微积分公式与定积分计算练习

微积分公式与定积分计算练习
微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式)

一、基本导数公式

⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=

⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-?

()x

x

e e '= ⑽

()ln x

x a a a

'= ⑾

()1

ln x x '=

()

1log ln x a

x a '=

(

)arcsin x '= ⒁(

)arccos x '=⒂

()21arctan 1x x '=+ ⒃()

21arccot 1x x '=-+⒄()1

x '=

'=

二、导数的四则运算法则

()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''

-??= ???

三、高阶导数的运算法则

(1)()()()

()

()

()

()

n n n u x v x u x v x ±=±???

? (2)()()

()()

n n cu x cu x =???

?

(3)()()

()

()n n n

u ax b a u

ax b +=+???

?

(4)

()()()

()

()()()0

n

n n k k k n k u x v x c u x v x -=?=????

四、基本初等函数的n 阶导数公式

(1)

()()

!

n n

x n = (2)

()()

n ax b

n ax b

e a e ++=? (3)

()()

ln n x

x n a a a

=

(4)

()()

sin sin 2n n ax b a ax b n π??+=++??? ???

??(5) ()()cos cos 2n n

ax b a ax b n π??+=++??? ????

? (6)

()

()

()

1

1!

1n n n

n a n ax b ax b +???=- ?+??

+ (7)

()()

()

()()

1

1!

ln 1n n n n

a n ax

b ax b -?-+=-????

+

五、微分公式与微分运算法则

⑴()0

d c = ⑵

()1d x x dx

μμμ-= ⑶

()sin cos d x xdx

= ⑷()cos sin d x xdx

=- ⑸

()2tan sec d x xdx = ⑹

()2cot csc d x xdx

=-

()sec sec tan d x x xdx =? ⑻

()csc csc cot d x x xdx

=-?

()x

x

d e

e dx = ⑽()ln x

x

d a a

adx

= ⑾

()1ln d x dx x =

⑿()1log ln x

a d dx x a = ⒀(

)arcsin d x = ⒁(

)arccos d x =

()21arctan 1d x dx x =

+ ⒃()2

1

arccot 1d x dx x =-+

六、微分运算法则 ⑴

()d u v du dv

±=± ⑵

()d cu cdu

=

⑶()d uv vdu udv =+ ⑷2

u vdu udv

d v v -??= ???

七、基本积分公式

⑴kdx kx c =+? ⑵11x x dx c μμ

μ+=++? ⑶ln dx x c x =+?

⑷ln x

x

a a dx c a =+? ⑸x x e dx e c =+? ⑹cos sin xdx x c =+?

⑺sin cos xdx x c =-+? ⑻221

sec tan cos dx xdx x c x ==+?? ⑼2

21csc cot sin xdx x c x ==-+?? ⑽21arctan 1dx x c x =++?

arcsin x c

=+

八、补充积分公式

tan ln cos xdx x c =-+? cot ln sin xdx x c =+? sec ln sec tan xdx x x c =++? csc ln csc cot xdx x x c =-+?

22

11arctan x dx c a x a a =++?

22

11ln 2x a

dx c x a a x a -=+-+?

arcsin

x

c

a

=+

ln x c

=+

十、分部积分法公式

⑴形如

n ax

x e dx

?

,令

n

u x

=,ax

dv e dx

=

形如

sin

n

x xdx

?

n

u x

=,sin

dv xdx

=

形如

cos

n

x xdx

?

n

u x

=,cos

dv xdx

=

⑵形如

arctan

n

x xdx

?

,令arctan

u x

=,n

dv x dx

=

形如

ln

n

x xdx

?

,令ln

u x

=,n

dv x dx

=

⑶形如

sin

ax

e xdx

?

cos

ax

e xdx

?

,sin,cos

ax

u e x x

=

均可。

十一、第二换元积分法中的三角换元公式

sin x a t =

(2) tan x a t =

sec x a t =

【特殊角的三角函数值】

(1)sin00= (2)

1sin

6

=

(3

)sin 32π= (4)sin 12π= (5)sin 0π=

(1)cos01= (2

cos

6

=

(3)1cos 32π= (4)cos 0

2π= (5)cos 1π=- (1)tan 00= (2

tan

6

π

=

(3

)tan 3π=4)

tan

不存在(5)tan 0π= (1)cot 0不存在 (2

)cot

6

π

=3

cot

3

π

=

(4)cot 0

=(5)cot π不存在

十二、重要公式

(1)0sin lim

1x x x →= (2)()10lim 1x x x e →+= (3

))1n a o >=

(4

)1

n = (5)limarctan 2x x π

→∞

=

(6)lim tan 2x arc x π

→-∞

=-

(7)limarccot 0x x →∞

= (8)lim arccot x x π→-∞

= (9)lim 0

x x e →-∞

=

(10)lim x x e →+∞=∞

(11)0

lim 1x x x +

→=

(12)

101101

lim

0n n n m m x m a n m b a x a x a n m b x b x b n m

--→∞?=??++

+?

=

∞>???

(系数不为0的情况)

十三、下列常用等价无穷小关系(0x →)

sin x

x tan x x arcsin x

x arctan x

x

2

11cos 2x

x

-

()

ln 1x x

+ 1

x

e x - 1

ln x

a x a - ()

11x x

?

+-?

十四、三角函数公式 1.两角和公式

sin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+

tan tan tan()1tan tan A B A B A B ++=

- tan tan tan()1tan tan A B

A B A B --=

+ cot cot 1cot()cot cot A B A B B A ?-+=+ cot cot 1

cot()cot cot A B A B B A ?+-=

- 2.二倍角公式

sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan A A A =

-

3.半角公式

sin

2A =

cos 2A =

sin tan

21cos A A A ==+

sin cot 21cos A A A ==-

4.和差化积公式

sin sin 2sin

cos 22a b a b a b +-+=? sin sin 2cos sin 22a b a b

a b +--=? cos cos 2cos cos 22a b a b a b +-+=? cos cos 2sin sin

22a b a b

a b +--=-?

()sin tan tan cos cos a b a b a b ++=

?

5.积化和差公式

()()1sin sin cos cos 2a b a b a b =-+--???? ()()1

cos cos cos cos 2a b a b a b =++-????

()()1sin cos sin sin 2a b a b a b =++-???? ()()1

cos sin sin sin 2a b a b a b =+--????

6.万能公式

22tan

2sin 1tan 2a

a a

=+

2

2

1tan 2cos 1tan 2a a a -=+ 2

2tan

2tan 1tan 2a

a a

=-

7.平方关系

22sin cos 1x x += 22sec n 1x ta x -= 22csc cot 1x x -=

8.倒数关系

tan cot 1x x ?= sec cos 1x x ?= c sin 1cs x x ?=

9.商数关系

sin tan cos x x x =

cos cot sin x

x x =

十五、几种常见的微分方程

1.可分离变量的微分方程:

()()

dy

f x

g y

dx

=

()()()()

1122

f x

g y dx f x g y dy

+=

2.齐次微分方程:

dy y

f

dx x

??

= ?

??

3.一阶线性非齐次微分方程:

()()

dy

p x y Q x

dx

+=

解为:

()()()

p x dx p x dx

y e Q x e dx c

-??

??

=+

??

??

?

高考定积分应用常见题型大全

一.选择题(共21小题)

1.(2012?)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()

A.B.C.D.

2.(2010?)由曲线y=x2,y=x3围成的封闭图形面积为()

A.B.C.D.

3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.

4.定积分的值为()

A.B.3+ln2 C.3﹣ln2 D.6+ln2

5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()

A.1B.C.D.

6.=()

A.πB.2C.﹣πD.4

7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()

A.2B.4C.5D.8

8.∫01e x dx与∫01e x dx相比有关系式()

A.

∫01e x dx<∫01e x dx B.

∫01e x dx>∫01e x dx

C.

(∫01e x dx)2=∫01e x dx D.

∫01e x dx=∫01e x dx

9.若a=,b=,则a与b的关系是()

A.a<b B.a>b C.a=b D.a+b=0

10.的值是()

A.B.C.D.

11.若f(x)=(e为自然对数的底数),则=()

A.

+e2﹣e B.

+e

C.

﹣e2+e

D.

﹣+e2﹣e

12.已知f(x)=2﹣|x|,则()

A.3B.4C.3.5 D.4.5

13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()

A.7B.8C.7.5 D.6.5

14.积分=()

A.B.C.πa2D.2πa2

15.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2

16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()

A.4B.C.D.2π

17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.

18.图中,阴影部分的面积是()

A.16 B.18 C.20 D.22

不定积分公式大全

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()('' x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1' 11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??? ???-=+-≠++=+1 ln 11 1 1μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±=±dx x g dx x f dx x g x f )()()()( ②??≠=)0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ?+-=++-==+--C x C x dx x x dx 11)2(11 )2(22

②? ?+=++-= =+--C x C x dx x x dx 21 )21(1 1)21(21 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥????++-=+=+=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2222222 ⑦() ??+--=-=C x x dx x dx x cot 1 csc cot 22 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f +=++= +??1 ,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===???)5cos(5 1 sin 51555sin 515sin ②()()()()??+--=+-+? -=---=-+C x C x x d x dx x 8177 72116 12117121)21(212121 ③())20(arctan 111222C a x a a x a x d a x a dx +?? ? ??=+=+?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-=-? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??11,1 即 例2、求不定积分 ①( )() () () C x C x x d x dx x x +--=+-+?-=---=-+??2 32 12 12 212 2 12 2 13 1 11 121112 1 1

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ()() n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ()()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

不定积分最全公式

常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx d x=shx+c; 19) ∫thx dx=ln(chx)+c; 1.∫adx = ax+C (a 为常数) 2.∫sin(x)dx = -cos(x)+C 3.∫cos(x)dx = sin(x)+C 4.∫tan(x)dx = -log e |cos(x)|+C = log e |sec(x)|+C

5. ∫cot(x)dx = log e |sin(x)|+C 6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C 7. ∫sin 2(x)dx = 1 (x-sin(x)cos(x))+C 2 = 1 x - 1 sin(2x)+C 2 4 9. ∫cos 2(x)dx = 1 (x+sin(x)cos(x))+C 2 = 1 x + 1 sin(2x)+C 2 4 11.∫tan 2(x)dx = tan(x)-x+C 12.∫cot 2(x)dx = -cot(x)-x+C 13.∫sin(ax)sin(bx)dx = sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b) 14.∫sin(ax)co s(bx)dx = - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b) 15.∫cos(ax)cos(bx)dx = sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b) 16.∫xsin(x)dx = sin(x)-xcos(x)+C 17.∫xcos(x)dx = cos(x)+xsin(x)+C 18.∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C 19.∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C 20.∫e x dx = e x +C 21. ∫ a dx = a log |x| (a 为常数) x

微积分公式大全

导数公式: 基本积分表: 三角函数的有理式积分: 2222 212sin cos 1121u u x du x x u tg dx u u u -==== +++, , ,  22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=?'=-?'='=+' = 2 2 2 (arcsin )(arccos )1 (arctan )11 (arc cot )11 ()x x x x x x thx ch '= '='= +'=- +' = 2 22 2sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x x dx xdx x C x dx xdx x C x x xdx x C x xdx x C a a dx C a shxdx chx C chxdx shx C x C ==+==-+?=+?=-+=+=+=+=+????????? 222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x C xdx x x C xdx x x C dx x C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+???????? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间 [a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑?=→=n i i i d b a x x f x x f 10Δ)(lim d )( 其中?为积分号,[a , b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。 上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a ) 以上结论称为微分中值定理,等式称为微分中值公式。 设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。试利用微分中值定理和定积分的定义证明微积分基本公式 )()()(d )(a F b F x F x x f b a b a -==? 这个公式又称为牛顿-莱布尼茨公式。 证明:

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

微积分基本公式

微积分基本公式 下面我们先从实际问题中寻找解决问题的线索.为此,我们对变速直线运动中遇到的位置函数)(t s 及速度函数)(t v 之间的联系作进一步的研究. 一、变速直线运动中位置函数与速度函数之间的联系 有一物体在一直线上运动.在这直线上取定原点、正向及长度单位,使它成为一数轴.设时刻t 时物体所在位置为)(t s ,速度为)(t v .(为了讨论方便起见,可以设0)(≥t v .) 从第一节知道:物体在时间间隔[]21 ,T T 内经过的路程可以用速度函数)(t v 在[]21 ,T T 上的定积分?2 1 d )(T T t t v 来表达;另一方面,这段路程又可以通过位置函数)(t s 在区间[] 21 ,T T 上增量)()(12T s T s -来表达.由此可见,位置函数)(t s 与速度函数)(t v 之间有如下关系: ) ()(d )(122 1 T s T s t t v T T -=? . (1) 因为)()(t v t s =',即位置函数)(t s 是速度函数)(t v 的原函数,所以关系式 (1) 表示,速度函数)(t v 在区间[]21 ,T T 上的定积分等于)(t v 的原函数)(t s 在区间[]21 ,T T 上的增量:)()(12T s T s -. 上述从变速直线运动的路程这个特殊问题中得出的关系,在一定条件下具有普遍性.事实上,我们将在第三目中证明,如果函数)(x f 在区间] ,[b a 上连续,那么,)(x f 在区间 ] ,[b a 上的定积分就等于)(x f 的原函数(设为)(x F )在区间] ,[b a 上的增量:)()(a F b F -. 二、积分上限的函数及其导数 设函数)(x f 在区间] ,[b a 上连续,并且设x 为] ,[b a 上的一点.现在我们来考察)(x f 在部分区间] ,[x a 上的定积分 ? x a x x f d )(. 首先,由于)(x f 在区间] ,[x a 上仍旧连续,因此这个定积分存在.这时,x 既表示定积分的上限,又表示积分变量.因为定积分与积分变量的记法无关,所以,为了明确起见,可以把积分变量改用其他符号,例如用t 表示,则上面的定积分可以写成 ? x a t t f d )(

不定积分最全公式

不定积分最全公式-CAL-FENGHAI.-(YICAI)-Company One1

常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2)dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2)dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c; 1.∫adx = ax+C (a 为常数) 2.∫sin(x)dx = -cos(x)+C 3.∫cos(x)dx = sin(x)+C 4.∫tan(x)dx = -log e|cos(x)|+C = log e|sec(x)|+C

5. ∫cot(x)dx = log e |sin(x)|+C 6. ∫sec(x)dx = log e |sec(x)+tan(x)|+C 7. ∫sin 2(x)dx = 1 (x-sin(x)cos(x))+C 2 = 1 x - 1 sin(2x)+C 2 4 9. ∫cos 2(x)dx = 1 (x+sin(x)cos(x))+C 2 = 1 x + 1 sin(2x)+C 2 4 11. ∫tan 2(x)dx = tan(x)-x+C 12. ∫cot 2(x)dx = -cot(x)-x+C 13. ∫sin(ax)sin(bx)dx = sin((a-b)x) - sin((a+b)x) +C 2(a-b) 2(a+b) 14. ∫sin(ax)cos(bx)dx = - cos((a-b)x) - cos((a+b)x) +C 2(a-b) 2(a+b) 15. ∫cos(ax)cos(bx)dx = sin((a-b)x) + sin((a+b)x) +C 2(a-b) 2(a+b) 16. ∫xsin(x)dx = sin(x)-xcos(x)+C 17. ∫xcos(x)dx = cos(x)+xsin(x)+C 18. ∫x 2sin(x)dx = (2-x 2)cos(x)+2xsin(x)+C 19. ∫x 2cos(x)dx = (x 2-2)sin(x)+2xcos(x)+C 20. ∫e x dx = e x +C 21. ∫a dx = a log |x| (a 为常数) x

微积分公式与运算法则

微积分公式与运算法则 1.基本公式 (1)导数公式(2)微分公式 (xμ)ˊ=μxμ-1d(xμ)=μxμ-1dx (a x)ˊ=a x lnad(a x)=a x lnadx (loga x)ˊ=1/(xlna)d(loga x)=1/(xlna)dx (sinx)ˊ=cosxd(sinx)=cosxdx (conx)ˊ=-sinxd(conx)=-sinxdx (tanx)ˊ=sec2xd(tanx)=sec2xdx (cotx)ˊ=-csc2xd(cotx)=-csc2xdx (secx)ˊ=secx·tanxd(secx)=secx·tanxdx (cscx)ˊ=-cscx·cotxd(cscx)=-cscx·cotxdx (arcsinx)ˊ=1/(1-x2)1/2d(arcsinx)=1/(1-x2)1/2dx (arccosx)ˊ=-1/(1-x2)1/2d(arccosx)=-1/(1-x2)1/2dx (arctanx)ˊ=1/(1+x2)d(arctanx)=1/(1+x2)dx (arccotx)ˊ=-1/(1+x2)d(arccotx)=-1/(1+x2)dx (sinhx)ˊ=coshxd(sinhx)=coshxdx (coshx)ˊ=sinhxd(coshx)=sinhxdx 2.运算法则(μ=μ(x),υ=υ(x),α、β∈R)(1)函数的线性组合积、商的求导法则 (αμ+βυ)ˊ=αμˊ+βυˊ(μυ)ˊ=μˊυ+μυˊ(μ/υ)ˊ=(μˊυ-μυˊ)/υ2

(2)函数和差积商的微分法则 d(αμ+βυ)=αdμ+βdυ d(μυ)=υdμ+μdυ d(μ/υ)=(υdμ-μdυ)/υ2 3.复合函数的微分法则 设y=f(μ),μ=ψ(x),则复合函数y=f[ψ(x)]的导数为 dy/dx=fˊ[ψ(x)]·ψˊ(x) 所以复合函数的微分为 dy=fˊ[ψ(x)]·ψˊ(x)dx 由于fˊ[ψ(x)]=fˊ(μ),ψˊ(x)dx=dμ,因此上式也可写成dy=fˊ(μ)dμ 由此可见,无论μ是自变量,还是另一变量的可微函数,微分形式dy=fˊ(μ)dμ保持不变,这一性质称为微分形式不变性。

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

微积分基本公式

微积分公式

tan -1 x = x-33x +55x -7 7 x +…+)12()1(12+-+n x n n + … (1+x)r =1+r x+!2)1(-r r x 2+! 3)2)(1(--r r r x 3 +… -1

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

微积分公式与定积分计算练习

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵ 1 x x μμμ-= ⑶ ()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1ln x x '= ⑿ () 1 log ln x a x a '= ⒀ ( )arcsin x '= ⒁ ( )arccos x '= ⒂ ()2 1arctan 1x x '= + ⒃ ()2 1arccot 1x x '=- +⒄()1x '= ⒅ '= 二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±? ??? (2)()() ()() n n cu x cu x =? ??? (3) ()() ()() n n n u ax b a u ax b +=+???? (4) ()()() () ()()()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) () () ! n n x n = (2) () () n ax b n ax b e a e ++=?

(3)() () ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π? ?+=++??? ? ?? ? ?(5) ()() cos cos 2n n ax b a ax b n π? ?+=++??? ? ?? ? ? (6) () () () 1 1! 1n n n n a n ax b ax b +??? =- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则 ⑴()0 d c = ⑵ ()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷ ()cos sin d x xdx =- ⑸ ()2tan sec d x xdx = ⑹ ()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻ ()csc csc cot d x x xdx =-? ⑼ ()x x d e e dx = ⑽ ()ln x x d a a adx = ⑾ ()1 ln d x dx x = ⑿ ()1 log ln x a d dx x a = ⒀ ( )arcsin d x = ⒁ ( )arccos d x = ⒂ ()21arctan 1d x dx x = + ⒃()2 1 arccot 1d x dx x =-+ 六、微分运算法则 ⑴ ()d u v du dv ±=± ⑵ ()d cu cdu =

相关文档
最新文档