年,至今已有18年没有进行过修订,国际标准ISO 5814-1990是基于ISO 5814-1984的基础上进行了重新修订,根据目前检测仪器发展形势,我国非常有必要与国际标准同步,对于检测仪器的使用规定标准性条款。

四、修订依据

新的《水质 溶解氧的测定 电化学探头法》修改采用国际标准ISO 5814-1990(英文版)和GB/T 11913─89《水质 溶解氧的测定 电化学探头法》。此次对GB/T 11913─89《水质 溶解氧的测定 电化学探头法》修订严格按照GB/T 16733-1997《国家标准制定程序的阶段划分及代码》、GB/T 1.1─2000《标准化工作导则》第1部分:标准的结构和编写规则、GB/T 20000.1─2002《标准化工作指南》第1部分:标准化和相关活动的通用词汇、GB/T 20000.2-2001《标准化工作指南》第2部分:采用国际标准的规则等要求进行修订。

五、技术路线

1.由于本标准的编制采取等同于国际标准,首要的工作是查询并购置最新的有关溶解氧测定的国际标准文本,如果没有中文版本,将对国际标准文本的全文进行翻译;

2.对比国际标准与现有国家标准的具体内容,确定修订的内容和有无必要进行方法的验证,如有必要,还将按照规范进行编制实验方案,并根据方案进行实验室内的试验、编制报告等工作;

3.参照有关的基础标准或者规范技术要求,编制国家标准文本;

4.编制修订的说明;

5.提交沈阳市环境监测中心站进行审定,修改合格后提交到国家环境保护部进行审批。

六、修订要点

中华人民共和国国家标准GB 11913-89《水质 溶解氧的测定 电化学探头法》与国际标准ISO 5814(1990-04-01)在总的规定上没有大的区分,国际标准ISO 5814─1990在对测试计算结果的修正方面更加简单便捷。

(一)与原GB 11913-89《水质 溶解氧的测定 电化学探头法》相比较

1. 对“1.适用范围”的修改

主要内容没有变化,但是新标准中将“干扰”调整为第6款。

2.增加了“

3.规范性引用文件”,具体增加内容为:

本标准内容引用下列文件中的条款。凡是不注日期的引用文件,其最新有效版本适用于本标准。

GB 7489 《水质 溶解氧的测定 碘量法》

3. 修改后的“3.方法原理”

强调了“水和可溶性物质的离子几乎不能透过这层膜,但氧和一定数量的其它气体及亲液物质可透过这层薄膜。”

增加了“然而,如果仪器在电路中没有安装压力传感器不能对压力进行补偿的话,仪器只能显示与气压有关的表观读数,当测定样品时的气压与校准仪器时的气压不同时,该读数并不是水中溶解氧的真实值,应按本标准的附录A.3进行校正。”

4. 修改后的“

5.仪器和设备”

强调“探头上最好附有温度补偿装置。”

5. 修改后的“7.分析步骤”

在“7.1.1调零”中增加了“注1 有些仪器设备具有零点补偿,不需要调整”。

修改的“7.1.2零点检验”内容是:

“当测量的溶解氧浓度水平低于1mg/L(或10%饱和度)以下时,或者当更换溶氧膜罩或内部的填充液时,需要按以下步骤进行零点检验。

检验零点时,可将探头浸入每升已加入1g亚硫酸钠(4.1)和约1mg钴盐(Ⅱ)(4.2)的蒸馏水中,反应稳定后读数,调整仪器到零点。”

在“7.1.3饱和值的校准”中,增加的内容:

“将探头浸没在瓶内,瓶中完全充满按上述步骤制备并标定好的样品。如果必要,让探头在搅拌的溶液中稳定一段时间以后(见7.1.2注),调节仪器读数至样品已知的氧浓度。

当仪器不能再校准,或仪器响应变的不稳定或较低时(见厂家说明书),应更换电解质或(和)膜。

注3 如过去的经验已给出空气饱和样品需要的曝气时间和空气流速,则可查附表A.1和附表A.3来代替碘量法的测定。

注4 许多仪器可在空气中校准。

增加了“7.2线性检查”

通常在仪器使用前检查仪器的线性[注5],并定期(2~3个月)运行检查程序。

通过测定一系列不同浓度蒸馏水样品中溶解氧的浓度来检查仪器的线性。准备完全充满纯净蒸馏水的250毫升的细口瓶3~4个,柔和控制通入的氩气或氮气的气泡,去除水中氧气,用探头时刻测量剩余的溶解氧含量,直到获得所需溶解氧的近似浓度,然后立刻停止通氩气或氮气,用碘量法(GBT 7489)测量水中准确的溶解氧浓度。

如果用探头法测定的溶解氧浓度值与碘量法无显著性差异,则可认为探头的响应呈线性。若测量值偏离线性,须咨询仪器的制造厂家。

注4 仪器读数通常是以饱和溶解氧为100%来确定线性的。

修改了“7.3测定”的内容:

“按照制造厂家说明书对待测水样进行测定。

将探头浸入样品,停留足够的时间,待探头达到水温且数字显示稳定时读数。必要时,根据所用仪器的型号及对测量结果准确度的要求,检验水温、气压或含盐量,并按附录A对测量结果进行校正。

增加了“7.4 注意事项”条款,内容如下:

——7.4.1不得用手触摸膜的活性表面。

——7.4.2在更换电解质和膜之后,或当膜干燥时,都要使膜湿润,只有在读数稳定后,才能进行校准(见7.2),仪器达到稳定所需要的时间取决于电解质中溶解氧消耗所需要的时间。

——7.4.3当将探头浸入样品中时,应保证没有空气泡截留在膜上。

——7.4.4样品接触探头的膜时,应保持一定的流速,以防止与膜接触的瞬时将该部位样品中的溶解氧耗尽,而出现虚假的读数。应保证样品的流速不致使读数发生波动,在这方面要参照仪器制造厂家的说明。

——7.4.5对于分散样品,测定容器应能密封以隔绝空气并带有搅拌器,例如电磁搅拌棒。将样品充满容器至溢出,密闭后进行测量。调整搅拌速度使读数达到平衡后保持稳定,并不得夹带空气。

——7.4.6对流动样品(例如河道),应检验水样是否有足够的流速(至少0.3m/S),如水流速不够则需在水样中往复移动探头,或者取分散样品按照7.3进行测定。

增加了“7.5电极维护”条款,内容如下:

电极和膜片的清洗:一般1~2周清洗一次。如果膜片和电极上有污染物,会引起测量误差,清洗时应小心,将电极和膜片放入清水中涮洗,注意不要损坏膜片。

电极的再生:约一年一次。当电极的线性不合格时,就需要对电极进行再生。电极的再生包括更换膜片、电解液和清洗电极。

6. 增加了条款“10精密度和准确度”,内容如下:

——10精密度和准确度

同一个实验室测定溶解氧浓度为7.45mg/L和5.10mg/L水样时,重复性标准偏差为±0.03mg/L,相对偏差为0.6%。

7. 对附录A进行了修改

详细叙述了水中氧的溶解度与温度、压力和含盐量的关系:水中氧的溶解度

在给定的压力条件下随温度变化;同样,在给定的温度条件下随压力变化。另外, 氧的溶解度随着盐分的增加而减少。

修改了“附表A .1水温和含盐量与水中溶解氧浓度的函数关系”,简化了“附

表A .3水中溶解氧浓度s O )('ρ与大气压力和水温度的函数关系”,新的数据表是: 附表A .3 水中溶解氧浓度s O )('ρ与大气压力和水温度的函数关系 大气压力(kPa )

111.5 101.3 91.2 81.1 70.9 60.8 50.7 温度

℃ 氧的溶解度s O )('

ρ(mg/l) 0.0 16.09 14.62 13.14 11.69 10.21 8.74 7.27 5.0 14.06 12.77 11.48 10.20 8.91 7.62 6.34 10.0 12.43 11.29 10.15 9.00 7.86 6.71 5.58 15.0 11.10 10.08 9.05 8.03 7.01 5.98 4.96 20.0 10.02 9.09 8.14 7.23 6.30 5.37 4.44 25.0 9.12 8.26 7.40 6.56 5.70 4.84 4.00 30.0 8.35 7.56 6.76 5.99 5.19 4.60 3.62 35.0 7.69 6.95 6.22 5.47 4.75 4.01 3.28 40.0 7.10 6.41 5.72 5.03 4.34 3.65 2.96

9. 增加了附录B

附录B 的主要内容是关于水中盐分与电导率的校正关系,通过测量水中的电导率来估算水中含盐量,方便测量溶解氧时对盐分的校正。经过对水中NaCl 不同含量的溶液进行实际测试,得到了电导率与含盐量的函数关系。附录B 的内容如下:

使用电导率仪在参比温度(20℃)下测得以mS/cm 表示的电导率,按附表B 估计水中的含盐量,到最接近的整数。

附表B 电导率与含盐量的函数关系

含盐量

g/kg

电导率 mS/cm 含盐量 g/kg 电导率 mS/cm 含盐量 g/kg 电导率 mS/cm 2

3 15 22 28 40 3

5 1

6 23 29 41 4

7 17 25 30 41 5

8 18 27 31 42 6

9 19 27 32 44 7

11 20 30 33 45

8

13 21 31 34 47 9

14 22 33 35 48 10

15 23 33 36 49 11

16 24 35 37 50 12

17 25 36 38 51 13

18 26 37 39 52 14 19 27 38 40 53

(二)与国际标准ISO 5814-1984相比较

1. 对“1.适用范围”的修改

主要内容没有变化,但是新标准中将此条款中的“干扰”,调整为第6款。

2. 增加了“

3.规范性引用文件”

3. “7.分析步骤”增加了“7.4注意事项”和“7.5电极维护”

4. 增加了条款“10 准确度和精密度”

5. 对附录A 中的公式进行了简化

由于通常条件下,P w 与大气压力相对比可忽略不计,所以没有采用公式s O )('ρ=s O )(''ρW 来计算水中氧的溶解度,如有必要,更小的数据间隔可由附录A 中的公式(A2)和公式(A3)导出。

6. 增加了附录B

七、参考文献

[1]MORTIMER,C.H., 湖沼生物学中温度和大气压的变化对淡水中饱和溶解氧的影响, 湖沼连续纤维增强预浸带的影响,第22版 (1981)。

[2] 英国海洋学学院和联合国科教文组织, 国际海洋学数据表,第二册(1973)。

[3] GARCENER·J.和休斯·J., 水研究中心,英国报告,44-S(1981)。

[4] 维斯特R.C.,化学和物理手册, 第58 版, CRC 新闻公司出版, 克利夫兰, 俄亥俄, (1977-1978), p.D-180。

水中溶解氧的测定(2017-标准)

实验二水质溶解氧的测定(碘量法) 1 实验目的 掌握生活饮用水及水源水中溶解氧的测定原理及方法;掌握测定溶解氧自来水水样的采集方法;正确使用溶解氧瓶及固定水中溶解氧的方式;巩固碘量法操作。 2 实验原理 硫酸锰与氢氧化钠作用生成氢氧化锰,氢氧化锰与水中溶解氧结合生成含氧氢氧化锰(或称亚锰酸),亚锰酸与过量的氢氧化锰反应生成偏锰酸锰,在酸性条件下偏锰酸锰与碘化钾反应析出碘,用硫代硫酸钠标准溶液滴定析出的碘。根据硫代硫酸钠标准溶液的消耗量求得水样中溶解氧的含量。 3 试剂 3.1 硫酸锰溶液:称取48g MnSO 4·4H 2 O(AR)溶于水中至100ml,过滤后使用。 3.2 碱性碘化钾溶液:称取50gNaOH(AR)溶于40ml蒸馏水中,另称取15gKI (AR)溶于20ml蒸馏水中。待NaOH溶液冷却后,合并两溶液,加水至100ml。静置24小时后取上清液备用。 3.3 浓硫酸(AR) 3.4 淀粉指示剂溶液(1%):称取1g可溶性淀粉,置于小烧杯中,加少量纯水调成糊状,在不断搅拌下将糊状液倒入100ml正在沸腾的纯水中,继续煮沸2~3分钟,冷后移入瓶中使用。 3.5 6mol/LHCl 3.6 0.025mol/L硫代硫酸钠标准储备溶液:应先配成0.1mol/L的浓度,标定出准确浓度后,再用纯水稀释至0.025mol/L。 3.7 0.1mol/L硫代硫酸钠标准溶液:称取13g硫代硫酸钠Na 2S 2 O 3 .5H 2 O(AR)置 于烧杯中,溶于500ml煮沸放冷的纯水中,此溶液的浓度为0.1mol/L。移入棕色瓶中7~10天进行标定。 标定方法:将K 2Cr 2 O 7 于烘箱烤至恒重,用减重法精确称取K 2 Cr 2 O 7 1.1g左右, 置于小烧杯中,加纯水使其完全溶解,并移入250ml容量瓶中,用少量纯水洗涤 小烧杯多次,洗涤液一并移入容量瓶中,定容。移取25.00mLlK 2Cr 2 O 7 于250 ml 碘量瓶中,加20 ml水,加2gKI晶体,再加6mol/LHCl溶液5ml,密塞,摇匀, 水封,在暗处静置10分钟。加纯水50ml,用待标定的Na 2S 2 O 3 标准溶液滴定至溶 液呈淡黄色时(近终点),加入2ml1℅淀粉指示剂,继续滴至溶液从蓝色变为亮 绿色为止。记录Na 2S 2 O 3 溶液消耗的量(平行测定三份)。计算出Na 2 S 2 O 3 标准溶液 浓度。

DO测定(碘量法)

碘量法测定溶解氧 碘量法(国标GB/T 7489-87)测定水中溶解氧(DO) 一、原理 水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。 二、实验用品 1、仪器:溶解氧瓶(250ml)、锥形瓶(250ml)、碱式滴定管(25ml)、移液管(50ml)、吸耳球、1000ml容量瓶、100ml容量瓶、棕色容量瓶、电子天平 2、药品:硫酸锰、碘化钾、氢氧化钠、浓硫酸、淀粉、重铬酸钾、硫代硫酸钠 三、试剂的配置 1、硫酸锰溶液:称取48g分析纯硫酸锰(MnSO 4?H 2 O)溶于蒸馏水,过滤后 用水稀释至100mL于透明玻璃瓶中保存。此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液:称取50g分析纯氢氧化钠溶解于30—40mL蒸馏水中;另称取15g碘化钾溶于20mL蒸馏水中;待氢氧化钠溶液冷却后,将上述两溶液合并,混匀,加蒸馏水稀释至100mL。如有沉淀(如氢氧化钠溶液表面吸收二氧化碳生成碳酸钠),则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,避光保存。此溶液酸化后,遇淀粉应不呈蓝色。 3、1+5硫酸溶液。 4、1%(m/V)淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水稀释至100mL。现用现配,或者冷却后加入0.1g水杨酸或0.4g氯化锌防腐。 5、0.0250mol/L(1/6K 2Cr 2 O 7 )重铬酸钾标准溶液:称取于105—110℃烘干 2h,并冷却的分析纯重铬酸钾1.2258g,溶于水,移入1000mL容量瓶中,用水稀释至标线,摇匀。 6、硫代硫酸钠标准溶液:称取6.2g分析纯硫代硫酸钠(Na 2S 2 O 3 ?5H 2 O)溶于

溶解氧测定方法-国标

水质溶解氧的测定碘量法GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由于考虑到某些干扰而采用改进的温克勒(Winkler)法 1 范围 碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消 耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法 亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉 如存在氧化物质或还原物质需改进测定方法见第8 条. 如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用 2 原理 在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠 滴定法测定游离碘量 3 试剂 分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水 3.1 硫酸溶液 小心地把500mL 浓硫酸(ρ= 1.84g/mL)在不停搅动下加入到500mL 水 注:若怀疑有三价铁的存在则采用磷酸(H3PO4 ρ=1.70g/mL) 3.2 硫酸溶液c(1/2H2SO4) =2mol/L 3.3 碱性碘化物叠氮化物试剂

注:当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去 此试剂 a. 操作过程中严防中毒 b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾 将35g的氢氧化钠(NaOH)[或50g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)] 溶解在大约50mL 水中,单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧的细口棕色瓶子里,经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色. 3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液) 可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液 3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液 在180℃干燥数克碘酸钾(KIO3) 称量3.567±0.003g 溶解在水中并稀释到1000mL。将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线。 3.6 硫代硫酸钠标准滴定液c(Na2S2O3) ≈10mmol/L 3.6.1 配制 将 2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000m。溶液贮存于深色玻璃瓶中。 3.6.2 标定 在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL 2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL 标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色 硫代硫酸钠浓度(c mmol/L)由式(1)求出

溶解氧测定方法 国标

水质溶解氧的测定碘量法 GB 7489-87 本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由 于考虑到某些干扰而采用改进的温克勒(Winkler)法 1 范围 碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧 浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消 耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法 亚硝酸盐浓度不高于15mg/L 时就不会产生干

扰因为它们会被加入的叠氮化钠破坏掉 如存在氧化物质或还原物质需改进测定方法见第8 条 如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用 2 原理 在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰 中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠 滴定法测定游离碘量 3 试剂 分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水 3.1 硫酸溶液

小心地把500mL 浓硫酸(?1.84g/mL)在不停搅动下加入到500mL 水 注若怀疑有三价铁的存在则采用磷酸(H3PO4 ? 1.70g/mL) 3.2 硫酸溶液c(1/2H2SO4) 2mol/L 3.3 碱性碘化物叠氮化物试剂 注当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的 干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去 此试剂 a. 操作过程中严防中毒 b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因

水中溶解氧的测定实验报告.

溶解氧的测定实验报告 易倩 一、实验目的 1.理解碘量法测定水中溶解氧的原理: 2.学会溶解氧采样瓶的使用方法: 3.掌握碘量法测定水中溶解氧的操作技术要点。 二、实验原理 溶于水中的氧称为溶解氧,当水受到还原性物质污染时,溶解氧即下降,而有藻类繁殖时,溶解氧呈过饱和,因此,水中溶解氧的变化情况在一定程度上反映了水体受污染的程度。 碘量法测定溶解氧的原理:在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: MnSO4+2aOH=Mn(OH)2↓(白色)++Na2SO4 2Mn(OH)2+O2=2MnO(OH)2(棕色) H2MnO3十Mn(OH)2=MnMnO3↓(棕色沉淀)+2H2O 加入浓硫酸使棕色沉淀(MnMn02)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深2KI+H2SO4=2HI+K2SO4 MnMnO3+2H2SO4+2HI=2MnSO4+I2+3H2O I2+2Na2S2O3=2NaI+Na2S4O6 用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。 三、仪器 1.250ml—300ml溶解氧瓶 2.50ml酸式滴定管。 3.250ml锥形瓶 4.移液管 5.250ml碘量瓶 6.洗耳球 四、试剂 l、硫酸锰溶液。溶解480g分析纯硫酸锰(MnS04· H20)溶于蒸馏水中,过滤后稀释成1000ml.此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液。取500g氢氧化钠溶解于300—400ml蒸馏水中(如氢

溶解氧测定方法大全

溶解氧 溶解在水中的分子态氧称为溶解氧。天然水的溶解氧含量取决于水体与大气中氧的平衡。溶解氧的饱和和含量和空气中氧的分压、大气压力、水温有密切关系。清洁地面水溶解氧一般接近饱和。由于藻类的生长,溶解氧可能过饱和。水体受有机、无机还原性物质污染,使溶解氧降低。当大气中的氧来不及补充时,水中溶解氧逐渐降低,以至趋近于零,此时厌氧菌繁殖,水质恶化。废水中溶解氧的含量取决于废水排出前的工艺过程,一般含量较低,差异很大。 1.方法的选择 测定水中溶解氧通常采用碘量法及其修正法和膜电极法。清洁水可直接采用碘量法测定,池塘柳牌溶解氧检测盒即采用此方法。水样有色或含有氧化性及还原性物质、藻类、悬浮物等干扰测定。氧化性物质可使碘化物游离出碘,产生正干扰;某些还原性物质可把碘还原成碘化物,产生负干扰;有机物(如腐植酸、丹宁酸、木质素等)可能被部分氧化,产生正干扰。所以大部分受污染的地表水和工业废水,必须采用修正的碘量法和膜电极法测定。 水样中亚硝酸盐氮含量高于0.05mg/L,二价铁低于1 mg/L时,采用叠氮化钠修正法。此法适用于多数污水及生化处理出水;水样中二价铁高于 1 mg/L,采用高锰酸钾修正法;水样有色或有悬浮物,采用明矾絮凝修正法;含有活性污泥悬浮物的水样,采用硫酸铜—氨基磺酸絮凝修正法。

膜电极法是根据分子氧透过薄膜的扩散速率来测定水中溶解氧。方法简便、快速,干扰少,可用于现场测定。 2.水样的采用与保存 用碘量法测定水中溶解氧,水样常采集到溶解氧瓶中。采集水样时,要注意不使水样曝气或有气泡存在采样瓶中。可用水样冲洗溶解氧瓶后,沿瓶壁直接倾注水样或用缸吸法将细管插入溶解氧瓶底部,注入水样至溢流出瓶容积的1/3~1/2左右。 水样采集后,为防止溶解氧的变化,应立即加固定剂于样品中,并存于冷暗处,同时记录水温和大气压力。 一、碘量法 GB7489--89 概述 水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解并与碘离子反应而释出游离碘。以淀粉作指示剂,用硫代硫酸钠滴定释出碘,可计算溶解氧的含量。 仪器 250—300ml溶解氧瓶。 试剂 (1)硫酸锰溶液:称取480g硫酸锰(MnSO4·4H2O或364g MnSO4·H2O)溶于水,用水稀释至1000ml。此溶加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。

实验二 水中溶解氧的测定教案设计

实验二 水中溶解氧的测定 【实验目的】 1、学习溶解氧水样的采取方法。 2、掌握用间接碘量法测定水样中溶解氧的方法原理及基本操作。 【实验原理】 溶解于水中的氧称为溶解氧,水中的溶解氧来自空气中的氧及水生植物释放出来的氧,水越深,水温越高,水中含盐量越多,还原性物质越多,溶解氧越少。溶解氧有利于水生生物的生存。如许多鱼类在水中含溶解氧低于3-4mg/L 时就不能生存,但对于金属设备有腐蚀作用,如锅炉水中溶解氧含量应低于0.05-0.1mg/L .所以,在工业供水分析中对溶解氧的测定是很重要的。同时,溶解氧的测定对水体自净作用的研究有极其重要的作用,它可以帮助了解水体在不同的地点进行自净的速度。 溶解氧的测定方法有膜电极法、比色法和碘量法。对溶解氧含量较高的水样,常采用碘量法测定,下面是碘量法的测定原理。 水样中加入硫酸锰和氢氧化钠溶液,生成氢氧化锰沉淀,这一沉淀中的锰,是与水中的溶解氧定量反应的。 Mn 2++ 2OH -=Mn(OH)2↓(白色) (1) 当有溶解氧时, Mn(OH)2立即被氧化: 2Mn(OH)2+O 2=2MnO(OH)2↓(棕色) (2) 溶液酸化后,四价锰将碘离子氧化成游离碘:MnO(OH)2+2I -+4H +=Mn 2++I 2+3H 2O (3) 析出的碘用Na 2S 2O 3滴定: I 2+2 Na 2S 2O 3 == 2I -+S 4O 62- (4) 由反应方程式(1)、(2)、(3)、(4)可知: n 2O :n - 23 2 O S =1:4 。由Na 2S 2O 3的浓度及 消耗的体积可计算水中溶解氧的含量。 溶解氧ρO 2(mg/L )= 100000 .324 11????V C V , 式中 V 1 –-滴定消耗Na 2S 2O 3标准溶液的体积(mL ); V —水样体积 (mL ); C ——Na 2S 2O 3标准溶液的浓度(mol.L -1). 如果水样中有大量有机物,或其它还原性物质时,会使结果偏低,而当水样中含有氧化性物质时可使结果偏高,此时应作校正.采用双瓶法可以消除氧化物的干扰.所谓的双瓶法,即取两个溶解氧瓶,一瓶按碘量法测定.另一瓶先加H 2SO 4,再加碱性碘化钾和硫酸锰,生成的碘用Na 2S 2O 3滴定,记录消耗Na 2S 2O 3标准液的体积V 2 。V 2即为水中氧化性物质消耗的Na 2S 2O 3标液体积,由一瓶中消耗的Na 2S 2O 3标液体积V 1中扣除.用双瓶法的结果

溶解氧的测定自认定考核

溶解氧的测定自认定考核 一、溶解氧 溶解氧指溶解在水中的分子态氧,通常记作DO,用每升水中氧的毫克数和饱和百分率表示。溶解氧的饱和含量与空气中氧的分压、大气压、水温和水质有密切的关系。 二、方法原理 溶解氧电化学探头是一个用选择性薄膜封闭的小室,室内有两个金属电极并充有电解质。氧和一定数量的其他气体及亲液物质可透过这层薄膜,但水和可溶性物质的离子几乎不能透过这层膜。将探头浸入水中进行溶解氧的测定时,由于电池作用或外加电压在两个电极间产生电位差,使金属离子在阳极进入溶液,同时氧气通过薄膜扩散在阴极获得电子被还原,产生的电流与穿过薄膜和电解质层的氧的传递速度成正比,即在一定的温度下该电流与水中氧的分压(或浓度)成正比。 三、操作方法 将探头浸入样品,不能有空气泡截留在膜上,停留足够的时间,待探头温度与水温达到平衡,且数字显示稳定时读数。必要时,根据所用仪器的型号及对测量结果的要求,检验水温、气压或含盐量,并对测量结果进行校正。 探头的膜接触样品时,样品要保持一定的流速,防止与膜接触的瞬间将该部位样品中的溶解氧耗尽,使读数发生波动。 对于流动样品(例如河水):应检查水样是否有足够的流速(不得小于0.3 m/s),若水流速低于0.3 m/s需在水样中往复移动探头,或者取分散样品进行测定。 对于分散样品:容器能密封以隔绝空气并带有搅拌器。将样品充满容器至溢出,密闭后进行测量。调整搅拌速度,使读数达到平衡后保持稳定,并不得夹带空气。 四、注意事项 1)干扰 水中存在的一些气体和蒸汽,例如氯、二氧化硫、硫化氢、胺、氨、二氧化碳、溴和碘等物质,通过膜扩散影响被测电流而干扰测定。水样中的其他物质如溶剂、油类、硫化物、碳酸盐和藻类等物质可能堵塞薄膜、引起薄膜损坏和电极腐蚀,影响被测电流而干扰测定。2)线性检查 新仪器投入使用前、更换电极或电解液以后,应检查仪器的线性,一般每隔2个月运行一次线性检查。 3)电极的维护 任何时候都不得用手触摸膜的活性表面。 电极和膜片的清洗:若膜片和电极上有污染物,会引起测量误差,一般1~2周清洗一次。清洗时要小心,将电极和膜片放入清水中涮洗,注意不要损坏膜片。 经常使用的电极建议存放在存有蒸馏水的容器中,以保持膜片的湿润。干燥的膜片在使用前应该用蒸馏水湿润活化。 4)电极的再生 当电极的线性不合格时,就需要对电极进行再生。电极的再生约一年一次。 电极的再生包括更换溶解氧膜罩、电解液和清洗电极。 每隔一定时间或当膜被损坏和污染时,需要更换溶解氧膜罩并补充新的填充电解液。如

溶解氧测定方法 国标

水质溶解氧的测定碘量法?GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由 于考虑到某些干扰而采用改进的温克勒(Winkler)法 1 范围 碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧浓度大于L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸 腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消 耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法 亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉 如存在氧化物质或还原物质需改进测定方法见第8 条. 如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用 2 原理 在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠 滴定法测定游离碘量 3 试剂 分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水

硫酸溶液 小心地把500mL 浓硫酸(ρ= mL)在不停搅动下加入到500mL 水 注:若怀疑有三价铁的存在则采用磷酸(H3PO4 ρ=mL) 硫酸溶液c(1/2H2SO4) =2mol/L 碱性碘化物叠氮化物试剂 注:当试样中亚硝酸氮含量大于L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于L 则可省去 此试剂 a. 操作过程中严防中毒 b. 不要使碱性碘化物叠氮化物试剂酸化因为可能产生有毒的叠氮酸雾 将35g的氢氧化钠(NaOH)[或50g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)] 溶解在大约50mL 水中,单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧的细口棕色瓶子里,经稀释和酸化后在有指示剂存在下本试剂应无色. 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液) 可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液 在180℃干燥数克碘酸钾(KIO3) 称量±溶解在水中并稀释到1000mL。将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线。 硫代硫酸钠标准滴定液c(Na2S2O3) ≈10mmol/L 配制 将五水硫代硫酸钠溶解于新煮沸并冷却的水中再加的氢氧化钠(NaOH) 并稀释至1000m。溶液贮存于深色玻璃瓶中。 标定 在锥形瓶中用100~150mL 的水溶解约的碘化钾或碘化钠(KI 或NaI) 加入5mL 2mol/L 的硫酸溶液,混合均

碘量法测定水中溶解氧

碘量法测定水中溶解氧 一、实验目的 1.熟悉氧化还原滴定的基本原理。 2.掌握碘量法滴定的基本操作及标准溶液的配制及标定方法。 3.掌握碘量法测定溶解氧的基本操作规程。 二、实验原理 碘量法测定水中溶解氧是基于溶解氧的氧化性能。当水样中加入硫酸锰和碱性KI 溶液时,立即生成 Mn(OH)2沉淀。Mn(OH)2极不稳定,迅速与水中溶解氧化合生成锰酸锰。在加入硫酸酸化后,已化合的溶解氧(以锰酸锰的形式存在)将KI氧化并释放出与溶解氧量相当的游离碘。然后用硫代硫酸钠标准溶液滴定,换算出溶解氧的含量。 此法适用于含少量还原性物质及硝酸氮<0.1mg/L、铁不大于1mg/L,较为清洁的水样。 三、实验用品: 1、仪器:溶解氧瓶(250ml) 锥形瓶(250ml) 酸式滴定管(25ml) 移液管(50m1) 吸球 2、药品:硫酸锰溶液碱性碘化钾溶液浓硫酸淀粉溶液(1%) 硫代硫酸钠溶液(0.025mol/L) 四、试剂 1.硫酸锰溶液:称取480gMnSO4·4H2O,溶于蒸馏水中,过滤后稀释至1L。(此溶液在酸性时,加入KI后,遇淀粉不变色。) 2.碱性KI溶液:称取500gNaOH溶于300~400mL蒸馏水中,称取150gKI溶于200mL蒸馏水中,待NaOH溶液冷却后将两种溶液合并,混匀,用蒸馏水稀释至1L。若有沉淀,则放置过夜后,倾出上层清液,储于塑料瓶中,用黑纸包裹避光保存。 3.(1+5)硫酸溶液 4.浓硫酸

5.1%淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水冲稀至100mL。冷却后,加入0.1g水杨酸或0.4g氯化锌防腐。 6.0.02500mol/L(1/6K2Cr2O7)重铬酸钾标准溶液:称取于105--110℃烘干2小时并冷却的K2Cr2O70.3064g,溶于水,移入250mL容量瓶中,用水稀释至标线,摇匀。 7.0.025mol/L硫代硫酸钠溶液:称取6.2g硫代硫酸钠(Na2S2O3·5H2O) 溶于煮沸放冷的水中,加入0.2g碳酸钠,用水稀释至1000mL。储于棕色瓶中,使用前用0.02500mol/L 重铬酸钾标准溶液标定。 标定方法如下: 于250mL碘量瓶中,加入100mL水和1gKI,加入10.00mL 0.02500mol/L重铬酸钾(1/6K2Cr2O7)标准溶液、5mL(1+5)硫酸溶液,密塞,摇匀。于暗处静置5分钟后,用待标定的硫代硫酸钠溶液滴定至溶液呈淡黄色,加入1mL淀粉溶液,继续滴定至蓝色刚好褪去为止,记录用量。 K2Cr07十6KI十7H2S04=4K2S04十Cr2(S04)3十3I2十7H20 CNa2S203=15.00×0.0250/VNa2S203 式中:C—硫代硫酸钠溶液的浓度(mol/L)。 V—滴定时消耗硫代硫酸钠溶液的体积(mL)。 五、实验步骤 取自来水样:将水龙头接一段乳胶管。打开水龙头,放水10分钟之后,将乳胶管插入溶解氧瓶底部,收集水样,直至水样从瓶口溢流10分钟左右。取样时应注意水的流速不应过大,严禁气泡产生。若为其它水样,应在水样采集后,用虹吸法转移到溶解氧瓶内,同样要求水样从瓶口溢流。 将移液管插入液面下,依次加入1mL硫酸锰溶液及2mL的碱性碘化钾溶液,盖好瓶塞,勿使瓶内有气泡,颠倒混合15次,静置。待棕色絮状沉淀降到一半时,再颠倒几次。 分析时轻轻打开瓶塞,立即将吸管插入液面下,加入1.5~2.0mL浓硫酸,小心盖好瓶塞,颠倒混合摇匀至沉淀物全部溶解为止。若溶解不完全,可继续加入少量浓硫酸,但此时不可溢流出溶液。然后放置暗处5分钟。用吸管吸取100mL上述溶液,注入250mL锥形瓶中,用0.025mol/L硫代硫酸钠标准溶液滴定到溶液呈微黄色,加入1mL淀粉溶液,继续滴定至蓝色恰好褪去为止,记录用量。 六、计算 溶解氧(mg/L)==CNa2S2O3×VNa2S2O3×32/4×1000/V水 O2―→2Mn(OH)2―→MnMnO3―→2I2―→4Na2S2O3

水中溶解氧的测定

实验六水中溶解氧的测定 一、实验目的 1、了解测定溶解氧的意义和方法。 2、掌握碘量法测定溶解氧的操作技术。 二、实验原理: 采用碘量法(即Winkler)测定水中的溶氧量。往水中加入MnSO4溶液和KI—NaOH溶液,水样中的溶氧即被定量地转化为三价锰化合物的褐色沉淀。 Mn + 2OH-=====Mn(OH)2 Mn(OH)2+O2===2MnO(OH)2 2MnO(OH)2+2I-+6H+====2Mn2++I2+6H2O 2Na2S2O3+I2===Na2S4O6+2NaI 以淀粉作指示剂,用Na2S2O3标准滴定上述反应生成的I2,并由此计算出水中的溶氧量。 三、实验仪器与试剂 仪器:具塞碘量瓶(250mL或300mL),25mL滴定管,250mL锥形瓶。 试剂: 1、浓硫酸H2S04(比重1.84)。 2.硫酸锰溶液:称取480g硫酸锰(MnS04·4H20或400gMnS04·2H20)溶于去离子水中,过滤并稀释至1000mL。 3.碱性碘化钾溶液:称取500gNaOH溶于300—400mL去离子水中,另称取150gKI(或135gNaI)溶于200mL去离子水中,待NaOH溶液冷却后,将两溶液合并混匀,用去离子水稀释至1000mL。静置24h使Na2CO3下沉,倒出上层澄清液,贮于棕色瓶中。用橡皮塞塞紧,避光保存。4.1%淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,用刚煮沸的水冲稀至100mL。冷却后,加入0.1g水杨酸或0.4gZnC12防腐。 5. 0.1000mol/L(1/6 K2Cr207)重铬酸钾标准溶液:称取于105一110℃烘干2h并冷却的 K2Cr207 4.9031g,溶于去离子水中,转移至1000mL容量瓶中,用水稀释至刻线,摇匀。6.硫代硫酸钠溶液:称取25g硫代硫酸钠(Na2S203·5H20),溶于1000mL煮沸放凉的去离子水中,加入0.4gNaOH或0.2gNa2C03。贮于棕色瓶中。此溶液浓度约为O.1mol/L,准确浓度可按下法标定:于250mL碘量瓶中,加入100mL去离子水和1gKI,用移液管吸取 10.00mL0.1000mol/LK2Cr207标准溶液、5mL l:5 H2S04溶液密塞,摇匀。置于暗处5min,取出后用待标定的硫代硫酸钠溶液滴定至由棕色变为淡黄色时,加入1mL淀粉溶液,继续滴定至蓝色刚好退去为止,记录用量。计算硫代硫酸钠的浓度: M = 10.00×0.1000/V 式中, M—硫代硫酸钠的浓度, mol/L: V一滴定时消耗硫代硫酸钠的体积, mL。

环境监测实验报告碘量法测定溶解氧

环境监测实验报告碘量法测定溶解氧 实验一碘量法测定溶解氧 , 一, 原理 水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧的含量。 向水样中加入MnS创碱性KI溶液,反应式为:4 MnSO+2NaOH=NaSO+Mn(OH)? 4242 2Mn(0H)+0=2Mn0(0H棕色沉淀)22 2 MnO(OH)+2HSO=Mn(SO)+3HO 224422 Mn(S0) +2KI=MnS0+KS0+I 42424 2 2NaS0+I=NaS0+2NaI 223 2 246 , 二, 试剂 (1) 硫酸锰溶液 (2) 碱性碘化钾溶液 )1+5 硫酸溶液(3 (4) 1%(m/v) 淀粉溶液 (5) 0.025moL/L(C1/6KCr0) 重铬酸钾标准溶液227 (6) 硫代硫酸钠溶液 (7) 硫酸:p=1.84

(8) 40 %(m/v) 氟化钾溶液 , 三, 测定步骤 (1)溶解氧的固定。用吸管插入溶解瓶的液面下,加入1mL硫酸锰溶液、2mL碱性碘化钾溶液,盖好瓶塞,颠倒混合数次,静置。待棕色沉淀物降至瓶内一半时,再颠倒混合一次,待沉淀物下降至瓶底。一般在取样现场固定。 ⑵析出碘。轻轻打开瓶塞,立即用吸管插入液面下加入 2.0mL硫酸。小心盖 好瓶塞,颠倒混合摇匀,至沉淀物全部溶解为止。放于暗处静置5min。 (3) 样品的测定。吸取lOO.OOmL上述溶液于250mL锥形瓶中,用硫代硫酸钠标准溶液滴定至溶液呈淡黄色加入 1 mL 淀粉溶液,继续滴定至蓝色刚好退去为止。记录硫代硫酸钠溶液的用量。用下式算水样中溶解氧的浓度: , 四,干扰消除措施 a. 叠氮化钠修正法 如到达终点后溶液蓝色在3Os 内没有返回,这是正常现象; 如到达终点后蓝色立即返回,说明水中可能含有亚硝酸盐: 2HNO+ 2KI + HSO = KSO + 2HO +2NO+ I 2 242422- 这时可利用叠氮化钠来消除NO的干扰:2 2NaN + HSO = 2HN + NaSO 324324 1 HNO + HN= NO + N +HO 23 222 b. 高锰酸钾修正法 2+铁离子对本法测定有干扰,若单有大量的Fe 存在而无其他还原剂及有机物 时, 2+3+3+可用KMnC修正法进行测定,以KMnOR化Fe?Fe, Fe用KF掩蔽,过44

溶解氧检测方法介绍

溶解氧的检测方法介绍 一、碘量法(GB7489-87)(Iodometric) 碘量法(等效于国际标准ISO 5813-1983)是测定水中溶解氧的基准方法,使用化学检测方法,测量准确度高,是最早用于检测溶解氧的方法。其原理是在水样中加入硫酸锰和碱性碘化钾,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: 4MnSO4+8NaOH = 4Mn(OH)2↓+4Na2SO4 (1) 2Mn(OH)2+O2 = 2H2MnO3↓ (2) 2H2MnO3+2Mn(OH)3 = 2MnMnO3↓+4H2O (3) 加入浓硫酸使已化合的溶解氧(以MnMnO3的形式存在)与溶液中所加入的碘化钾发生反应而析出碘: 4KI+2H2SO4 = 4HI+2K2SO4 (4) 2MnMnO3+4H2SO4+HI = 4MnSO4+2I2+6H2O (5) 再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量[3],化学方程式为: 2Na2S2O3+I2 = Na2S4O6+4NaI (6) 设V为Na2S2O3溶液的用量(mL),M为Na2S2O3的浓度(mol/L),a 为滴定时所取水样体积(mL),DO可按下式计算[2]: DO(mol/L)= (7) 在没有干扰的情况下,此方法适用于各种溶解氧浓度大于0.2mg/L和小于氧的饱和度两倍(约20mg/L)的水样。当水中可能含有亚硝酸盐、铁离子、游离氯时,可能会对测定产生干扰,此时应采用碘量法的修正法。具体作法是在加硫酸锰和碱性碘化钾溶液固定水样的时候,加入NaN3溶液,或配成碱性碘化钾-叠氮化钠溶液加于水样中,Fe3+较高时,加入KF络合掩敝。碘量法适用于水源水,地面水等清洁水。碘量法是一种传统的溶解氧测量方法,测量准确度高且准确性好,其测量不确定度为0.19mg/L[4]。但该法是一种纯化学检测方法,耗时长,程序繁琐,无法满足在线测量的要求[5]。同时易氧化的有机物,如丹宁酸、腐植酸和木质素等会对测定产生干扰。可氧化的硫的化合物,如硫化物硫脲,也如同易于消耗氧的呼吸系统那样产生干扰。当含有这类物质时,宜采用电化学探头法[6],包括下面将要介绍的电流测定法以及电导测定法等。 二、电流测定法 (Clark溶氧电极)

第四章 海水中溶解氧的测定

第四章海水中溶解氧的测定 §4-1.海水中溶解氧简介 一.概述 海水中的溶解氧和海中动植物生长有密切关系,它的分布特征又是海水运动的一个重要的间接标志。因此,溶解氧的含量及其分布变化与温度、盐度和密度一样,是海洋水文特征之一。 海水中溶解氧的一个主要来源是当海水中氧未达到饱和时,通过大气从大气溶入的氧;另一来源是海水中植物通过光合作用所放出的氧。这两种来源仅限于在距海面100-200米厚的真光层中进行。在一般情况下,表层海水中的含氧量趋向于与大气中的氧达到平衡,而氧在海水中的溶解度又取决于温度、盐度和压力。当海水的温度升高,盐度增加和压力减小时,溶解度减小,含氧量也就减小。 海水中溶解氧的含量变动较大,一般约在0-10ml/dm3范围内。其垂直分布并不均匀,在海洋的表层和近表层含氧量最丰富,通常接近或达到饱和;在光合作用强烈的海区,近表层会出现高达125%的过饱和状态。但在一般外海中,最小含氧量一般出现在海洋的中层,这是因为:一方面,生物的呼吸及海水中无机和有机物的分解氧化而消耗了部分氧,另一方面海流补充的氧也不多,从而导致中层含氧量最小。深层温度低,氧化强度减弱以及海水的补充,含氧量有所增加。 除了在波浪能将气泡带入海洋表层和近表层,并进行气体直接交换,海水中溶解氧还会参与生物过程,例如生物的呼吸作用、微生物氧化要消耗氧,而生物同化作用又释放氧,因此,溶解氧被认为是水体的非保守组分,并且成为迄今最常测定的组分(除温度和盐度外)。 研究海洋中含氧量在时间和空间上的分布,不仅可以用来研究大洋各个深度

上生物生存的条件,而且还可以用来了解海洋环流情况。在许多情况下,含氧量的特征是从表面下沉的海水的“年龄”的鲜明标志,由此还可能确定出各个深度上的海水与表层水之间的关系。 二.测定方法简介 海水中溶解氧的测定方法主要分为容量法,电化学分析法及光度法、色谱法等。自从温克勒法(Winkler)用于海水分析,大大简化了测定溶解氧的方法,促进了海水中氧的研究,开展了大量的调查工作。由于此法简便、易于掌握,不需要复杂的仪器设备,一直被认为是测定海水中溶解氧最准确的方法。所以至今仍为海洋调查的标准方法而被广泛使用。 此外,还有电化学分析方法中的电流滴定,极谱法等。在此方法基础上,产生了现场溶解氧探测仪,可以直接进行自动连续测定,不需要采样和固定水样。分光光度法测定氧,也是在温克勒法(Winkler)的基础上,用光度法测定淀粉—碘的蓝色络和物,或不加淀粉,仅测定游离I2,这些方法仅适用于溶解氧含量范围为0.1-0.001ml/l 的水样。 §4-2.Winkler测定法 一.方法原理 温克勒法是1988年提出的。方法具体操作如下: 向一定水样中加入固定剂MnSO4,和碱性碘化钾(KI+NaOH),则形成Mn(OH)2沉淀,水样中的氧继续将Mn(OH)2氧化为Mn(OH)3。然后加入酸,则Mn(OH)3氧化碘化钾,生成游离碘,再用Na2S2O3标准溶液滴定游离碘。根据Na2S2O3的用量计算水样中氧的含量。 由此,溶解氧的分析大体可分为以下三步:①取样及样品中氧的固定;②酸花将溶解氧定量转化为游离碘;③用硫代硫酸钠溶液滴定游离碘,求出溶解氧的含量。具体反应为:

水中溶解氧的测定实验报告

溶解氧的测定实验报告 xx 一、实验目的 1.理解碘量法测定水中溶解氧的原理: 2.学会溶解氧采样瓶的使用方法: 3.掌握碘量法测定水中溶解氧的操作技术要点。 二、实验原理 溶于水中的氧称为溶解氧,当水受到还原性物质污染时,溶解氧即下降,而有藻类繁殖时,溶解氧呈过饱和,因此,水中溶解氧的变化情况在一定程度上反映了水体受污染的程度。 碘量法测定溶解氧的原理: 在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: MnSO 4+2aOH=Mn(OH) 2↓(白色)++Na 2SO42Mn(OH) 2+O 2=2MnO(OH) 2(棕色) H 2MnO

3十Mn(OH) 2=MnO 3↓(棕色沉淀)+2H 2O 加入浓硫酸使棕色沉淀(Mn0 2)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深 2KI+H 2SO 4=2HI+K 2SO4 MnO 3+2H 2SO 4+2HI=2MnSO 4+I 2+3H 2O I2+2Na 2S 2O 3=2NaI+Na 2S

4O6用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。 三、仪器 1.250ml—300ml溶解氧瓶 2.50ml酸式滴定管。 3.250ml锥形瓶 4.移液管 5.250ml碘量瓶 6.洗耳球 四、试剂 l、硫酸锰溶液。溶解480g分析纯硫酸锰(MnS0 4· H 20)溶于蒸馏水中,过滤后稀释成1000ml.此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液。取500g氢氧化钠溶解于300—400ml蒸馏水中(如氢氧化钠溶液表面吸收二氧化碳生成了碳酸钠,此时如有沉淀生成,可过滤除去)。 另取得气150g碘化钾溶解于200ml蒸馏水中,待氢氧化钠冷却后,将两溶液合并,混匀,用水稀释至1000ml。如有沉淀,则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,闭光保存。此溶液酸化后,与淀粉应不呈蓝色。 3.1%淀粉溶液:

溶解氧测定方法-国标

水质溶解氧的测定碘量法 GB 7489-87本方法等效采用国际标准ISO 5813 1983 本方法规定采用碘量法测定水中溶解氧由 于考虑到某些干扰而采用改进的温克勒(Winkler)法 1 范围 碘量法是测定水中溶解氧的基准方法在没有干扰的情况下此方法适用于各种溶解氧 浓度大于0.2mg/L 和小于氧的饱和浓度两倍(约20mg/L)的水样易氧化的有机物如丹宁酸 腐植酸和木质素等会对测定产生干扰可氧化的硫的化合物如硫化物硫脲也如同易于消 耗氧的呼吸系统那样产生干扰当含有这类物质时宜采用电化学探头法 亚硝酸盐浓度不高于15mg/L 时就不会产生干扰因为它们会被加入的叠氮化钠破坏掉 如存在氧化物质或还原物质需改进测定方法见第8 条. 如存在能固定或消耗碘的悬浮物本方法需按附录A 中叙述的方法改进后方可使用 2 原理 在样品中溶解氧与刚刚沉淀的二价氢氧化锰(将氢氧化钠或氢氧化钾加入到二价硫酸锰 中制得)反应酸化后生成的高价锰化合物将碘化物氧化游离出等当量的碘用硫代硫酸钠 滴定法测定游离碘量 3 试剂 分折中仅使用分析纯试剂和蒸馏水或纯度与之相当的水 3.1 硫酸溶液 小心地把500mL 浓硫酸(ρ= 1.84g/mL)在不停搅动下加入到500mL 水 注:若怀疑有三价铁的存在则采用磷酸(H3PO4 ρ=1.70g/mL) 3.2 硫酸溶液c(1/2H2SO4) =2mol/L 3.3 碱性碘化物叠氮化物试剂 注:当试样中亚硝酸氮含量大于0.05mg/L 而亚铁含量不超过1mg/L 时为防止亚硝酸氮对测定结果的干涉需在试样中加叠氮化物叠氮化钠是剧毒试剂若已知试样中的亚硝酸盐低于0.05mg/L 则可省去 此试剂 a. 操作过程中严防中毒 b. 不要使碱性碘化物叠氮化物试剂(3.3)酸化因为可能产生有毒的叠氮酸雾 将35g的氢氧化钠(NaOH)[或50g的氢氧化钾(KOH)]和30g碘化钾(KI)[或27g碘化钠(NaI)] 溶解在大约50mL 水中,单独地将1g 的叠氮化钠(NaN3)溶于几毫升水中,将上述二种溶液混合并稀释至100mL,溶液贮存在塞紧的细口棕色瓶子里,经稀释和酸化后在有指示剂(3.7)存在下本试剂应无色. 3.4 无水二价硫酸锰溶液340g/L(或一水硫酸锰380g/L 溶液) 可用450g/L 四水二价氯化锰溶液代替过滤不澄清的溶液 3.5 碘酸钾c(1/6KIO3) 10mmol/L 标准溶液 在180℃干燥数克碘酸钾(KIO3) 称量3.567±0.003g 溶解在水中并稀释到1000mL。将上述溶液吸取100mL 移入1000mL 容量瓶中用水稀释至标线。 3.6 硫代硫酸钠标准滴定液c(Na2S2O3) ≈10mmol/L 3.6.1 配制 将2.5g 五水硫代硫酸钠溶解于新煮沸并冷却的水中再加0.4g 的氢氧化钠(NaOH) 并稀释至1000m。溶液贮存于深色玻璃瓶中。 3.6.2 标定 在锥形瓶中用100~150mL 的水溶解约0.5g 的碘化钾或碘化钠(KI 或NaI) 加入5mL 2mol/L 的硫酸溶液(3.2),混合均匀加20.00mL 标准碘酸钾溶液(3.5) 稀释至约200mL 立即用硫代硫酸钠溶液滴定释放出的碘当接近滴定终点时溶液呈浅黄色加指示剂(3.7) 再滴定至完全无色

碘量法测定水中溶解氧

实验五碘量法测定水中溶解氧 一、实验目的 1.熟悉氧化还原滴定的基本原理。 2.掌握碘量法滴定的基本操作及标准溶液的配制及标定方法。 3.掌握碘量法测定溶解氧的基本操作规程。 二、实验原理 碘量法测定水中溶解氧是基于溶解氧的氧化性能。当水样中加入硫酸锰和碱性KI溶液时,立即生成 Mn(OH)2沉淀。Mn(OH)2极不稳定,迅速与水中溶解氧化合生成锰酸锰。在加入硫酸酸化后,已化合的溶解氧(以锰酸锰的形式存在)将KI氧化并释放出与溶解氧量相当的游离碘。然后用硫代硫酸钠标准溶液滴定,换算出溶解氧的含量。 此法适用于含少量还原性物质及硝酸氮<0.1mg/L、铁不大于1mg/L,较为清洁的水样。 三、实验主要仪器 1.250mL溶解氧瓶 2.25mL酸式滴定管 3.250mL锥形瓶 四、试剂 1.硫酸锰溶液:称取480gMnSO4·4H2O,溶于蒸馏水中,过滤后稀释至1L。(此溶液在酸性时,加入KI后,遇淀粉不变色。) 2.碱性KI溶液:??称取500gNaOH溶于300~400mL蒸馏水中,??称取150gKI 溶于200mL蒸馏水中,待NaOH溶液冷却后将两种溶液合并,混匀,用蒸馏水稀释至1L。若有沉淀,则放置过夜后,倾出上层清液,储于塑料瓶中,用黑纸包裹避光保存。 3.(1+5)硫酸溶液 4.浓硫酸 5.1%淀粉溶液:?称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水冲稀至100mL。冷却后,加入0.1g水杨酸或0.4g氯化锌防腐。 6.0.02500mol/L(1/6K2Cr2O7)重铬酸钾标准溶液:称取于105--110℃烘干2小时并冷却的K2Cr2O70.3064g,溶于水,移入250mL容量瓶中,用水稀释至标线,摇匀。

相关文档
最新文档