Matlab遗传算法工具箱最优化计算

Matlab遗传算法工具箱最优化计算
Matlab遗传算法工具箱最优化计算

Matlab 遗传算法之线性规划求解实例求解线性规划

3

213min x x x Z ++?=

3

,2,1,0 x 1x 2x - -3x 2-x -4x 3x 2x 4x - 11x 2x - x s.t.j 31321321321=≥=+≤≥++≤+j 属于线性等式约束

遗传标准化已经属于标准化

遗传算法标准化

Linear inequalities(线性不等式):A*x <=b 。其中A 是矩阵,b 是列向量,书写格式此题如A 中填写[1,-2,1;4,-1,-2],b 中填写[11;-3];

Linear equalities (线性等式):Aeq*x =beq 。其中Aeq 是矩阵,beq 是列向量,格式同上;此题如Aeq 中填写[-2,0,1],b 中填写[1];

Bounds (边界):变量的最小和最大值。矩阵形式表示,负无穷大为-Inf,正无穷大为Inf。此题Lower 填写0,Upper 填写inf

Nonlinear constraint function(非线性限制函数):类似于“Fitness Function”中的输入,首先生成对应的.M 文件,此处输入函数的句柄,调用其中的(非线性限制)函数。M 文件格式一般为

function [c,ceq]=fxxys(x)

c(1)=(x(1)^2)/9+(x(2)^2)/4-1;

ceq =[];

此题没有非线性约束。

【1】进入工具箱MATLAB—Start—Toolboxes—Optimization 【2】选择

【3】选择优化目标函数

ceshi.M文件内容为

【4】约束参数

【5】右侧遗传算法选项全部默认设置

【6】点击start后,程序运行结果为

【7】通过大M算法计算结果为(最优化算法P27面)

419

Z=-2

总结:计算机很牛逼!

附加:软件计算绘图

@Seraphic

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

CRC16并行计算的Matlab推导

CRC16并行计算的Matlab推导 本文使用的CRC16的生成多项式为: 其对应的串行编码图如下图所示。 假设输入数据的位宽为8比特,即{I7,I6,I5,I4,I3,I2,I1,I0},I为Input的首字母。I0表示最低比特位,I7表示最高比特位。 在串行模式下,I0先输入CRC16计算模块,于是I0输入后各个寄存器的状态变化如下: = = = = = = = = = = =

= = = = = 可以将以上表达式组成矩阵乘法的形式,则有: '0D T D S I =?+? (1) 其中,D 为0D ~15D 构成的列向量,用转置矩阵的形式表示为: () 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T D D D D D D D D D D D D D D D D D =同理,'D 是'0D ~'15D 构成的列向量,用转置矩阵的形式表示为: () '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '0123456789101112131415T D D D D D D D D D D D D D D D D D = 表达式(1)中的矩阵T ,表示为: 00000000000000110000000000000000100000000000001001000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000000001000000000000000010000000000000000100000000000T =0000010000000000000000100000000000000001000000000000000011?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ?

遗传算法Matlab程序

% f(x)=11*sin(6x)+7*cos(5x),0<=x<=2*pi; %%初始化参数 L=16;%编码为16位二进制数 N=32;%初始种群规模 M=48;%M个中间体,运用算子选择出M/2对母体,进行交叉;对M个中间体进行变异 T=100;%进化代数 Pc=0.8;%交叉概率 Pm=0.03;%%变异概率 %%将十进制编码成16位的二进制,再将16位的二进制转成格雷码 for i=1:1:N x1(1,i)= rand()*2*pi; x2(1,i)= uint16(x1(1,i)/(2*pi)*65535); grayCode(i,:)=num2gray(x2(1,i),L); end %% 开始遗传算子操作 for t=1:1:T y1=11*sin(6*x1)+7*cos(5*x1); for i=1:1:M/2 [a,b]=min(y1);%找到y1中的最小值a,及其对应的编号b grayCodeNew(i,:)=grayCode(b,:);%将找到的最小数放到grayCodeNew中grayCodeNew(i+M/2,:)=grayCode(b,:);%与上面相同就可以有M/2对格雷码可以作为母体y1(1,b)=inf;%用来排除已找到的最小值 end for i=1:1:M/2 p=unidrnd(L);%生成一个大于零小于L的数,用于下面进行交叉的位置if rand()

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

MATLAB实验遗传算法与优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别 代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率,为电阻率。可见电极的结构参数影响着电极损

耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2) 其中()T n x x x X ,...,,21=是决策向量,x 1,…,x n 为n 个设计变量。这是一个单目标的数学规划问题:在一组针对决策变量的约束条件()0,1,...,j g X j p ≤=下,使目标函数最小化(有时 也可能是最大化,此时在目标函数()X f 前添个负号即可)。满足约束条件的解X 称为可行解,所有满足条件的X 组成问题的可行解空间。 2. 遗传算法基本原理和基本操作 遗传算法(Genetic Algorithm, GA)是一种非常实用、高效、鲁棒性强的优化技术,广 泛应用于工程技术的各个领域(如函数优化、机器学习、图像处理、生产调度等)。遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化算法。按照达尔文的进化论,生物在进化过程中“物竞天择”,对自然环境适应度高的物种被保留下来,适应度差的物种而被淘汰。物种通过遗传将这些好的性状复制给下一代,同时也通过种间的交配(交叉)和变异不断产生新的物种以适应环境的变化。从总体水平上看,生物在进化过程中子代总要比其父代优良,因此生物的进化过程其实就是一个不断产生优良物种的过程,这和优化设计问题具有惊人的相似性,从而使得生物的遗传和进化能够被用于实际的优化设计问题。 按照生物学知识,遗传信息基因(Gene)的载体是染色体(Chromosome),染色体中 一定数量的基因按照一定的规律排列(即编码),遗传基因在染色体中的排列位置称为基因

MATLAB分布式并行计算服务器配置和使用方法Word版

Windows下MATLAB分布式并行计算服务器配置和使用方 法 1MATLAB分布式并行计算服务器介绍 MATLAB Distributed Computing Server可以使并行计算工具箱应用程序得到扩展,从而可以使用运行在任意数量计算机上的任意数量的worker。MATLAB Distributed Computing Server还支持交互式和批处理工作流。此外,使用Parallel Computing Toolbox 函数的MATLAB 应用程序还可利用MATLAB Compiler (MATLAB 编译器)编入独立的可执行程序和共享软件组件,以进行免费特许分发。这些可执行应用程序和共享库可以连接至MATLAB Distributed Computing Server的worker,并在计算机集群上执行MATLAB同时计算,加快大型作业执行速度,节省运行时间。 MATLAB Distributed Computing Server 支持多个调度程序:MathWorks 作业管理器(随产品提供)或任何其他第三方调度程序,例如Platform LSF、Microsoft Windows Compute Cluster Server(CCS)、Altair PBS Pro,以及TORQUE。 使用工具箱中的Configurations Manager(配置管理器),可以维护指定的设置,例如调度程序类型、路径设置,以及集群使用政策。通常,仅需更改配置名称即可在集群间或调度程序间切换。 MATLAB Distributed Computing Server 会在应用程序运行时在基于用户配置文件的集群上动态启用所需的许可证。这样,管理员便只需在集群上管理一个服务器许可证,而无需针对每位集群用户在集群上管理单独的工具箱和模块集许可证。 作业(Job)是在MATLAB中大量的操作运算。一个作业可以分解不同的部分称为任务(Task),客户可以决定如何更好的划分任务,各任务可以相同也可以不同。MALAB中定义并建立作业及其任务的会话(Session)被称为客户端会话,通常这是在你用来编写程序那台机器上进行的。客户端用并行计算工具箱来定义和建立作业及其任务,MDCE通过计算各个任务来执行作业并负责把结果返

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

Parallel Computing with MATLAB(并行计算)

Getting Started with Parallel Computing using MATLAB: Interactive and Scheduled Applications Created by S. Zaranek, E. Johnson and A. Chakravarti 1.Objectives This user guide provides an end user with instructions on how to get started running parallel MATLAB applications using a desktop computer or a cluster. 2.Assumptions User has access to MATLAB and Parallel Computing Toolbox on the desktop computer or head node of the cluster. If running on a cluster: MATLAB Distributed Computing Server has been installed by an administrator on the cluster. The desktop MATLAB client has been configured to connect to the cluster. If this has not been done, you should contact the cluster administrator. 3. Getting the Example Files Unzip the demoFiles.zip file that was provided along with this guide. You can add the files to the MATLAB path by running the addpath command in MATLAB. >> addpath 4. Examples Running Locally In this section, you will be running and submitting jobs using the local configuration. If your workflow will ultimately involve submitting jobs to a cluster, you can follow this section by switching the default configuration from local to that of your cluster and running these jobs again. This is described in Section 5.

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

MATLAB分布式并行计算环境

前言:之前在本博客上发过一些关于matlab并行计算的文章,也有不少网友加我讨论关于这方面的一些问题,比如matlab并行计算环境的建立,并行计算效果,数据传递等等,由于本人在研究生期间做论文的需要在这方面做过一些研究,但总体感觉也就是一些肤浅的应用,现已工作,已很少再用了,很多细节方面可能也记不清了,在这里将以前做的论文内容做一些整理,将分几个小节,对matlab并行计算做个一个简要的介绍,以期对一些初学者有所帮助,当然最主要的还是多看帮助文档及相关技术文章!有不当之处敬请各位网友指正, 3.1 Matlab并行计算发展简介 MATLAB技术语言和开发环境应用于各个不同的领域,如图像和信号处理、控制系统、财务建模和计算生物学。MA TLAB通过专业领域特定的插件(add-ons)提供专业例程即工具箱(Toolbox),并为高性能库(Libraries)如BLAS(Basic Linear Algebra Subprograms,用于执行基本向量和矩阵操作的标准构造块的标准程序)、FFTW(Fast Fourier Transform in the West,快速傅里叶变换)和LAPACK(Linear Algebra PACKage,线性代数程序包)提供简洁的用户界面,这些特点吸引了各领域专家,与使用低层语言如C语言相比可以使他们很快从各个不同方案反复设计到达功能设计。 计算机处理能力的进步使得利用多个处理器变得容易,无论是多核处理器,商业机群或两者的结合,这就为像MATLAB一样的桌面应用软件寻找理论机制开发这样的构架创造了需求。已经有一些试图生产基于MATLAB的并行编程的产品,其中最有名是麻省理工大学林肯实验室(MIT Lincoln Laboratory)的pMATLAB和MatlabMPI,康耐尔大学(Cornell University)的MutiMATLAB和俄亥俄超级计算中心(Ohio Supercomputing Center)的bcMPI。 MALAB初期版本就试图开发并行计算,80年代晚期MA TLAB的原作者,MathWorks 公司的共同创立者Cleve Moler曾亲自为英特尔HyperCube和Ardent电脑公司的Titan超级计算机开发过MATLAB。Moler 1995年的一篇文章“Why there isn't a parallel MATLAB?[**]”中描述了在开了并行MA TLAB语言中有三个主要的障碍即:内存模式、计算粒度和市场形势。MATLAB全局内存模式的多数并行系统的分布式模式意味着大数据矩阵在主机和并行机之间来回传输。与语法解析和图形例程相比,那时MA TLAB只花了小部分的时间行例程上,这使得并行上的努力并不是很有吸引力。最后一个障碍对于一个资源有限的组织来讲确实是一个现实,即没有足够多的MA TLAB用户将其用于并行机上,因此公司还是把注意力放在单个CPU的MA TLAB开发上。然而这并不妨碍一些用户团体开发MA TLAB并行计算功能,如上面提到的一些实验室和超级计算中心等。 有几个因素使并行MATLAB工程在MathWorks公司内部变得很重要,首先MATALB 已经成长为支持大规模工程的领先工程技术计算环境;其次现今的微处理器可以有两个或四个内核,将来可能会更多甚至个人并行机,采用更复杂的分层存储结构,MA TLAB可以利用多处理器计算机或网络机群;最后是用户团体中要求全面成熟解决方案的呼声也越来越高[] Cleve Moler. Parallel MATLAB: Multiple Processors and Multi Cores, Th eMathWorks News&Notes 。 有三种途径可以用MATLAB来创建一个并行计算系统。第一种途径是主要是把MATLAB或相似程序翻译为低层语言如C或FORTRAN,并用注解和其它机制从编译器中生成并行代码,如CONLAB和FALCON工程就是这样。把MATLAB程序翻译为低层C或FORTRAN语言是个比较困难的问题,实际上MathWorks公司的MA TLAB编译软件就能转换生成C代码到生成包含MATLAB代码和库并支持各种语言特性的包装器。

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

matlab自带优化工具箱遗传算法中文解释

matlab自带优化工具箱遗传算法中文解释 problem setup and results设置与结果 problem fitness function适应度函数 number of variable变量数 constraints约束 linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量 linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量 bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量 nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式 integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码 run solver and view results求解 use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果 population population type编码类型 double vector实数编码,采用双精度 bitstring二进制编码对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用 scattered singlepoint,twopoint或custom不能使用hybrid function和nonlinear constraint function custom 自定义 population size:种群大小 creation function:生成函数,产生初始种群 constraint dependent:约束相关,无约束时为uniform,有约束时为feasible population uniform:均匀分布 feasible population :自适应种群,生成能够满足约束的种群 initial population:初始种群,不指定则使用creation function生成,可以指定少于种群数量的种群,由creation function完成剩余的 initial scores:初始值,如果不指定,则有计算机计算适应度函数作为初始值,对于整型约束不可用,使用向量表示 initial range:初始范围,使用向量矩阵表示,第一行表示范围的下限,第二行表示上限 fitness scaling:适应度尺度 rank:等级。将适应度排序,然后编号 proportional:按比例 top:按比例选取种群中最高适应度的个体,这些个体有等比例的机会繁衍,其余的个体被淘汰 shift linear:线性转换

MATLAB并行计算解决方案

龙源期刊网 https://www.360docs.net/doc/ef11111590.html, MATLAB并行计算解决方案 作者:姚尚锋刘长江唐正华 来源:《计算机时代》2016年第09期 DOI:10.16644/https://www.360docs.net/doc/ef11111590.html,33-1094/tp.2016.09.021 摘要:为了利用分布式和并行计算来解决高性能计算问题,本文介绍了利用MATHWORKS公司开发的并行计算工具箱在MATLAB中建模与开发分布式和并行应用的一些方法;包括并行for循环、批处理作业、分布式数组、单程序多数据(SPMD)结构等。用这些方法可将串行MATLAB应用程序转换为并行MATLAB应用程序,且几乎不需要修改代码和低级语言编写程序,从而提高了编程和程序运行的效率。用这些方法来执行模型,可以解决更大的问题,覆盖更多的仿真情景并减少桌面资源。 关键词:建模;仿真;并行计算; MATLAB 中图分类号:TP31 文献标志码:A 文章编号:1006-8228(2016)09-73-03 Parallel computing solutions with MATLAB Yao Shangfeng, Liu Changjiang, Tang Zhenghua, Dai Di (Simulation Training Center, Armored Force Institute, Bengbu, Anhui 233050, China) Abstract: For the use of distributed and parallel computing to solve the problem of high-performance computing, this article describes the use of Parallel Computing Toolbox developed by MATHWORKS Company and some methods of parallel applications, including parallel for loop,batch jobs, distributed arrays, Single Program Multiple Data (SPMD) structure. by the methods, the serial MATLAB applications can be converted to parallel MATLAB applications,and almost no need to modify the code and program in low level languages, thereby increasing the efficiency of programming and operation. Use this method to perform model can solve bigger problems, cover more simulation scenarios and reduce the desktop resources. Key words: modeling; simulation; parallel computing; MATLAB 0 引言 用户面临着用更少的时间建立复杂系统模型的需求,他们使用分布式和并行计算来解决高性能计算问题。MATHWORKS公司开发的并行计算工具箱(Parallel Computing Toolbox)[1-5]可以在MATLAB中建模和开发分布式和并行应用,并在多核处理器和多核计算机中执行,解决计算、数据密集型问题[2],而且并不离开即使的开发环境;无需更改代码,即可在计算机

相关文档
最新文档