电源防雷器

电源防雷器
电源防雷器

Surge Protection System M2010

防雷器

使用说明书

深圳市华捷能科技有限公司

总目录

一.公司简介 (3)

二.安全守则 (4)

三.产品图片 (5)

四.安装说明 (6)

4.1注意事项 (6)

4.2产品安装 (6)

4.3产品连接 (6)

4.4产品指示灯 (7)

4.5远程控制 (7)

4.5.1远程控制连接 (8)

4.5.2远程灯指示 (8)

4.5.3辅助继电器触点 (8)

五.产品特性 (9)

六.防雷器工作原理 (10)

6.1工作过程 (11)

七.产品规格 (12)

八.产品尺寸图 (13)

九.采用标准 (14)

公司简介

深圳市华捷能科技有限公司专业从事电能质量领域研究,集研发、生产、销售为一体的高新技术企业,自主研发的SPS防雷器填补了国内室内电源环保无污染的空白,行业的领导者--SPS防雷器,集合防雷器,电源控制器,电源保护器,电源滤波器,防雷器,浪涌消除器,噪声消除器为一体,提供干净无污染的室内电源。

SPS防雷器,采用复合模式零通过技术保护电源,保护时不损坏元件,更不需要复位,零通过技术提供了最可靠的保障,吸收所有的浪涌,而且不会产生有害的副作用----如地面污。耐阻抗与EMI滤波器,RFI滤波器在该领域的技术是最先进的,并且为广大的用户提供全面的电能质量优化方案及全过程的技术支持,SPS 防雷器代表浪涌保护领域最高水平的性能和最稳定的可靠性。

SPS防雷器主要特点:“一阻,二存,三放,四滤”,所有的污染都不经过地线,为室内电源提供环保无污染稳定的电源.SPS防雷器保护您的设备免受雷击浪涌,尖峰电压,EMI噪声,RFI噪声,HUM噪声,过压和线路故障的损坏,提高您设备的性能,并且不损坏元件就能消除浪涌高达6kV,而且不会产生有害的副作用,为您减少损失,降低成本,减少相关的麻烦。

SPS防雷器分为专业类,工业类,民用类。主要应用于专用音频系统,专业视频系统,广播系统,工业系统,银行系统,IT系统,政府部门,计算机,多媒体设备,家庭影院,高档民用设备,有敏感电子元件的设备及需要高品质室内电源的任一场所。

所有SPS防雷器认证为:A级,I类,模式1,SPS所有产品均享有5年保修。

二.安全守则:

警告:接地线必须连接到电源插座地线。

警告:为减少火灾或电击危险,请勿将本机暴露在雨水或潮湿环境的地方。

闪电箭头符号,目的是提醒用户:产品存在未绝缘的危险电压,外壳可

能有足以构成人体触电的危险电压,请勿触碰外壳。

感叹号旨在提醒用户:相关设备存在重要的操作和维护说明,产品内部

没有用户可以维护的元器件,请勿打开。

注意:

1.请注意设备和操作说明书中的所有警告,并且只能用干布清洁。

2.请仔细阅读并保留这些安全指示,所有的维修人员必须有SPS授权。

3.不要在靠近雨水的地方或潮湿环境中使用这个设备。

4.为了防止火灾,切勿在本机附近放置任何蜡烛,明火等。

5.从交流电源插座上拔下电源插头,从交流电源完全切断该设备连接。

6.这是带有保护接地连接的一类设备,接地连接必需连接到电源插座地线。

7.不要安装在靠近热源的地方,如散热器,火炉或其他产生热量的设备。

8.不要将零线火线接反,接地插座必须接地,如果插头不适合您的插座,请找电

工来更换旧插座。

9.已损坏需进行维修的设备,包括:冲击损坏,电源线损坏,液体溢漏,或暴露

在湿气中的小物体,如果设备工作不正常,请交给授权服务人员维修。

表示该产品可能不会被视为一般的家庭废弃物,它应该返回到零售商那里,

或购买产品的地方应使用收集系统,安全地回收,以保证环境不受污染。

M2010防雷器

防雷器:集成电源净化器,防雷器,电源控制器,电源保护器,电源滤波器,电源防雷器,浪涌消除器,噪声消除器为一体,提供干净无污染的室内电源。

三.产品图片:

四.安装说明:

4.1注意事项:

1.在任何情况下,产品使用时都不能断开产品与地线的连接,如果从产品断开与地线连接,将会有安全隐患,产品外壳可能存在对设备与人体构成危险的电压。

2.SPS防雷器要保持电源线极性连接正确,如果极性接反,极性接反指示灯将点亮,请找电工将零火线对换,连接电源请遵守正确的极性连接。

4.2产品安装:

M2000系列被设计安装在19英寸的机柜,需要机架2U空间。将产品小心地滑入机架上,锁上固定螺丝,确定稳定,插上电源线,开始使用。

注意:请勿反复开/关电源开关,控制器每次接通电路都会吸收浪涌能量,并可能会过热,如果在很短的一段时间内总是反复开关,可能对机器会有损伤,吸收浪涌的效果也会变差,请等待一分钟之后再操作。

4.3产品连接:

M2010R防雷器必须插入极性正确的电源插座,将需要做电源保护设备的电源插头,始终插入SPS防雷器插座。

机种标准带载能力国别

M2010R GB1593410A中国产品灯连接:M2010L版本提供一个工作灯,插头有一个三针XLR连接上前面板灯(部分产品有)。

4.4产品指示灯:

M2000系列前面板有两个,三个或四个指示灯,后面板有极性接反指示灯:

白炽极性灯:后面板琥珀极性灯点亮,表明火线和零线反了,您的SPS产品将不工作,请找电工纠正错误,保证正确的极性连接。

红色电源指示灯:表示防雷器的电源开关是打开。

绿色自检灯:表示防雷器工作正常。

黄色过压/欠压保护灯(部分产品有):表示电源电压低于190V或高于280V。

红色的远程控制灯(部分产品有):电源开关必须打开,表明远程控制是正常的。

4.5远程控制(部分产品有):

远程控制连接绿色7PIN插座(在电源线旁边)出厂时的跳线端子引脚1和2是连接的,以便单机无远程控制连接,如果您要使用远程控制你首先需要去除此跳线,您可以拔下接线端子进行连接后,将连接好的接线端子,插回连接器。

连接如下:

4.5.1远程控制连接:

对开关插座的控制可以通过使用接点闭合开关,闭合引脚1和2的接点开关,则连接到另一个防雷器,或者施加直流电压5-30V DC到引脚2和3,正极连接到引脚2和负极连接到引脚3。

4.5.2远程灯指示:

远程灯连接是可选择的.如果使用的是内置灯,当打开开关插座时,灯要连接到第4PIN和第5PIN才会点亮.电流10mA,如果你用自己的灯时,一定要使用电阻,大部分灯1K的电阻可以提供适合的亮度,若要用亮度弱就使用阻值大的电阻,若要用亮度强的就用阻值小的电阻。

?LED正极导线连接到引脚4?LED负极导线连接到引脚5

4.5.3辅助继电器触点:

第6&7脚是辅助继电器触点,提供SPS使用或提供反馈到中央控制器。当处理器切换时,辅助继电器触点闭合。辅助继电器闭合时有1秒的延迟,使浪涌冲击在SPS设备的电路中消除。即使有几个大的负载(如功放),SPS设备这短暂的延迟使你不必担心。SPS控制器串联时,可以运行一个很大的负载,并且断路器不会断开。串联两个或两个以上的控制器,辅助继电器连接中央控制器的输入端上的接触点,将辅助继电器接触一个控制器的触点闭合输入到下一个控制器,继电器触点的额定电流为1A30VDC。

五.产品特性:

*浪涌净化系统技术特点“一阻,二存,三放,四滤”*四级限幅电路

*最先进的抗干扰能力

*EMI滤波器,RFI滤波器

*自检电路指示灯

*可承受6kV浪涌冲击1000次以上

*完全不损坏元件

*外壳为磁屏蔽钢

*极性接反指示灯

*6个电源插座

*具有远程控制功能

*断路器过载保护

*过压与欠压保护

六.SPS防雷器工作原理:

1阻:SPS防雷器的关键是大容量的浪涌电抗器,电抗器吸收的浪涌远远超过其他的电源设备,使电子产品开关时的浪涌和重载设备产生的瞬间浪涌都被电抗器瞬间过滤掉,处理最大的浪涌和拦截90%以上的电源线上产生的浪涌,并限制浪涌电流。

2存:SPS防雷器跟踪限压,钳位再经电抗器消除放缓的残余浪涌能量,先用电容存储,限制余下的电流。

3放:SPS防雷器,将电容存储的电能,通过SPS防雷器的滤波器进行滤波,再缓慢释放到零线,而不是地线,避免通过地线网络损坏其他设备。

4滤:通过SPS防雷器自身的耐阻抗EMI滤波器,RFI滤波器过滤,通过滤波器处理,地线从来没有被污染是完全干净的,通过相同电源连接的设备是绝对安全的。

6.1工作过程:

SPS防雷器首先是通过低通滤波器,采用主动跟踪电路,有2mm以上浪涌电抗器限制电流,它只阻止高频成分的电源浪涌,剩下的低频浪涌能量进入电容器存储,有自动跟踪电压限幅器,以跟踪钳位2V以上的峰值电压,在一段时间里,然后电容器慢慢地排出低频浪涌,释放在火线和零线之间,不涉及任何设备的地线,还有脉冲逆变器,钳位电压为325V时具有即时反应的缓冲,以防止浪涌快速上升。SPS防雷器采用“浮动钳位电压电路”,在过压条件下,能承受相当长时间无损伤的良好性能。最重要的是,不会损坏SPS防雷器的任何一个元件,不用周期性的测试和维护,更不会导致参考地上有电压,无论设备接地在什么地方(只需要设备的地线接到大地,这是常识)它都是一个很好的电源系统,有效地保证了服务不限次数。因此,SPS防雷器可以放置在任何地方,这是真正质的飞跃,实现电源浪涌保护!

SPS防雷器耐阻抗与EMI滤波器,RFI滤波器在该领域的技术是最先进的,考滤到了电源线阻抗,允许信号源和负载阻抗不匹配,长期耐阻抗能力非常强,结合EMI滤波器,RFI滤波器技术改进性能,并融入到SPS防雷器中,SPS防雷器技术代表着在浪涌保护领域最高水平的性能和最稳定的可靠性。

SPS防雷器有部分产品具有远程控制功能,为电源系统的电源控制提供了一个创新的新方法,新方法就是:电源控制器自身就能安排信号处理设备的开关顺序,SPS防雷器软启动完全消除浪涌电流问题,一台SPS防雷器,你可以连接多个设备,它允许无限数量的功放串联打开(注:不超过额定负载),并且断路器不会断开,SPS防雷器是非常划算的电源控制系统。

七.产品规格:

项次产品特性产品参数

1产品名称防雷器

2产品型号M2010,M2010R,M2010L

3额定工作电压220VAC

4最大工作电压264VAC

5额定工作频率50Hz

6输出路数6路

7欠压180V(200V时恢复)

8过压290V(270V时恢复)

9额定负载电流10A

10功率(无负载时)22W

116kV浪涌通过电压0V

12承受的最大浪涌电压(8/20)μs6000V

13承受的最大浪涌电流(8/20)μs3000A

14电压保护电平(8/20)μs Up1000V

15产品内部特性电压335V,耐压5秒

16外壳防护等级IP20

17断开方法拔掉电源插头

18极性指示灯极性正确:不亮;极性错误:点亮

19耐力测试1kV>500000次,3kV>10000次,6kV>1000次20防雷保护等级A级,I类,模式1

21EMI滤波,RFI滤波(50R负载)20dB@300kHz;30dB@1MHz;

50dB@5MHz;50dB@20MHz 22承受最大浪涌能量1000焦耳

23适用的供电系统类型TT,TN,IT

24颜色黑色

25插座形式输入为10A,电源三芯插头(国标)

输出为10A,电源三芯插座(国标)26远程开关额定功率5~30V DC/1.5mA

27远程额定功率5VDC/0.1mA;12VDC/1.5mA;24VDC/5mA 28辅助继电器额定功率30V/1Amps

29灯的额定功率12V DC/20mA

30尺寸(长*宽*高)482*250*88mm

31净重3Kg

32毛重 3.5Kg

33温度范围-25~+40℃

34湿度范围20℃时,湿度不超过95%,无凝露

八.产品尺寸图

九.SPS防雷器采用如下国家标准:

GB18802.1-2000低压配电系统的电涌保护器(SPD)(中国);

GB50343—2004建筑物电子信息系统防雷技术规范;

YD5078-98通信工程电源系统防雷技术规定;

IEC61312防雷击电磁脉冲;

IEC61312-3电涌保护器(SPD)的要求;

IEC61643-3低压系统的电涌保护器;

IEC60364-4-473过电流保护措施;

IEC61000-4-5电磁兼容性雷击浪涌抗扰度测试标准;

IEC60364-4-443低压配电系统的电涌保护器(SPD);

五年保质

SPS电源净化系统

SPS防雷器从购买之日起5年之内保修,SPS对所使用的材料或工艺缺陷的产品进行维修,所有的人工及零件不收取任何费用,这是SPS的责任与义务。在保质期内,如果SPS的产品无法修复,SPS将取新的产品,有同类质量和功能的产品免费替换。在保质期内,任何有缺陷的SPS产品仅限于维修或更换,不涉及退款。如果是SPS控制范围以外的任何原因,如疏忽,滥用,误用,天灾,修改产品或第三方维修产品,不在保修范围之内。

深圳市华捷能科技有限公司

地址:广东省深圳市宝安二十三区东联商务大厦208

电源系列浪涌保护器

电源系列浪涌保护器 电源避雷器的分类: (1)按保护电源的特性分类:分为交流电源避雷器和直流电源避雷器。交流电源避雷器又分为单相电源避雷器和三相电源避雷器。 (2)按所使用的防雷元件的特性分类:采用与开关特性相仿的放电隙的电源避雷器称为开关型电源避雷器;采用其他压敏电阻和瞬态管等防雷元件的电源避雷器称为限压型电源避雷器。 (3)按电源避雷器组成的级数多少分类:分为单级电源避雷器和多级电源避雷器 5)按电源避雷器结构和安装方式分:有采用35mm标准导轨安装的可直接装入配电柜 和配电箱的浪涌抑制器,俗称电源模块;有采用箱式结构的箱式电源避雷器。 工作原理: (1)方框图: 三相电源避雷器和直流电源避雷器的方框图如图11和图12所示。从图中可看出保护功能配置情况。 在第一图中有相线对雷地、中线对雷地、相线对中线和相线对相线之间的保护,分别称为保护模式:L-PE、N-PE、L-N和L-L。其中相对于PE的保护称为纵向保护,其余L-N 和 L-L称为横向保护。在第二图中有V+对雷地、V-对雷地和V+对V-的保护,分别称为保 护模式V+—PE、V-—PE和V+—V-,其中V+—PE和V-—PE称为纵向保护,V+—V- 称为横向保护。 根据有关标准规定,交流电源避雷器必须有纵向保护,宜有横向保护。直流电源避雷器必须有横向保护,宜有纵向保护。 2)基本电路:

将单个防雷元件或二个以上防雷元件的组合代入方框图即得到具体的电原理图。应 用不同的防雷元件可得到以下几种基本电路: a、压敏电阻电路; b、电源模块电路: 带有自动脱离装置(热熔断器和电流熔断器)的压敏电阻,同时具有用颜色变化显 示是否失效的窗口和遥信端子。 c、压敏电阻与气体放电管的串联组合电路:其最大的优点是无短路隐患 d、压敏电阻矩阵网络电路:有自动热保护功能和分部分的失效指示功能 e、空气放电隙 采用高熔点铜钨合金制作。在使用时应设置后备保护。 (3)辅助功能: a、工作指示:绿灯亮表示供电正常 b、劣化指示:红灯亮表示压敏电阻已劣化、失效。 c、自动脱离:应用熔断器、断路器实现压敏电阻劣化、失效后与电网脱离。 d、遥信接口:电源避雷器劣化、失效时遥信接口内的通—断开关自动进行通—断 转换。 e、雷击计数: 记录幅度大于1kA的雷电流入侵的次数,用数码管或电磁计数器显示累计的次数。 3.3主要技术指标: (1)最高持续运行电压: a、定义:SPD在运行中能持续耐受的最大直流电压或工频电压有效值。 b、最高持续运行电压取决于SPD的标称导通电压V1mA。对于单个压敏电阻元件国内外均执行以下规定: c、在选用SPD时,SPD的最高持续运行电压应略高于当地电网可能出现的最高电压。 在不能到现场考察或在现场用户不能提供最高电网电压时应选用U~max≥350V的产品。 d、U~max=275V的SPD一般只能用在UPS电源后面。 (2)放电电流: a、定义: 1、标称放电电流:施加规定波形(8/20μs)和次数(同一极性5次)放电电流冲击 后标称导通电压变化率小于10%,漏泄电流和限制电压仍在合格范围内的最大的放电电流幅值。 2、最大放电电流:施加规定波形(8/20μs)放电电流冲击1次后不发生实质性损坏,不炸裂,不燃烧的最大的放电电流幅值,一般最大放电电流=(1.5∽2.5)×标称放电电流。 3、最大冲击电流:施加规定波形(10/350μs)放电电流冲击1次后不发生实质性损坏,不炸裂,不燃烧的最大的放电电流幅值,一般仅对架空进线电源系统的第一级电源SPD有此 指标要求。 b、放电电流是衡量电源避雷器泄放雷电流能力的指标,应根据当地雷电强度、被保护

EMI电源滤波器原理概述1

9 好的综合性能。泄漏电流的测试电路如下所示: 图10 泄漏电流测试电路 耐压测试:为确保电源滤波器的性能以及设备和人身安全,必须进行滤波器耐压测试。 决定线-线之间耐压性能的关键器件就是差模电容C X ,若C X 电容器的耐压性能欠佳,在出现峰值浪涌电压时,可能被击穿。它的击穿虽然不危及人身安全,但会使滤波器功能丧失或性能下降。 C Y 电容器除了满足接地漏电流的要求外,还在电气和机械性能方面具有足够的安全余量,避免在极端恶劣的环境条件下出现击穿短路现象。故线-地之间的耐压性能对保护人身安全有重要意义,一旦设备或装置的绝缘保护措施失效,可能导致人员伤亡。因此,必须对接地电容(C Y )进行严格的耐压测试。 根据相关标准要求,开容公司生产的电源滤波器满足如下耐压测试要求: 交流电源滤波器 线-地:1760VAC (1分钟)耐压测试; 线-线:1500VDC (1分钟)耐压测试。 直流电源滤波器 线-地:500VDC (1分钟)耐压测试; 线-线:200VDC (1分钟)耐压测试。 为减小接地阻抗,滤波器应安装在导电金属表面或通过编织接地带与接地点就近相连(图11),避免细长接地导线造成较大的接地阻抗。 图11 滤波器安装时应保证良好接地 (a )错误接法 (b )正确接法

10 滤波器应尽量安装在设备的入口/出口处(如图12)。 图12 电源滤波器的安装位置 为避免输入/输出互相耦合,应尽量做到输入/输出隔离,至少严格禁止滤波器输入/输出线的相互交叉、路径平行等(如图13)。若由于位置及空间的限制,无法满足上述要求,则滤波器的输入/输出线必须采用屏蔽线或高频吸收线。 图13 安装使用电源滤波器应注意输入/输出的空间隔离 (a )错误接法 (b )正确接法 ( a )错误接法 (b )正确接法

安装避雷器施工方案

安装避雷器施工方案 一.工程概况: 氧化锌避雷器主要试验项目包括避雷器安装、绝缘电阻测量、泄漏电流测量。 二.施工准备 2.1避雷器的额定电压是否与线路电压相同; 2.2底盘瓷板是否有裂纹,瓷件表面是否有裂纹、损伤、闪络痕迹和掉釉现象。 如有损坏,损坏面应小于0.5cm~2,不超过三处可继续使用; 2.3将避雷器向不同方向轻轻摇动,内部不得有松动声;2.4检查瓷套与法兰连接处的粘接、密封是否良好。 三.维护技术标准及质量保证措施4.1维护技术标准4.1.1绝缘电阻1)35kV以上,不低于25002。35kV及以下,不小于1000Ω。 1.直流1m电压(U1mA)和0.75u1ma下的泄漏电流。 2.不应低于GB11032的规定值。 3.U1mA的测量值与厂家的初始值或规定值比较,变化不大于±5%。3)0.75u1ma以下的泄漏电流不大于50ua。 4.2质量保证措施4.2.1检查验收安全绝缘器具,不合格者更换。 5个。维护安全措施5.1危险源辨识、风险评价和控制措施确认。 4.维修作业危险源辨识及风险评估。 5.绝缘安全器具试验时有触电危险。 6.环境控制措施6.1维修现场严禁遗留擦拭机布、手套等废弃物。 7.维修现场严禁遗留废保险丝。 8.废雨刷、手套、保险丝统一回收。 四.主要施工方法 1 检查确认安全措施齐全,办理工作票。 2 操作避雷器,将避雷器浸入水中8小时,取出并通风8小时。 3 试验场地应设置围栏,并悬挂“停止、高压危险”标志。 4 避雷器应垂直安装,倾角不大于15°。安装位置应尽量靠近保护设备。避雷器与3-10kV 设备的电气距离不应大于15m,易检查、易巡视的带电部分距地面小于3m时,应设置障碍物。 5 避雷器导线及母线与导线连接处的截面积不小于规定值:3-10kV铜导线导线截面积不小于16mm2,铝导线截面积按设计要求不小于25mm235kv及以上。上下引线连接牢固,无松动,金属接触面应清除氧化膜和油漆; 6 避雷器周围应有足够的空间,带电部分与相邻相导线或金属框架的距离不小于0.35m,底座之间的距离板与地面不应小于2.5m,以免周围物体干扰避雷器的电位分布,降低间隙放电电压; 五. 高压避雷器的支柱绝缘子串必须牢固,其弹簧应适当调整,以保证自由伸缩,螺母在弹簧箱不应松动,应有保护装置;同相耐张绝缘子串的张力应均匀; 1. 均压环应水平安装,不得歪斜,三相中心孔应一致;所有电路(从母线线到地线)不应应尽可能短而直; 2.测量绝缘电阻和泄漏电流。 3.试验结束后,拆除自装接地短路。 4.清理现场,不留杂物。

机房电源三级防雷安装方式

电源三级防雷安装方式 电源防雷主要是防止雷电和其他内部过电压侵入设备造成损坏,从室外防雷与线路防雷相结合的综合防雷方案,介绍了外部避雷和内部避雷、保护区、防雷等电位截流等概念。分析了电源防雷工作器原理。采用电源防雷器能在最短时间内释放电路上因雷击感应而产生的大量脉冲能量短路泄放到大地,降低设备各接口间的电位差,从而保护电路上的设备。 1.电源第一级防雷 对于城市供电网三相四线制系统,第一级电源防雷(WJA380-100KA)四线采用高能避雷器4个,在三条火线上,一条零线上各并联一个高能避雷器与地连接。 当供电回路熔断器F1(或空气开关)额定电流大于250A时,需在高能避雷器并联支路上(火线)加装250A熔断器F2(或空气开关),反之则不需要。 2.电源第二级防雷 第二级电源防雷(WJA380-80KA)采用过压保护器4个,在三条火线、一条零线上各并一个过压保护器与地连接. 在正常情况下,保护器处于高阻状态,当电网由于雷击或开关操作出现瞬时脉冲电压时,过压保护器内藏模块里的氧化锌压敏电阻元件立即在纳秒时间内迅速导通,将该脉冲电压短路到大地泄放,从而保护所有设备,当该脉冲电压流过保护器后,保护器又变为高阻状态,从而不影响设备的供电。 当供电回路熔断器F1(或空气开关)额定电流大于125A时,需在过压保护器并联支路上(火线)加装125A熔断器F2(或空气开关),反之则不需要。

3.电源第三级防雷 第三级防雷保护,用于保护重要设备的电源系统、电子设备的精细过压保护。安装在重要设备的机架式防雷电源或电源防雷插座(PDU防雷器WJAZ10-8/PEU)上。 编号:WJFL-小黄

常用的防雷典型电路

防雷器基本电路图目录 一、交流电源防雷器 (一)单相并联式防雷器(电路一~电路三) 1~3(二)三相并联式防雷器(电路一~电路三)4~6(三)单相串联式防雷器(通用安全保护电路)7(四)三相串联式防雷器(通用安全保护电路)8二、通信机房用直流电源防雷器 (一)并联式防雷器 1、正极接地(–48V)直流电源 9 2、负极接地(+24V)直流电源 10 3、正负对称(±110V)直流电源 11 (二)串联式防雷器 1、正极接地(–48V)直流电源 12 2、负极接地(+24V)直流电源 13 3、正负对称(±110V)直流电源 14 三、通用二级信号防雷器 (一)双绞线型信号电路 通用电路一~通用电路五 15~19 (二)同轴线型信号电路 (1)外导体接地电路(通用电路一~通用电路三) 20~22 (2)外导体不接地电路(通用电路一~通用电路二) 23~24 (三)提高传输频率/速率的方法25

四、小功率电源变压器或开关电源保护电路(电路一~电路三) 26~28 五、通讯电子设备的保护电路(电路一~电路三)29~31 六、直流电源与信号同传的保护电路32 七、信号电路的双重二级保护方式33 八、检测/控制电路的保护(接地、不接地)34~35 九、单级信号防雷器 1、只用玻璃放电管的保护电路 36 2、只用半导体过压保护器的保护电路 37 3、只用TVS管的保护电路 38 4、复合单级保护电路 39 十、天馈防雷器 1、单级电路天馈防雷器 40 2、二级电路天馈防雷器 41 3、三级电路天馈防雷器 42 十一、防静电保护器 43

(一)单相并联式防雷器 电路一:最简单的电路 600V。当要求的通流容量≤3KA时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

电源浪涌保护器常识

电涌保护器SPD应用常识 作者:来源:时间:2008-03-10 电涌保护器SPD应用常识 随着国民经济的不断发展,现代化水平的快速提高,在信息化带动工业化的指引下,各类信息设备、电子计算机、精密仪器、数据网络设备的应用越来越广泛,此类设备一般工作电压低、耐压水平低、敏感性高、抗干扰能力低,因而极易受到雷电电流脉冲的危害。每年都给人类造成巨大的直接经济损失。而因重要设备损坏使网络陷入瘫痪而造成的间接损失更是惊人,已引起国内相关领域对此类系统加强保护的高度重视。 近年来,“SPD”这个名词已越来越多地被专业研究、产品制造及工程设计的人们所提到。作为雷电防护装置体系中的重要组成部分,“SPD”已被广泛用于邮电通讯、广播电视、金融证券、保险、电力、铁道、交通、机场、石化、市政建设等各个行业。可以毫不夸张地说,凡是装有IT设备的场所,就有应用SPD的必须。 那么SPD究竟是一种什么产品呢?SPD有哪些功能呢?SPD是如何选择应用的呢?在这里我们着手用尽可能通俗的语言向各位介绍一些有关SPD产品的基础知识。希望对那些尚未接触过SPD或对SPD知之甚少而又想掌握SPD知识,并进而使用SPD产品的读者有所收益。 一、什么是SPD(SPD介述) SPD这一名词英语全称是surge protectiye device其译意为电涌保护器,是限制雷电反击、侵入波、雷电感应和操作过电压而产生的瞬时过电压和泄放电涌电流(沿线路传送的电流、电压或功率的暂态波。其特性是先快速上升后缓慢下降)的器件。一端口SPD与被保护电路并联,能分开输入和输出端,在这些端子之间设有特殊的串联阻抗;二端口SPD有两组输入和输出端子,在这些端子之间有特

如何准确计算电源滤波器中的漏电流

如何准确计算电源滤波器中的漏电流 1 引言 在电气设备的正常运行过程中,一部分电流沿着保护接地导体流入大地。这些电流称为漏电流,是用户的一个安全隐患,因此,大多数产品安全标准均对漏电流进行了限制。人们越来越多地使用剩余电流设备或者漏电流断路器,当检测到漏电流过高时,这些设备将断开电源。 电源线路滤波器,或者emc滤波器,通过它们的对地电容器影响设备的总漏电流。当今的技术已使噪声抑制滤波器的使用成为必需,这样,漏电流对于最终用户更为重要。客户经常对漏电流的额定值感到困惑,因为滤波器制造商不使用统一的方法进行计算。因此,采用相同的电路,但是由不同制造商制造的滤波器的漏电流不能直接比较。本文叙述了关于漏电流的基本内容,包括计算和测量方法等。 2 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,对保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。对办公室设备和信息技术设备的产品安全标准en 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过 3.5ma,采用下文所述的测量方法进行测量。 3.5ma的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(b型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5ma。另外,等电位联结导体的最小截面积必须符合en 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告!强接触电流。先接地。”;“警告!强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源emi滤波器的安全标准。在欧洲,新颁布了en 60939,自2006年1月1日起代替了当时现行的en 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的emi滤波器标准,ul 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5ma。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 3 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于三相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对连续生产的每一个滤波器都进行漏电流测量是不合理的,所以一般来说,制造商提供的漏电流都是根据计算值。 对于所有的计算,磁性元件的寄生元件及保护接地器的阻抗均忽略不计。计算时只考虑滤波器电容的误差。emi 滤波器电容一般用来抑制差模和共模干扰。对于前者,在相位之间,以及相位和中性导体之间,连接有所谓的x电容。对于共模抑制,相位和接地之间采用y电容。 电容器对于频率和电压的依存关系也没有考虑。这对于陶瓷电容器是非常重要的,因为这种电容器会受到电压和频率的明显影响。因此,采用陶瓷电容器的滤波器的漏电流也比计算结果更大。 3.1 三相供电网中的漏电流 要计算三相供电网中的漏电流,需要确定电源中性点mq和负载中性点ml之间的电压。在电源端,是3个相电压ul1、ul2和ul3,与中性点mq相连接。在负载端,是3个阻抗z1、z2和z3,也与一个星形相连接,如图1所示。两个中性点mq和ml通过阻抗zql相连,此阻抗上的压降为uql。

浪涌保护器的安装

欢迎阅读 浪涌保护器的有关知识和安装 电涌保护器(SPD )工作原理和结构 电涌保护器(SurgeprotectionDevice )是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 11.2.3.(1.过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar )的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:Udc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压 , ; Ub 4. 9 ( ( ( (4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。 (5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。(6)响应时间:10-11s 5.扼流线圈:扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作

开关电源EMI滤波器的正确选择与使用

开关电源EMI滤波器的正确选择与使用 1插入损耗和滤波电路的选择 在用户选择滤波器时,最关心插入损耗性能。但是,往往插入损耗相近的滤波器,在实际运用中效果相差甚远。究其主要原因是,相近插入损耗的滤波器可由不同的电路实现。这和理论分析是吻合的,因为插入损耗本身是个多解函数。 所以,选择滤波器时首先应选择适合你所用的滤波电路和插入损耗性能。要做到这一点,就要求了解所使用电源的等效噪声源阻抗和所需要对噪声的抑制能力。这符合“知己知彼,百战百殆”的客观规律。 那么滤波电路和电源等效噪声之间存在什么样的关系呢? 众所周知,EMI滤波器是由L、C构成的低通器件。为了在阻带内获得最大衰减,滤波器输入端和输出端的阻抗需与之连接的噪声源阻抗相反,即对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)。对于EMI滤波器,这些原则应用于共模和差模中。 如按此原则选用的滤波器,在实际运用中仍存在效果相差很多的现象,特别发生在重载和满载的情况下。造成这一问题的主要原因可能是滤波器中的电感器件在重载和满载时,产生饱和现象,致使电感量迅速下降,导致插入损耗性能大大变坏。其中尤以有差模电感的滤波器为多。因差模电感要流过电源火线或零线中的全部工作电流,如果差模电感设计不当,电流一大,就很容易饱和。当然也不排除共模扼流圈,因生产工艺水平较差,两个绕组不对称,造成在重载或满载时产生磁饱和的可能。 图1 共模滤波器模型 1.1.2差模滤波电路 由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。 AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。 开关电源工频谐波噪声源阻抗是高阻抗,所以与之相对应的滤波器输出端应是低阻抗并联大电容CX2。 合成的差模滤波电路参见图2。 最后,完整的共、差模滤波电路参见图3。

电源避雷器的选型

电源防雷器的选型 1、电源防雷器的分类 1)按产品性能分类: 电压开关型SPD——采用放电间隙技术,可最大限度的消除电网后续电流,疏导10/350μs的模拟雷电冲击电流,按照IEC61312-3的要求,一般用在LPZO B-LPZ1区中电源系统的防雷器。(亦称短路型SPD) 产品特点:雷电通流量大,无漏泄电流,多用于建筑物的总配电系统,实用于各种供电系统制式中。 电压限制型SPD——采用压敏器件,其可较大程度减低电网上的残压,疏导8/20μs的模拟雷电冲击电流,按照IEC61312-3的要求,一般用在LPZ1-LPZ2区中电源系统的防雷器。 产品特点:反应时间快,残压低,应用于TN制式保护效果较好。 (在TT制式中如有漏泄电流,可能引起地电位的升高) 复合型SPD——由电压开关型组件和电压限制型组件组合而成的防雷器。其特性随所加电压的特性可表现为电压开关型、电压限制型或两者特性皆有。(通常指相线与零线之间采用压敏防雷模块,而零线与地线之间采用放电间隙防雷模块(NPE模块)的防雷器) 产品特点:在接地阻抗高或地线接触不良的情况下,因防雷器接在相线与零线之间,而相线与零线回路阻抗主要是供电变压器和电缆,阻抗很低而故障电流很大,流经防雷器的电流可使前端保护断路器或熔断器动作,把防雷器与电网隔离。 2)按保护级别分类:防雷器按IEC分类方法,分为I、II、III级(顺序对应为B、C、D三级)B级(第I级)防雷器——适用于LPZO A区或LPZO B区与LPZ1区交界面处的等电位连接,能承受直击雷的能量和释放部分直接雷击电流的防雷器。 C级(第II级)防雷器——适用于LPZ1区与LPZ2区交界面处的等电位连接,能够释放由远距离或传导雷击以及开关转换而引起的电涌的防雷器。 D级(第III级)防雷器——适用于LPZ2区与其后续防雷区交界面处的等电位连接,为了保护线路末端的单个负载而设计的防雷器。 3)按电源特性分类:分为单相交流、三相交流和直流三种。 4)按外形结构分类:分为模块式、箱式、插座式和机架式。 5)按接线方式分类:分为串联型和并联型。 2、电源防雷器技术参数的选择 1)最大持续运行电压(Uc)的选择 限压型电源防雷器的最大持续运行电压Uc,是影响防雷器运行稳定性的关键参数。选型时除要符合相关标准要求外,还应考虑电网可能出现的正常波动及最高持续故障电压。 ★在纵向保护模式中(L~N;L~PE;N~PE)Uc标称值应≮1.15U*(U*为220V); ★在横向保护模式中(L~L)Uc标称值应≮线间电压的1.15倍。 按照IEC61643-2的说明,在TT交流供电系统中,相线对地线的最高持续故障电压,可能达到标称电压(U N)(交流电压220Urms)的1.5倍,即有可能达到330Urms。故此在电流不稳定的地方,建议选择电源防雷器的最大持续运行电压值Uc为385Urms的模块。 在直流电源系统中,并没有一个统一的最大持续运行电压值Uc与正常工作电压Un之比例,该比例一般可取1.5倍到2倍之间。 2)电压保护水平(Up)的选择 Us.max<Up<Uchoc (Us.max—电网的最高运行电压;Uchoc—被保护设备的冲击耐受电压)根据IEC60364-4,三相电网电压为230V/400V被保护设备冲击耐受电压(8/20μs)分为四类;

三相有源电力滤波器的设计

三相有源电力滤波器的设计 摘要:随着现代社会经济的不断发展,推动了电力行业的进一步发展,电子装置亦被广泛应用,至此大量谐波及无功电流被用于电网中,但随之而来的是极大的污染,电能质量问题亦显得十分严重。有源电力滤波器可有效补偿电力系统谐波及其无功功率,此装置控制具备良好的实时性及准确性,这亦是实现有效补偿的重要内容。三相有源电力滤波器是以模拟逻辑方式消除电网谐波,从而实时检测电网中的非线性负载电流波形,再将动态滤波、动态无功功率集于一体,其使用性能良好,影响速度极快,滤波涵盖范围亦是非常广泛,实际应用效率高,工作时并不受系统参数的影响。本文探讨了三相有源电力滤波器的设计,并提出了实用性应用措施,为三相有源电力滤波器设计提供参考依据。 关键词:三相有源;电力滤波器;滤波器设计 三相有源电力滤波器可实时滤除谐波,及时消除非线性负载中的谐波电流,亦或者是消除电网侧产生的谐波电流,从而有效降低系统电压畸变率;并可实现动态无功补偿,能够及时发出容性无功亦或感性无功,可有效改善系统的功率因数;可达到降耗节能的目的,有效降低线路损耗与变压器损耗,能够有效缓解设备发热的问题,同时延长设备应用时间,并确保电力系统运行稳定可靠。三相有源电力滤波器对现代电力系统发展有着极大现实意义,但三相有源电力滤波器设计水平偏低,因此探讨三相有源电力滤波器设计,对电力系统有效运行有着极大现实意义。 一、三相有源电力滤波器简论 1、有源电力滤波器 电力电子设备及非线性负载现已被广泛应用,这时的谐波电流及无功电流被大量注进电网,从而威胁着电网及电气设备的运行及其正常使用。有源电力滤波器为动态抑制谐波及补偿无功的设备装置,此类电力电子设备可对频率及大小变化谐波、无功等有效补偿,其为十

避雷器安装位置的选择(图文) 民熔

避雷器 避雷器介绍 氧化锌产品介绍 民熔氧化锌避雷器 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻, 耐碰撞运输无碰损失, 安装灵活特别适合在开关柜内使用 民熔 HY5WZ-17/45高压氧化锌避雷器 10KV电站型金属氧化锌避雷器 民熔 35KV高压避雷器 HY5WZ-51/134 户外电站型 氧化锌避雷器复合型 在实际安装避雷器时,有安装于跌落保险上侧和跌落保险下侧两种方法。将避雷器安装在跌落保险上侧,是否会削弱对配变的防雷保护? 经过多年的运行经验,避雷器安装在跌落保险下侧还是跌落保险上侧,防雷效果是一样的,现均未发生由于避雷器安装的位置不一样引起雷击配变的事故。另外在《架空配电线路设计技术规程》的规定,防雷装置应尽量靠近变压器安装。一般认为距离不超过10m即可。

所有特殊变压器用户均采用高压计量箱。计量箱一般安装在坠落保险的上方。在实际运行中,避雷器安装在高压计量箱的上方,即要安装高压计量箱的用户必须安装一组隔离开关,然后通过计量箱进行坠落保险。 隔离开关的安装解决了安装在跌落保险上侧所带来的问题。当一台变压器的避雷器发生故障或检修时,只需切断一台变压器的电源,就可以减少全线停电次数。同时发生单相接地或相间短路时,可以减少故障查找和处理的时间。 因此,避雷器的安装应根据现场设备的安装位置而定。城市变压器一般安装高压计量箱的隔离开关和避雷器,最好安装在跌落保险上。如果市郊型变压器不设隔离开关,避雷器最好安装在跌落保险的下侧。

防雷电源线路分级防雷防雷器安装规范

防雷电源线路分级防雷防雷器安装规范 广西新全通电子技术有限公司跟大家分享电源线路分级防雷防雷器安装规范 最大持续工作电压Uc是可能持续加于防雷器两端的最大交流方均根电压或直流电压,其值等于防雷器本身的额定电压。最大持续运行电压的要求涉及防雷器长期运行的可靠,最大持续运行电压也影响防雷器产品电压保护水平的确定。在制造水平不变的条件下,Uc越高Up 也越高,从而影响防雷器的主要技术指标。防雷器在通过浪涌电流时,保护器两端的电压称残压。保护水平式指额定放电电流时,保护器端的残压水平,这是选择防雷器的一个最重要的指标。该值应比在防雷器端子测得的最大限制电压大,并与设备的耐压Uw相配合。过去认为启动电压即标称压敏电压,实际上通过防雷器的电流可能远大于测试电流1mA,不能不考虑已经抬高的残压队设备保护的影响,从压敏电压到启动电压的时间(即防雷器的响应时间)比较长,约为25ns。启动电压越高残压也越高,启动电压越低则压敏电阻易老化,其值不应大于被保护设备的绝缘水平。在最大持续工作电压Uc下保护模式上流过的电流,实际上时各保护元件及其并联的内部辅助电路流过的电流之和。为避免过电流保护设备或其它保护设备不必要动作,Ic值的选择非常有用。电源线路的各级防雷器应分别安装在被保护设备电源线路的前端,防雷器各接线端应分别与配电箱内线路的同名端相线连接。防雷器的接地端与配电箱的保护接地线(PE)接地端子板连接,配电箱接地端子板与所处防雷区的等电位接地端子板连接。各级防雷器连接导线应平直,带有接线端子的电源线路防雷器应采用压接;带有接线柱的防雷器采用鼻子与接线柱连接。天馈线路防雷器应串接于天馈线与被保护设备之间,宜安装在机房内设备附近或机架上,也可以直接连接在设备馈线接口上。线路防雷器应连接在被保护设备的信号端口上。防雷器输出端与被保护设备的端口相连。防雷器也可以安装在机柜内,固定在设备机架上或附近支撑物上。防雷器应安装牢固,其位置及布线正确。

电源三级防雷方案

机房系统统合防雷 设 计 方 案 设计单位:成都凯德曼科技有限公司 二0 一0 年

防雷设计依据 XX机房系统的雷电过电压及电磁干扰防护,是保护电源线路、设备及人身安全的重要技术手段,是确保电气、电子设备运行必不可缺少的技术环节。 本方案的设计依据: 1.GB50057-94(2000年版)《建筑物防雷设计规范》 为使建筑物防雷设计因地制宜的采用防雷措施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,做到安全可靠,技术先进,经济合理。 2.GB50343-2004《建筑物电子信息系统防雷技术规范》 本规范主要对建筑物电子信息系统综合防雷工程的设计、施工、验收、维护和管理做出规定和要求。 3.JGJ/T16-92 《民用建筑电气执行规范》 为在民用建筑电气设计中更好地贯彻执行国家的技术政策,作到安全可靠,技术先进、经济合理、维护方便。 本规范使用于城镇新建、改建和扩建的单体及群体民用建筑的电气设计,并应选用合适的定型产品及经过检测的优良产品。 4.IEC 62305-1/2/3/4/5 《雷电的防护》 本标准介绍了雷电防护的基本知识,雷电风险管理方法,以及在不同应用环境,雷电防护措施的设计、安装和维护的准则。此为最新国际IEC标准。 5.IEC1312 《雷电电磁脉冲的防护》 本标准为建筑物内或建筑物顶部信息系统有效的雷电防护系统的设计、安装、检查、维护;并对装有这系统(如电子系统)的建筑物评估LEMP屏蔽措施的效率的方法。针对现有的防雷器(SPD)应用在防雷区概念安装上提出相关的要求。 6.IEC 61643 《SPD电源防雷器》 本标准对电源防雷器用于交直流电源电路和设备上,额定电压在1000Va.c.或1500Vd.c.。电源防雷器分级分类测试和应用。 7.IEC 61644 《SPD 通讯网络防雷器》 本标准对通讯网络防雷器用于通信信号网络系统,这类防雷器内置过压过流元器件,额定电压在1000Va.c.或1500Vd.c.。电源防雷器分级分类测试和应用。 8.VDE0675 《过电压保护器》

解析三相不控整流器输入LC滤波器(精)

解析三相不控整流器输入LC 滤波器 1引言 随着相关技术的不断进步,交-直-交变频器技术得到了长足发展,变频器-电动机传动系统广泛应用在各行各业,其中由于单相供电的局限性,目前较大功率的变频空调等电器均采用三相交流电源供电。由于传统交-直-交变频器的前级ac-dc 变换器为不控二极管整流桥,众所周知,只要对于三相供电系统采用不控整流桥,后级为任何电路型式,对于电网而言,传统交-直-交变频器均为非线性负载,即网侧电流含有大量的低次和较高次谐波电流,造成输入功率因数降低和电流thd 增高,不符合谐波电流发射限度标准:iec61000-3-2和iec61000-3-12。谐波电流的危害不言而喻,为此必须采取谐波电流抑制措施。对于三相供电的传统交直-交-变频器系统,除了改善输入电流波形和减少基波功率因数角外,另一项重要的目标是维持直流电压相对负载的硬度,即要有较高的负载调整率,还要有较高的平均值和较低的纹波电压峰峰值,以便提高后级器-电动机系统的恒转矩范围,提升输出功率等级。 到目前为止,出现了非常多的滤波原理和滤波方法,对谐波源的分析也较为深入。常用方法包括无源滤波、有源滤波以及混合滤波,又可以划分为调谐的滤波器、高通滤波法、各种有源电力滤波器法、各种三相可控、各种无源电力滤波器,等等。对于有源滤波或校正技术,虽然滤波或校正效果好,但技术复杂,成本较高,在某些场合和一定的阶段时期不适于推广应用。无源滤波技术发展最早,在抑制设备谐波方面效果较好,好的无源滤波方式,不仅可以抑制谐波电流,还具有无功补偿作用。据了解目前三相交流电压供电的商用变频空调尚未采用三相有源 pfc ,仍然采用lcl 滤波方式,生产机型全部出口欧洲国家。对三相供电的交直交变频器,目前已经出现了大量不同的无源滤波技术,如单级lc 滤波器、多级lc 滤波器、多种3次谐波注入的滤波器、变压器耦合滤波器、电感耦合滤波器等。本文旨在针对性价比高的单级lc 滤波器-整流桥-电阻负载系统进行理论分析、分析和实验测试,确定最佳lc 滤波器设计方法,同时解决单级lc 滤波器的几个关键问题,

避雷器安装原则

避雷器安装原则 防雷工程当中,电源避雷器的安装位置和选型存在很多争议,笔者就这些年的工作经验和防雷理论结合在一起,阐述一下自己的一些观点: B级避雷器(安装于LPZ0A区) 1、安装原则理论上一级避雷器(B级)应尽量安装在总进线空开前端,如果安装不方便,也可安装在空开后端。但是,如果进线前端有双电源切换装置时,必须安装在双电源切换装置的前端,从而使切换装置得到保护(现在的双电源切换装置多为机械型和电子控制型、有的还有232和485控制装置和24伏消防电源,雷电流一旦通过,极易发生损坏)。理由是,空开(断路器)的动作时间远远大于避雷器的动作时间,一旦有雷电流(过电压)通过,避雷器会在断路器动作之前提前动作,把过电流泄放掉,从而保护电路及其后端的用电设备。 2、选型原则B级避雷器尽量选择电压开关型避雷器,通流容量大,保护电压UP要尽量小。一般避雷器的前端要串接相应容量的断路器,断路器的作用:在避雷器损坏时,方便更换;其二是在避雷器发生老化时,避免发生电流对地故障。 C级避雷器(安装于LPZ1区) 1、安装原则采用限压型避雷器,可并联安装于二级电源空开前端或后端,避雷器前端串接相应容量的断路器。作用同上。 2、选型原则C级避雷器采用限压型,把B级避雷器导通后产生的残压控制在设备的冲击绝缘水平以下。由于限压元件的相应时间快,一般为25ns左右,而放电间隙的相应时间则比较慢,约为100ns,所以要在保证C级避雷器导通之前,B级避雷器应先导通。这样就必须是保证B级和C级之间有一定的安装距离。 D级避雷器 同上 B级避雷器的作用主要是泄放大的电流,C级和D级避雷器的作用主要是把B级避雷器的残压限制在后端设备的耐压水平以下。以保护设备。 C、D级避雷器应尽量靠近安装在被保护物端。

防雷器的型号及规格

三相交流电源浪涌保护器:又称电源避雷模块,电涌保护器/浪涌保护器|浪涌抑制器| 电源避雷模块,电涌保护器/浪涌保护器|浪涌抑制器|浪涌保护器|浪涌保护器 AM系列三相交流电源浪涌保护器应用范围: ·三相交流电源浪涌保护器适用于配电室、配电柜、开关柜、交直流配电屏等系统的电源保护; ·建筑物内有室外输入的配电箱、建筑物层配电箱; ·用于低压( 220/380V AC)工业电网和民用电网; ·在电力系统中,主要用于自动化机房、变电站主控制室电源屏内三相电源输入或输出端。 三相交流电源浪涌保护器功能与特点 ·通流容量大,残压低,响应时间快; ·漏电流及变化率小; ·采用最新热脱离技术,彻底避免火灾; ·采用特殊冲击熔片,具有高可靠性; ·自带远程告警干接点,便于远程监控; ·具有工作故障指示,遥信告警功能; ·采用温控保护电路,内置热保护,短路故障自动脱离装置; ·3+1保护模式(L-N,N-PE),特别适合电网差的地区使用; ·采用标准模块化设计,安装简单,维护方便; ·核心元件采用国际知名品牌,性能优异,工作稳定可靠; ·可以实现凯文接线;结构严谨,安装方便,维护简单; ·工艺考究,能在酸、碱、尘、盐雾及潮湿等恶劣环境下长期工作。 三相交流电源浪涌保护器技术参数:

单相交流电源浪涌保护器又称电源避雷模块,电涌保护器/浪涌保护器|浪涌抑制器| 电源避雷模块,电涌保护器/浪涌保护器|浪涌抑制器|浪涌保护器|浪涌保护器 AM系列单相交流电源浪涌保护器应用范围: ·单相交流电源浪涌保护器适用于配电室、配电柜、开关柜、交直流配电屏等系统的电源保护; ·建筑物内有室外输入的配电箱、建筑物层配电箱; ·用于低压( 220/380V AC)工业电网和民用电网; ·在电力系统中,主要用于自动化机房、变电站主控制室电源屏内单相电源输入或输出端。 单相交流电源浪涌保护器功能与特点 ·通流容量大,残压低,响应时间快; ·漏电流及变化率小; ·采用最新热脱离技术,彻底避免火灾; ·采用特殊冲击熔片,具有高可靠性;

三相电源滤波器分类 详解三相电源滤波器系列

三相电源滤波器分类详解三相电源滤波器系列 三相电源滤波器的大家应该都挺熟悉的了,三相电源滤波器有哪些类型和系列你知道多少?本文将来为你揭晓关于三相电源滤波器分类的相关知识。 电源滤波器电源滤波器是一种无源双向网络,它的一端是电源,另一端是负载。电源滤波器的原理就是一种——阻抗适配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗适配越大,对电磁干扰的衰减就越有效。 电源滤波器的作用就是减少电源干扰,而电源干扰可以分为两类:普通模式和共通模式。普通模式是两组输入电源线之间的杂讯,这种杂讯通常是在关机和开机时产生。而共通模式是指因为器材接地不良,又或是广播无线电及冰箱马达电磁、日光节能灯镇流器、洗衣机、风扇可控硅调速等引发的干扰! 三相电源滤波器原理1:电阻丝在一小段范围内可以短接(一般不要超过几厘米),用表测出的短接只是电阻丝的冷态电阻,阻值很小,需用万用表的200欧姆档去测, 2:电阻丝就是用在交流220V电压上的,是由正负半周电压共同做功的, 3:低热档的二极管是为了分压降功率用的,属于半波整流,功率减小一半,最常见的应用就是电褥子,里面也有,解法一样 4:如果你不敢确定电路正常与否建议先不要直接接电测试,可以先串接一只5A或10A 的保险管,这样万一不对劲了与不会发生危险。 三相电源滤波器分类三相电源滤波器的产品特性包括额定电流、输入输出类型(250快速连接端子、带螺纹螺栓、接线盒、汇流条和螺栓应用)、接线配置(3导线+接地和4导线+接地)、电压(最大值)及典型应用。以泰科的CORCOM 三相电源滤波器为例,其额定电流为3 到1600 安培的EMI 电源滤波器,适用于在各种应用中控制EMI 干扰或易感性。可供Delta 或WYE 配线使用,具有多种端子连接选项。

低压直流电源DC12V24V防雷设计保护电路---文本资料

低压直流电源DC12V/24V防雷设计保护电路 陶瓷气体放电管的应用背景: 一直以来,在低压电源端口的雷击保护器件的选型方面,人们更多的是选择压敏电阻MOV或者瞬态抑制二极管TVS,但是,由于压敏电阻MOV在失效时会引起火灾,普通600W或者1500W的TVS通流能力又很小,而现在很多客户对测试等级的要求又很高,尤其是用于基站的产品,防护等级可达到3KA@8/20μS,如此一来,选择气体放电管GDT 作为防护器件才能满足市场需求。可是常规气体放电管GDT又会带来续流问题,因此,选择合适的气体放电管GDT才能根本解决低压电源端口的雷击保护问题。 二、采用气体放电管保护的传统方案的问题: 针对DC12/24V和AC24V端口的雷击保护传统的方案通常都选择常规的两端和三端气体放电管GDT来作为保护器件,旧方案如下: 上述图的陶瓷气体放电管老方案,四点的不足: (1)GDT的体积大: (2)气体放电管GDT的残压高:

体放电管的弧光压低:GDT的弧光压比电源电压低,就会导致续流的危险。 (4)供电电源浮地时,气体放电管GDT容易误动作 供电电源出现浮地时,应用上图传统的方案时,由于气体放电管的阻抗很大,所以在放电管两端会叠加一个很高的电压,如果气体放电管GDT的直流开启电压过低(方案中用的是直流击穿电压90V的GDT),则会导致放电管GDT误动作,此时气体放电管会处于“常亮”的状态,致使系统的供电能力下降甚至丧失。由此可见,选择90V的气体放电管,很容易发生误动作的危险。 四、解决方案: 使用常规GDT用于低电压电源端口时,存在上述四点缺陷。凯泰电子为此研制的新型气体放电管GDT:BC301N-D,可弥补常规气体放电管的不足之处。 BC301N-D的应用方案: 陶瓷气体放电管BC301N-D有以下四个优势:

相关文档
最新文档