高中物理电学计算题

高中物理电学计算题
高中物理电学计算题

电学计算题集粹(63个)

1.如图3-87所示的电路中,电源电动势=24V,内阻不计,电容C=12μF,R1=10Ω,R3=60Ω,R4=20Ω,R5=40Ω,

电流表G的示数为零,此时电容器所带电量Q=7.2310-5C,

求电阻R2的阻值

?

图3-87

2.如图3-88中电路的各元件值为:R1=R2=

10Ω,R3=R4=20Ω,C=300μF,电源电动势=6V,内阻不计,单刀双掷开关S开始时接通触点2,求:

图3-88

(1)当开关S从触点2改接触点1,且电路稳定后,电容C所带电量.

(2)若开关S从触点1改接触点2后,直至电流为零止,通过电阻R1的电量.

3.光滑水平面上放有如图3-89所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中.初始时刻,滑块与物体都静止,试问:

图3-89

(1)释放小物体,第一次与滑板A壁碰前物体的速度v1多大?

(2)若物体与A壁碰后相对水平面的速率为碰前速率的3/5,则物体在第二次跟A壁碰撞之前,滑板相对于水平面的速度v和物体相对于水平面的速度v2分别为多大?

(3)物体从开始运动到第二次碰撞前,电场力做的功为多大?(设碰撞所经历时间极短) 4.一带电粒子质量为m、带电量为q,可认为原来静止.经电压为U的电场加速后,垂直射入磁感强度为B的匀强磁场中,根据带电粒子在磁场中受力所做的运动,试导出它所形成电流的电流强度,并扼要说出各步的根据.(不计带电粒子的重力)

5.如图3-90所示,半径为r的金属球在匀强磁场中以恒定的速度v沿与磁感强度B垂直的方向运动,当达到稳定状态时,试求:

图3-90

(1)球内电场强度的大小和方向?

(2)球上怎样的两点间电势差最大?最大电势差是多少?

6.如图3-91所示,小车A的质量M=2kg,置于光滑水平面上,初速度为v0=14m/s.带正电荷q=0.2C的可视为质点的物体B,质量m=0.1kg,轻放在小车A的右端,在A、B所在的空间存在着匀强磁场,方向垂直纸面向里,磁感强度B=0.5T,物体与小车之间有摩擦力作用,设小车足够长,求

图3-91

(1)B物体的最大速度?

(2)小车A的最小速度?

(3)在此过程中系统增加的内能?(g=10m/s2)

7.把一个有孔的带正电荷的塑料小球安在弹簧的一端,弹簧的另一端固定,小球穿在一根光滑的水平绝缘杆上,如图3-92所示,弹簧与小球绝缘,弹簧质量可不计,整个装置放在水平向右的匀强电场之中,试证明:小球离开平衡位置放开后,小球的运动为简谐运动.(弹簧一直处在弹性限度内)

图3-92

8.有一个长方体形的匀强磁场和匀强电场区域,它的截面为边长L=0.20m的正方形,其电场强度为E=43105V/m,磁感强度B=2310-2T,磁场方向垂直纸面向里,当一束质荷比为m/q=4310-10kg/C的正离子流以一定的速度从电磁场的正方形区

域的边界中点射入如图3-93所示,

图3-93

(1)要使离子流穿过电磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?

(2)在离电磁场区域右边界0.4m处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a点,若撤去磁场,离子流击中屏上b点,求ab间距离.

9.如图3-94所示,一个初速为零的带正电的粒子经过M、N两平行板间电场加速后,从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小不变、方向垂直于纸面且方向交替变化的匀强磁场.磁感强度B=0.4T.每经t=(π/4)310-3s,磁场方向变化一次.粒子到达P点时出现的磁场方向指向纸外,在Q处有一个静止的中性粒子,P、Q间距离s=3m.PQ直线垂直平分ab、cd.已知D=1.6m,带电粒子的荷质比为1.03104C/kg,重力忽略不计.求

图3-94

(1)加速电压为220V时带电粒子能否与中性粒子碰撞?

(2)画出它的轨迹.

(3)能使带电粒子与中性粒子碰撞,加速电压的最大值是多少?

10.在磁感强度B=0.5T的匀强磁场中,有一个正方形金属线圈abcd,边长l=0.2m,线圈的ad边跟磁场的左侧边界重合,如图3-95所示,线圈的电阻R=0.4Ω,用外力使线圈从磁场中运动出来:一次是用力使线圈从左侧边界匀速平动移出磁场;另一次是用力使线圈以ad边为轴,匀速转动出磁场,两次所用时间都是0.1s.试分析计算两次外力对线圈做功之差

图3-95

11.如图3-96所示,在xOy平面内有许多电子(每个电子质量为m,电量为e)从坐标原点O不断地以相同大小的速度v0沿不同的方向射入第Ⅰ象限.现加上一个垂直于xOy平面的磁感强度为B的匀强磁场,要求这些电子穿过该磁场后都能平行于x轴向x轴正方向运动,试求出符合该条件的磁场的最小面积.

图3-96

12.如图3-97所示的装置,U1是加速电压,紧靠其右侧的是两块彼此平行的水平金属板,板长为l,两板间距离为d.一个质量为m、带电量为-q的质点,经加速电压加速后沿两金属板中心线以速度v0水平射入两板中,若在两水平金属板间加一电压U2,当上板为正时,带电质点恰能沿两板中心线射出;当下板为正时,带电质点则射到下板上距板的左端l/4处.为使带电质点经U1加速后,沿中心线射入两金属板,并能够从两金属之间射出,问:两水平金属板间所加电压应满足什么条件,及电压值的范围.

图3-97

13.人们利用发电机把天然存在的各种形式的能(水流能、煤等燃料的化学能)转化为电能,为了合理地利用这些能源,发电站要修建在靠近这些天然资源的地方,但用电的地方却分布很广,因此需要把电能输送到远方.某电站输送电压为U=6000V,输送功率为P=500kW,这时安装在输电线路的起点和终点的电度表一昼夜里读数相差4800kWh(即4800度电),试求

(1)输电效率和输电线的电阻

(2)若要使输电损失的功率降到输送功率的2%,电站应使用多高的电压向外输电?

14.有一种磁性加热装置,其关键部分由焊接在两个等大的金属圆环上的n根间距相等的平行金属条组成,成“鼠笼”状,如图3-98所示.每根金属条的长度为l,电阻为R,金属环的直径为D、电阻不计.图中虚线表示的空间范围内存在着磁感强度为B的匀强磁场,磁场的宽度恰好等于“鼠笼”金属条的间距,当金属环以角速度ω绕过两圆环的圆心的轴OO′旋转时,始终有一根金属条在垂直切割磁感线.“鼠笼”的转动由一台电动机带动,这套设备的效率为η,求电动机输出的机械功率.

图3-98

15.矩形线圈M、N材料相同,导线横截面积大小不同,M粗于N,M、N由同一高度自由下落,同时进入磁感强度为B的匀强场区(线圈平面与B垂直如图3-99所示),M、N同时离开磁场区,试列式推导说明.

图3-99

16.匀强电场的场强E=2.03103Vm-1,方向水平.电场中有两个带电质点,其质量均为m=1.0310-5kg.质点A带负电,质点B带正电,电量皆为q=1.0310-9C.开始时,两质点位于同一等势面上,A的初速度vAo=2.0m2s-1,B的初速度vB-1,均沿场强方向.在以后的运动过程中,若用Δs表示任一时刻两质点间o=1.2m2s

的水平距离,问当Δs的数值在什么范围内,可判断哪个质点在前面(规定图3-100中右方为前),当Δs的数值在什么范围内不可判断谁前谁后?

图3-100

17.如图3-101所示,两根相距为d的足够长的平行金属导轨位于水平的xy平面内,一端接有阻值为R的电阻.在x>0的一侧存在沿竖直方向的均匀磁场,磁感强度B随x的增大而增大,B=kx,式中的k是一常量,一金属直杆与金属导轨垂直,可在导轨上滑动,当t=0时位于x=0处,速度为v0,方向沿x轴的正方向.在运动过程中,有一大小可调节的外力F作用于金属杆以保持金属杆的加速度恒定,大小为a,方向沿x轴的负方向.设除外接的电阻R外,所有其它电阻都可以忽略.问:

图3-101

(1)该回路中的感应电流持续的时间多长?

(2)当金属杆的速度大小为v0/2时,回路中的感应电动势有多大?

(3)若金属杆的质量为m,施加于金属杆上的外力F与时间t的关系如何?

18.如图3-102所示,有一矩形绝缘木板放在光滑水平面上,另一质量为m、带电量为q的小物块沿木板上表面以某一初速度从A端沿水平方向滑入,木板周围空间存在着足够大、方向竖直向下的匀强电场.已知物块与木板间有摩擦,物块沿木板运动到B端恰好相对静止,若将匀强电场方向改为竖直向上,大小不变,且物块仍以原初速度沿木板上表面从A端滑入,结果物块运动到木板中点时相对静止.求:

图3-102

(1)物块所带电荷的性质;

(2)匀强电场的场强大小.

19.(1)设在磁感强度为B的匀强磁场中,垂直磁场方向放入一段长为L的通电导线,单位长度导线中有n个自由电荷,每个电荷的电量为q,每个电荷定向移动的速率为v,试用通过导线所受的安掊力等于运动电荷所受洛伦兹力的总和,论证单个运动电荷所受的洛伦兹力f=qvB.

图3-103

(2)如图3-103所示,一块宽为a、厚为h的金属导体放在磁感应强度为B的匀强磁场中,磁场方向与金属导体上下表面垂直.若金属导体中通有电流强度为I、方向自左向右的电流时,金属导体前后两表面会形成一个电势差,已知金属导体单位长度中的自由电子数目为n,问:金属导体前后表面哪一面电势高?电势差为多少?

20.某交流发电机输出功率为53105W,输出电压为U=1.03103V,假如输电线总电阻为R=10Ω,在输电线上损失的电功率等于输电功率的5%,用户使用的电压为U用=380V.求:

(1)画出输电线路的示意图.(在图中标明各部分电压符号)

(2)所用降压变压器的原、副线圈的匝数比是多少?(使用的变压器是理想变压器) 21.如图3-104(a)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔O、O′,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动.其速度图象如图3-104(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m=3.2310-21kg、电量q=1.6310-19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计).求

图3-104

(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?

(2)粒子从边界MN射出来的位置之间最大的距离为多少?

22.试由磁场对一段通电导线的作用力F=ILB推导洛伦兹力大小的表达式.推导过程要求写出必要的文字说明(且画出示意简图)、推导过程中每步的根据、以及式中各符号和最后结果的物理意义.

23.如图3-105所示是电饭煲的电路图,S1是一个限温开关,手动闭合,当此开关的温度达到居里点(103℃)时会自动断开,S2是一个自动温控开关,当温度低于约70℃时会自动闭合,温度高于80℃时会自动断开,红灯是加热状态时的指示灯,黄灯是保温状态时的指示灯,限流电阻R1=R2=500Ω,加热电阻丝R3=50Ω,两灯电阻不计.

图3-105

(1)根据电路分析,叙述电饭煲煮饭的全过程(包括加热和保温过程).

(2)简要回答,如果不闭合开关S1,电饭煲能将饭煮熟吗?

(3)计算加热和保温两种状态下,电饭煲的消耗功率之比.

24.如图3-106所示,在密闭的真空中,正中间开有小孔的平行金属板A、B的长度均为L,两板间距离为L/3,电源E1、E2的电动势相同,将开关S置于a端,在距A板小孔正上方l处由静止释放一质量为m、电量为q的带正电小球P(可视为质点),小球P

通过上、若将S置于b端,同时在A、B平行板间整个区域内加一垂直纸面向里的匀强磁场,磁感强度为B.在此情况下,从A板上方某处释放一个与P相同的小球Q.要使Q进入A、B板间后不与极板碰撞而能飞离电磁场区,则释放点应距A板多高?(设两板外无电磁场)

图3-106 图3-107

25.如图3-107所示,在绝缘的水平桌面上,固定着两个圆环,它们的半径相等,环面竖直、相互平行,间距是20cm,两环由均匀的电阻丝制成,电阻都是9Ω,在两环的最高点a和b之间接有一个内阻为0.5Ω的直流电源,连接导线的电阻可忽略不计,空间有竖直向上的磁感强度为3.46310-1T的匀强磁场.一根长度等于两环间距,质量为10g,电阻为1.5Ω的均匀导体棒水平地置于两环内侧,不计与环间的磨擦,当将棒放在其两端点与两环最低点之间所夹圆弧对应的圆心角均为θ=60°时,棒刚好静止不动,试求电源的电动势(取g=10m/s2).

26.利用学过的知识,请你设计一个方案想办法把具有相同动能的质子和α粒子分开.要说出理由和方法.

27.如图3-108所示是一个电子射线管,由阴极上发出的电子束被阳极A与阴极K间的电场加速,从阳极A上的小孔穿出的电子经过平行板电容器射向荧光屏,设A、K间的电势差为U,电子自阴极发出时的初速度可不计,电容器两极板间除有电场外,还有一均匀磁场,磁感强度大小为B,方向垂直纸面向外,极板长度为d,极板到荧光屏的距离为L,设电子电量为e,质量为m.问

图3-108

(1)电容器两极板间的电场强度为多大时,电子束不发生偏转,直射到荧光屏S上的O点;

(2)去掉两极板间电场,电子束仅在磁场力作用下向上偏转,射在荧光屏S上的D点,求D到O点的距离x.

28.如图3-109所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为L=1m,质量m=0.1kg的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻R=1Ω,磁感强度B=1T的匀强磁场方向垂直于导体框架所在平面.当导体棒在电动机牵引下上升h=3.8m时,获得稳定速度,此过程中导体棒产生热量Q=2J.电动机工作时,电压表、电流表的读数分别为7V和1A,电动机的内阻r=1Ω.不计一切摩擦,g取10m/s2.求:

图3-109

(1)导体棒所达到的稳定速度是多少?

(2)导体棒从静止到达稳定速度的时间是多少?

29.如图3-110所示,一根足够长的粗金属棒MN固定放置,它的M端连一个定值电阻R,定值电阻的另一端连接在金属轴O上,另外一根长为l的金属棒ab,a端与轴O相连,b端与MN棒上的一点接触,此时ab与MN间的夹角为45°,如图所示,空间存在着方向垂直纸面向外的匀强磁场,磁感强度大小为B,现使ab棒以O为轴逆时针匀速转动半周,角速度大小为ω,转动过程中与MN棒接触良好,两金属棒及导线的电阻都可忽略不计.

(1)求出电阻R中有电流存在的时间;

(2)写出这段时间内电阻R两端的电压随时间变化的关系式;

(3)求出这段时间内流过电阻R的总电量.

图3-110 图3-111

30.如图3-111所示,不计电阻的圆环可绕O轴转动,ac、bd是过O轴的导体辐条,圆环半径R=10cm,圆环处于匀强磁场中且圆环平面与磁场垂直,磁感强度B=10T,为使圆环匀速转动时电流表示数为2A,则M与环间摩擦力的大小为多少?

31.来自质子源的质子(初速度为零),经一加速电压为800kV的直线加速器加速,形成电流强度为1mA的细柱形质子流.已知质子电荷e=1.60310-19C.则(1)这束质子流每秒打到靶上的质子数为多少?(2)假定分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距L和4L的两处,各取一段极短的相等长度的质子流,其中的质子数分别为n1和n2,则n1∶n2为多少?

32.由安培力公式导出运动的带电粒子在磁场中所受洛沦兹力的表达式,要求扼要说出各步的根据.(设磁感强度与电流方向垂直)

33.试根据法拉第电磁感应定律=ΔΦ/Δt,推导出导线切割磁感线(即在B⊥L,v⊥L,v⊥B条件下,如图3-109所示,导线ab沿平行导轨以速度v匀速滑动)产生感应电动势大小的表达式=BLv.

图3-109 图3-110

34.普通磁带录音机是用一个磁头来录音和放音的.磁头结构如图3-110所示,在一个环形铁芯上绕一个线圈,铁芯有个缝隙,工作时磁带就贴着这个缝隙移动.录音时,磁头线圈跟微音器相连,放音时,磁头线圈改为跟场声器相连.磁带上涂有一层磁粉,磁粉能被磁化且留下剩磁.微音器的作用是把声音的变化转化为电流的变化.扬声器的作用是把电流的变化转化为声音的变化.根据学过的知识,把普通录音机录、放音的基本原理简明扼要地写下来.

35.一带电粒子质量为m、带电量为q,认为原来静止.经电压U加速后,垂直射入磁感强度为B的匀强磁场中,根据带电粒子在磁场中受力运动,导出它形成电流的电流强度,并扼要说出各步的根据.

36.如图3-111所示,有A、B、C三个接线柱,A、B间接有内阻不计、电动势为5V的电源,手头有四个阻值完全相同的电阻,将它们适当组合,接在A、C和C、B间,构成一个回路,使A、C间电压为3V,C、B间电压为2V,试设计两种方案,分别画在(a)、(b)中.

图3-111 图3-112

37.如图3-112所示,匀强电场的电场强度为E,一带电小球质量为m,轻质悬线长为l,静止时与竖直方向成30°角.现将小球拉回竖直方向(虚线所示),然后由静止释放,求:

(1)小球带何种电荷?电量多少?

(2)小球通过原平衡位置时的速度大小?

38.用同种材料,同样粗细的导线制成的单匝圆形线圈,如图3-113所示,R1=2R2,当磁感强度以1T/s的变化率变化时,求内外线圈的电流强度之比?电流的热功率之比?

图3-113 图3-114 图3-115

39.如图3-114所示,MN和PQ为相距L=30cm的平行金属长导轨,电阻为R=0.3Ω的金属棒ab可紧贴平行导轨运动.相距d=20cm,水平放置的两平行金属板E和F分别与金属棒的a、b端相连.图中R0=0.1Ω,金属棒ac=cd=db,导轨和连线的电阻不计,整个装置处于垂直纸面向里的匀强磁场中.当金属棒ab以速率v向右匀速运动时,恰能使一带电粒子以速率v在两金属板间做匀速圆周运动.求金属棒ab匀速运动的速率v的取值范围.

40.如图3-115所示,长为L、电阻r=0.3Ω、质量m=0.1kg的金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R=0.5Ω的电阻,量程为0~3.0A的电流表串接在一条导轨上,量程为0~1.0V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移,当金属棒以v=2m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,则另一个电表未满偏.问:

(1)此满偏的电表是什么表?说明理由.

(2)拉动金属棒的外力F多大?

(3)此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R的电量.

41.如图3-116所示,Ⅰ、Ⅲ为两匀强磁场区,Ⅰ区域的磁场方向垂直纸面向里,Ⅲ区域的磁场方向垂直纸面向外,磁感强度均为B.两区域之间有宽s的区域Ⅱ,区域Ⅱ内无磁场.有一边长为L(L>s),电阻为R的正方形金属框abcd(不计重力)置于Ⅰ区域,ab边与磁场边界平行,现拉着金属框以速度v向右匀速移动.

(1)分别求出当ab边刚进入中央无磁区Ⅱ和刚进入磁场区Ⅲ时,通过ab边的电流的大小和方向.

(2)把金属框从Ⅰ区域完全拉入Ⅲ区域过程中的拉力所做的功是多少?

图3-116 图3-117 图3-118

42.在两根竖直放置且相距L=1m的足够长的光滑金属导轨MN、PQ的上端接一定值电阻,其阻值为1Ω,导轨电阻不计,现有一质量为m=0.1kg、电阻r=0.5Ω的金属棒ab垂直跨接在两导轨之间,如图3-117所示.整个装置处在垂直导轨平面的匀强磁场中,磁感强度B=0.5T,现将ab棒由静止释放(ab与导轨始终垂直且接触良好,g取10m/s2),试求:

(1)ab棒的最大速度?

(2)当ab棒的速度为3m/s时的加速度?

43.两条平行裸导体轨道c、d所在平面与水平面间夹角为θ,相距为L,轨道下端与电阻R相连,质量为m的金属棒ab垂直斜面向上,如图3-118所示,导轨和金属棒的电阻不计,上下的导轨都足够长,有一个水平方向的力垂直金属棒作用在棒上,棒的初状态速度为零.

(1)当水平力大小为F、方向向右时,金属棒ab运动的最大速率是多少?

(2)当水平力方向向左时,其大小满足什么条件,金属棒ab可能沿轨道向下运动? (3)当水平力方向向左时,其大小使金属棒恰不脱离轨道,金属棒ab运动的最大速率是多少?

44.如图3-119,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻为r=1Ω,在线圈外接一个阻值R=4Ω的电阻,电阻的一端b跟地相接,把线圈放入一个方向垂直线圈平面向里的匀强磁场中,磁感强度随时间变化规律如图线B-t所示.求: (1)从计时起在t=3s、t=5s时穿过线圈的磁通量是多少?

(2)a点的最高电势和最低电势各多少?

图3-119 图3-120

45.如图3-120所示,直线MN左边区域存在磁感强度为B的匀强磁场,磁场方向垂直纸面向里.由导线弯成的半径为R的圆环处在垂直于磁场的平面内,且可绕环与MN的切点O在该平面内转动.现让环以角速度ω顺时针转动,试求

(1)环在从图示位置开始转过半周的过程中,所产生的平均感应电动势大小;

(2)环从图示位置开始转过一周的过程中,感应电动势(瞬时值)大小随时间变化的表达式;

(3)图3-121是环在从图示位置开始转过一周的过程中,感应电动势(瞬时值)随时间变化的图象,其中正确的是图.

图3-121

46.如图3-122所示,足够长的U形导体框架的宽度l=0.5m,电阻忽略不计,其所在平面与水平面成α=37°角,磁感强度B=0.8T的匀强磁场方向垂直于导体框平面,一根质量为m=0.2kg、有效电阻R=2Ω的导体棒MN垂直跨放在U形框架上.该导体棒与框架间的动摩擦因数μ=0.5,导体棒由静止开始沿架框下滑到刚开始匀速运动时,通过导体棒截面的电量共为Q=2C.求:

(1)导体棒做匀速运动时的速度;

(2)导体棒从开始下滑到刚开始匀速运动这一过程中,导体棒的有效电阻消耗的电功(sin37°=0.6,cos37°=0.8,g=10m/s2).

图3-122 图3-123 图3-124

47.一个质量为m、带电量为+q的运动粒子(不计重力),从O点处沿+y方向以初速度v0射入一个边界为矩形的匀强磁场中,磁场方向垂直于xOy平面向里,它的边界分别是y=0,y=a,x=-1.5a,x=1.5a,如图3-123所示,改变磁感强度B的大小,粒子可从磁场不同边界面射出,并且射出磁场后偏离原来速度方向的角度θ会随之改变,试讨论粒子可以从哪几个边界射出并与之对应的磁感强度B的大小及偏转角度θ各在什么范围内?

48.如图3-124所示,半径R=10cm的圆形匀强磁场区域边界跟y轴相切于坐标系原点O,磁感强度B=0.332T,方向垂直于纸面向里.在O处有一放射源,可沿纸面向各个方向射出速率均为v=3.23106m/s的α粒子,已知α粒子的质量m=6.64310-27

kg,电量q=3.2310-19C.求:

(1)画出α粒子通过磁场空间做圆运动的圆心点轨迹,并说明作图的依据.

(2)求出α粒子通过磁场空间的最大偏转角.

(3)再以过O点并垂直于纸面的直线为轴旋转磁场区域,能使穿过磁场区且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场区的直径OA至少应转过多大角度?

49.如图3-125所示,矩形平行金属板M、N,间距是板长的2/3倍,PQ为两板的对称轴线.当板间加有自M向N的匀强电场时,以某一速度自P点沿PQ飞进的带电粒子(重力不计),经时间Δt,恰能擦M板右端飞出,现用垂直纸面的匀强磁场取代电场,上述带电粒子仍以原速度沿PQ飞进磁场,恰能擦N板右端飞出,则

(1)带电粒子在板间磁场中历时多少?

(2)若把上述电场、磁场各维持原状叠加,该带电粒子进入电磁场时的速度是原速度的几倍才能沿PQ做直线运动?

图3-125 图3-126 图3-127

50.如图3-126所示,环状匀强磁场B围成的中空区域,具有束缚带电粒子作用.设环状磁场的内半径R1=10cm,外半径为R2=20cm,磁感强度B=0.1T,中空区域内有沿各个不同方向运动的α粒子,试计算能脱离磁场束缚而穿出外圆的α粒子的速度最小值,并说明其运动方向.(已知质子的荷质比q/m=108C/kg)

51.如图3-127所示,在光滑水平直轨道上有A、B两个小绝缘体,它们之间由一根长为L的轻质软线相连(图中未画出).A的质量为m,带有正电荷,电量为q;B的质量为M=4m,不带电.空间存在着方向水平向右的匀强电场,场强大小为E.开始时外力把A、B靠在一起(A的电荷不会传递给B)并保持静止.某时刻撤去外力,A将开始向右运动,直到细线被绷紧.当细线被绷紧时,两物体间将发生时间极短的相互作用,已知B开始运动时的速度等于线刚要绷紧瞬间A的速度的1/3,设整个过程中A的带电量保持不变.求:

(1)细线绷紧前瞬间A的速度v0.

(2)从B开始运动到线第二次被绷紧前的过程中,B与A是否能相碰?若能相碰,求出相碰时B的位移大小及A、B相碰前瞬间的速度;若不能相碰,求出B与A间的最短距离及线第二次被绷紧前B的位移.

52.如图3-128(a)所示,两平行金属板M、N间距离为d,板上有两个正对的小孔A和B.在两板间加如图3-128(b)所示的交变电压,t=0时,N板电势高于M板电势.这时,有一质量为m、带电量为q的正离子(重力不计),经U=U0/3的电压加速后从A孔射入两板间,经过两个周期恰从B孔射出.求交变电压周期的可能值并画出不同周期下离子在两板间运动的v-t图线.

图3-128 图3-129

53.如图3-129所示,在半径为R的绝缘圆筒内有磁感强度为B的匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板间距离为d,与电动势为

的电源连接,一带电量为-q、质量为m的带电粒子,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出.已知带电粒子与筒壁的

碰撞是弹性碰撞.求:(1)筒内磁场的磁感强度大小;(2)带电粒子从A点出发至从C点射出所经历的时间.

54.如图3-130所示,在垂直xOy坐标平面方向上有足够大的匀强磁场区域,其磁感强度B=1T,一质量为m=3310-16kg、电量为q=+1310-8C的质点(其重力忽略不计),以v=43106m/s速率通过坐标原点O,之后历时4π310-8s飞经x轴上A点,试求带电质点做匀速圆周运动的圆心坐标,并在坐标系中画出轨迹示意图.

图3-130 图3-131 图3-132

55.一个质量为M的绝缘小车,静止在光滑水平面上,在小车的光滑板面上放一个质量为m、带电量为+q的带电小物体(可视为质点),小车质量与物块质量之比M∶m=7∶1,物块距小车右端挡板距离为l,小车车长为L,且L=1.5l,如图3-131所示,现沿平行车身方向加一电场强度为E的水平向右的匀强电场,带电小物块由静止开始向右运动,之后与小车右端挡板相碰,若碰后小车速度大小为碰撞前小物块速度大小的1/4,并设小物块滑动过程及其与小车相碰的过程中,小物块带电量不变.

(1)通过分析与计算说明,碰撞后滑块能否滑出小车的车身?

(2)若能滑出,求出由小物块开始运动至滑出时电场力对小物块所做的功;若不能滑出,则求出小物块从开始运动至第二次碰撞时电场力对小物块所做的功.

56.如图3-132所示,在x≥0区域内有垂直于纸面的匀强磁场.一个质量为m、电量为q的质子以速度v水平向右通过x轴上P点,最后从y轴上的M点射出,已知M点到原点O的距离为H,质子射出磁场时速度方向与y轴负方向夹角θ=30°,求:

(1)磁感强度的大小和方向.

(2)如果在y轴右方再加一个匀强电场就可使质子最终能沿y轴正方向做匀速直线运动.从质子经过P点开始计时,再经多长时间加这个匀强电场?并求电场强度的大小和方向. 57.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图3-133a中由B到C的方向),电场变化如图3-133b中E-t图象,磁感强度变化如图3-133c中B-t图象.在A点,从t=1s(即1s末)开始,每隔2s,有一个相同的带电粒子(重

力不计)沿AB方向(垂直于BC)以速度v射出,恰都能击中C点,若=2,且粒子在AC间运动的时间小于1s,求:(1)图线上E0和B0的比值,磁感强度B的方向;(2)若第1个粒子击中C点的时刻已知为(1+Δt)s,那么第2个粒子击中C点的时刻是多少?

图3-133

58.如图3-134所示的电路中,4个电阻的阻值均为R,E为直流电源,其内阻可以不计,没有标明正负极.平行板电容器两极板间的距离为d.在平行板电容器两极板间有一质量为m、电量为q的带电小球.当开关S闭合时,带电小球静止在两极板间的中点O上.现把开关S打开,带电小球便往平行板电容器的某个极板运动,并与此极板碰撞,设在碰撞时没有机械能损失,但带电小球的电量发生变化,碰后小球带有与该极板相同性质的电荷,而且所带电量恰好刚能使它运动到平行板电容器的另一极板.求小球与电容器某个极板碰撞后所带的电荷.

图3-134

59.如图3-135甲所示,两块平行金属板,相距为d,加上如图3-135乙所示的方波形电压,电压的最大值为U,周期为T,现有一离子束,其中每个粒子的带电量为q,从与两板等距处沿与板平行的方向连续地射入,设粒子通过平行板所用的时间为T(和电压变化的周期相同),且已知所有的粒子最后都可以通过两板间的空间而打在右端的靶上,试求粒子最后打在靶上的位置范围(即与O′的最大距离和最小距离),不计重力的影响.

图3-135

60.一质量为m、带电量为q的粒子以速度v0从O点沿y轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面.粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角为30°,如图3-136所示.带电粒子重力忽略不计.试求:

(1)圆形磁场区域的最小面积.

(2)粒子从O进入磁场区到达b点所经历的时间及b点的坐标.

图3-136 图3-137

61.如图3-137(a)所示,在坐标xOy平面的第Ⅰ象限内,有一个匀强磁场,磁感强度大小恒为B0,方向垂直于xOy平面,且随时间作周期性变化,如图3-137(b)所示,规定垂直xOy平面向里的磁场方向为正.一个质量为m、电量为q的正粒子,在t=0时刻从坐标原点以初速度v0沿x轴正方向射入,在匀强磁场中运动,运动中带电粒子只受洛沦兹力作用,经过一个磁场变化周期T(未确定)的时间,粒子到达第Ⅰ象限内的某一点P,且速度方向沿x轴正方向.

(1)若O、P连线与x轴之间的夹角为45°,则磁场变化的周期T为多大?

(2)因P点的位置随着磁场周期的变化而变动,试求P点的纵坐标的最大值为多少? 62.如图3-138所示,一个质量为m、带电量为q的正离子,在D处沿着图示的方向进入磁感强度为B的匀强磁场,此磁场方向垂直纸面向里,结果离子正好从离开A点距离为d的小孔C沿垂直于AC的方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在B处,而B离A点距离为2d(AB⊥AC),不计粒子重力,离子运动轨迹始终在纸面内.求:

(1)离子从D到B所需的时间;

(2)离子到达B处时的动能.

图3-138 图3-139

63.如图3-139所示,一带电量为q液滴在一足够大的相互垂直的匀强电场和匀强磁场中运动.已知电场强度为E,方向竖直向下,磁感强度为B,方向如图.若此液滴在垂直于磁场的平面内做半径为R的圆周运动(空气浮力和阻力忽略不计).

(1)液滴的速度大小如何?绕行方向如何?

(2)若液滴运行到轨道最低点A时,分裂成两个大小相同的液滴,其中一个液滴分裂后仍在原平面内做半径为R1=3R的圆周运动,绕行方向不变,且此圆周最低点也是A,问另一液滴将如何运动?并在图中作出其运动轨迹.

(3)若在A点水平面以下的磁感强度大小变为B′,方向不变,则要使两液滴再次相碰,B′与B之间应满足什么条件?

参考解答

1.解:电容器两端电压UC=Q/C=6V,R4/R5=U4/(-U4),

∴U4=8V.

若U1=6+8=14V,则有

U1/(-U1)=R1/R2,∴R2=7.14Ω.

若U′1=8-6=2V,则有

U′/(-U′1)=R1/R2,∴R2=110Ω.

2.解:(1)接通1后,电阻R1、R2、R3、R4串联,有

I=/(R1+R2+R3+R4)=0.1A.

电容器两端电压

UC=U3+U4=I(R3+R4)=4V.

电容器带电量Q=CUC=1.2310-3C.

(2)开关再接通2,电容器放电,外电路分为R1、R2和R3、R4两个支路,通过两支路的电量分别为I1t和I2t,I=I1+I2;I1与I2的分配与两支路电阻成反比,通过两支路的电量Q则与电流成正比,故流经两支路的电量Q12和Q34与两支路的电阻成反比,即

Q12/Q34=(R3+R4)/(R1+R2)=40/20=2,

Q12+Q34=Q=1.2310-3C,

所以Q12=2Q/3=0.8310-3C.

3.解:(1)对物体,根据动能定理,有

qEL1=(1/2)mv12,得v1

(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1′;滑板的速度为v,则

mv1=mv1′+4mv.

若v1′=(3/5)v1,则v=v1/10,因为v1′>v,不符合实际,故应取v1′

=-(3/5)v1,则v=(2/5)v1=(2/5

在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.

∴(v2+v1′)/2t=v2t,

即v2=(7/5)v1=(7/5

(3)电场力做功

W=(1/2)mv12+((1/2)mv22-(1/2)mv1′2)=(13/5)qEL1.

4.带电粒子经电压U加速后速度达到v,由动能定理,得qu=(1/2)mv2.

带电粒子以速度v垂直射入匀强磁场B中,要受到洛伦兹力f的作用,

∵f⊥v,f⊥B,

∴带电粒子在垂直磁场方向的平面内做匀速圆周运动,洛伦兹力f就是使带电粒子做匀速圆周运动的向心力,洛伦兹力为f=qvB,根据牛顿第二定律,有

f=mv2/R,式中R为圆半径.

带电粒子做匀速圆周运动的周期T为T=2πR/v=2πm/qB,

在一个周期的时间内通过轨道某个截面的电量为q,则形成环形电流的电流强度I=Q/t=q/T=q2B/2πm.

5.(1)稳定时球内电子不做定向运动,其洛伦兹力与电场力相平衡,有Bev=Ee,∴E=Bv,方向竖直向下.

(2)球的最低点与最高点之间的电势差最大

Umax=Ed=E32r=2Bvr.

6.解:(1)对B物体:fB+N=mg,

当B速度最大时,有N=0,

即vmax=mg/Bq=10m/s.

(2)A、B系统动量守:Mv0=Mv+mvmax,

∴v=13.5m/s,即为A的最小速度.

(3)Q=ΔE=(1/2)Mv02-(1/2)Mv2-(1/2)mvmax2=8.75J.

7.解:设小球带电荷量为q,电场的电场强度为E,弹簧的劲度系数为k.

在小球处于平衡位置时,弹簧伸长量为x0.

kx0=qE.①

当小球向右移动x,弹簧总伸长为x0+x,以向右为正,小球所受合外力

F合=qE-k(x0+x),②

解①、②得F合=-kx.

由此可知:小球离开平衡位置,所受到合外力总指向平衡位置,与相对于平衡位置的位移成正比,所以小球所做的运动为简谐运动.

8.解:(1)电场方向向下,与磁场构成粒子速度选择器,离子运动不偏转,则qE=qBv,

v=E/B=23107m/s.

(2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力为洛伦兹力,于是

qBv=mv2/R,R=mv/qB=0.4m.

离子离开磁场区边界时,偏转角sinθ=L/R=1/2,即θ=30°.如图17甲所示. 偏离距离y1=R-Rsinθ=0.05m.

离开磁场后离子做匀速直线运动,总的偏离距离为y=y1+Dtgθ=0.28m.

若撤去磁场,离子在电场中做匀变速曲线运动,

通过电场的时间t=L/v,加速度a=qE/m

偏转角为θ′如图17乙所示,则tgθ′=vy/v=(qEL/mv2)2(1/2),

图17

偏离距离为y2′=(1/2)at2=0.05m.

离开电场后离子做匀速直线运动,总的偏离距离

y′=y2′+Dtgθ′=0.25m,

a、b间的距离=0.53m.

9.解:(1)设带电粒子在磁场中做匀速圆周运动的半径为r,周期为T.

T=2πm/Bq=(π/2)310-3s,t恰为半个周期.

磁场改变一次方向,t时间内粒子运动半个圆周.

由qU=(1/2)mv2和r=mv/Bq,

解得r=0.5m,可见s=6r.

加速电压200V时,带电粒子能与中性粒子碰撞.

(2)如图18所示

图18

(3)带电粒子与中性粒子碰撞的条件是:PQ之间距离s是2r的整数n倍,且r≤D/2,

n最小为2,即r′=0.75m.

由r′=mv′/Bq和qUmax=(1/2)mv′2,解得Umax=450V.

10.使线圈匀速平动移出磁场时,bc边切割磁感线而产生恒定感应电动势,线圈中产生恒定的感生电流

=Blv,①

I=/R,②

外力对线圈做的功等于线圈中消耗的电能

W外=E电=It,③

由①、②、③并代入数据解出W=0.01J

线圈以ad为轴匀速转出磁场时,线圈中产生的感应电动势和感应电流都是按正统规律变化的.感应电动势和感应电流的最大值为:

max=BSω,④

Imax=max/R⑤

④式中的S是线圈面积,ω是线圈旋转的角速度,电路中消耗的电功率应等于

P=有I有,⑥

外力对线圈做的功应等于电路中消耗的电能

W外′=E电′=有I有t=(m2Im/2)t=0.0123J.⑦

∴两次外力做功之差W′-W=2.3310-3J.

高中电场练习题及答案

高中物理电场补充练习题及答案 1、对下列物理公式的理解,说法正确的是:B A.由公式v a t ?= 可知,加速度a 由速度的变化量v ?和时间t 决定 B.由公式F a m =可知,加速度a 由物体所受合外力F 和物体的质量m 决定 C.由公式F E q =可知,电场强度E 由电荷受到的电场力F 和电荷的电量q 决定 D.由公式Q C U =可知,电容器的电容C 由电容器所带电量Q 和两板间的电势差U 决定 2、在如图所示的四种电场中,分别标记有a 、b 两点。其中a 、b 两点的电势相等,电场强度大小相等、方向也相同的是:B A.甲图:与点电荷等距的a 、b 两点 B.乙图:两等量异种电荷连线的中垂线上与连线等距的a 、b 两点 C.丙图:点电荷与带电平板形成的电场中平板上表面的a 、b 两点 D.丁图:匀强电场中的a 、b 两点 3、如图所示,在某一点电荷Q 产生的电场中,有a 、b 两点。其中a 点的场强大小为E a ,方向与ab 连线成120°角;b 点的场强大小为E b , 方向与ab 连线成150°角。则关于a 、b 两点场强大小及电势高低说法 正确的是:AC A.E a =3E b B.3b a E E = C.b a ??> D.b a ??< 4、如图所示,有一带负电的粒子,自A 点沿电场线运动到B 点,在此过程中该带电粒子: B A.所受的电场力逐渐增大,电势能逐渐增大 B.所受的电场力逐渐增大,电势能逐渐减小 C.所受的电场力逐渐减小,电势能逐渐增大 D.所受的电场力逐渐减小,电势能逐渐减小 5、A 、B 是某电场中一条电场线上的两点,一正电荷仅在电场力作 用下,沿电场线从A 点运动到B 点,速度图象如右图所示,下列关 于A 、B 两点电场强度E 的大小和电势的高低的判断,正确的是:D A.E A >E B B.E A <E B C.φA <φB D.φA >φB 6、如图所示,a 、b 是两个电荷量都为Q 的正点电荷。O 是它们连线的中点,P 、P ′是它们连线中垂线上的两个点。从P 点由静止释放 ·a · b ·a ·b ·b ·a ·a ·b 甲 乙 丙 丁

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

高中物理选修静电场测试题单元测试及答案

静电场单元测试 一、选择题 1.如图所示,a 、b 、c 为电场中同一条电场线上的三点,c 为ab 的中点,a 、b 点的电势分别为φa =5 V ,φb =3 V ,下列叙述正确的是( ) A .该电场在c 点处的电势一定为4 V B .a 点处的场强一定大于b 处的场强 C .一正电荷从c 点运动到b 点电势能一定减少 D .一正电荷运动到c 点时受到的静电力由c 指向a 2.如图所示,一个电子以100 eV 的初动能从A 点垂直电场线方向飞入匀强电场,在B 点离开电场时,其速度方向与电场线成150°角,则A 与B 两点间的电势差为( ) A .300 V B .-300 V C .-100 V D .-1003 V 3.如图所示,在电场中,将一个负电荷从C 点分别沿直线移到A 点和B 点,克服静电力做功相同.该电场可能是( ) A .沿y 轴正向的匀强电场 B .沿x 轴正向的匀强电场 C .第Ⅰ象限内的正点电荷产生的电场 D .第Ⅳ象限内的正点电荷产生的电场 4.如图所示,用绝缘细线拴一带负电小球,在竖直平面内做圆周运动, 匀强电场方向竖直向下,则( ) A .当小球运动到最高点a 时,线的张力一定最小 B .当小球运动到最低点b 时,小球的速度一定最大 C .当小球运动到最高点a 时,小球的电势能最小 D .小球在运动过程中机械能不守恒 5.在静电场中a 、b 、c 、d 四点分别放一检验电荷,其电量可变,但很小,结果测出检验电荷所受电场力与电荷电量的关系如图所示,由图线可知 ( ) A .a 、b 、c 、d 四点不可能在同一电场线上 B .四点场强关系是E c =E a >E b >E d C .四点场强方向可能不相同 D .以上答案都不对 6.如图所示,在水平放置的光滑接地金属板中点的正上方,有带正电的点电荷Q , 一表面绝缘带正电的金属球(可视为质点,且不影响原电场)自左以速度v 0开始在 金属板上向右运动,在运动过程中 ( ) A .小球做先减速后加速运动 B .小球做匀速直线运动 C .小球受的电场力不做功 D .电场力对小球先做正功后做负功 7.如图所示,一个带正电的粒子以一定的初速度垂直进入水平方向的匀强电场.若不计重力,图中的四个图线中能描述粒子在电场中的运动轨迹的是 ( ) 8.图中虚线是用实验方法描绘出的某一静电场中的一簇等势线,若不计重力的 带电粒子从a 点射入电场后恰能沿图中的实线运动,b 点是其运动轨迹上的另一 点,则下述判断正确的是 ( ) A .b 点的电势一定高于a 点 B .a 点的场强一定大于b 点

高一物理计算题(含答案)

高一物理计算题 1、在距地面10m高处,以10m/s的速度抛出一质量为1kg的物体,已知物体落地时的速度为16m/s,求:(g取10m/s2)(1)抛出时人对物体做功为多少?(2)飞行过程中物体克服阻力做的功是多少? 2、汽车的质量为4×10 3㎏,额定功率为30kW,运动中阻力大小为车重的0.1倍。汽车在水 平路面上从静止开始以8×10 3 N的牵引力出发,求: (1)经过多长的时间汽车达到额定功率。 (2)汽车达到额定功率后保持功率不变,运动中最大速度多大? (3)汽车加速度为0.5 m/s2 时速度多大? 3、如图2所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在使斜面体向右水平匀速移动距离l,求: (1)摩擦力对物体做的功。 (2)斜面对物体的弹力做的功。 (3)斜面对物体做的功。 图2 4、如图所示,半径R=0.4m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量m=0.1kg的小球,以初速度v0=7m/s在水平地面上向左作加速度a=3m/s2的匀减速直线运动,运动4.0m后,冲上竖直半圆环,最后小球落在C点。求A、C之间的距离(g=10 m/s2)

5、AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。一小球自A 点起由静止开始沿轨道下滑。已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。求 (1)小球运动到B 点时的动能 (2)小球下滑到距水平轨道的高度为1 2 R 时的速度大小 (3)小球经过圆弧轨道的B 点和水平轨道的C 点时, 所受轨道支持力N B 、N C 各是多大? 6、如图所示,在光滑水平桌面上有一辆质量为M 的小车,小车与绳子的一端相连,绳子另一端通过滑轮吊一个质量为m 的砝码,砝码离地h 高。若把小车静止开始释放,则在砝码着地瞬间,求:(1)小车的速度大小。 (2)在此过程中,绳子拉力对小车所做的功为多少? 7、如图,斜面倾角30θ=?,另一边与地面垂直,高为H ,斜面顶点有一个定滑轮,物块A 和B 的质量分别为1m 和2m ,通过一根不可伸长的细线连结并跨过定滑轮,开始时两物块都位于距地面的垂直距离为1 2 H 的位置上,释放两物块后,A 沿斜面无摩擦地上滑,B 沿斜面 的竖直边下落,且落地后不反弹。若物块A 恰好能到达斜面 的顶点,试求1m 和2m 的比值。(滑轮质量、半径及摩擦均忽略) O m A B C R A B H 2 30?

高中物理带电粒子在电场中的运动答题技巧及练习题(含答案)

高中物理带电粒子在电场中的运动答题技巧及练习题(含答案) 一、高考物理精讲专题带电粒子在电场中的运动 1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点 3 ,0P L ?? ? ??? 处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力. (1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1; (2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2; (3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v. 某同学查阅资料后,得到一种处理相关问题的思路: 带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq 32 2 3 0B E E v B +?? ??? 【解析】 【详解】 (1)粒子1在一、二、三做匀速圆周运动,则2 111 v qv B m r = 由几何憨可知:()2 22 1133r L r L ??=-+ ? ???

得到:123BLq v m = (2)粒子2在第一象限中类斜劈运动,有: 13 3 L v t =,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到2 89qLB E m = 又22 212v v Eh =+,得到:2221BLq v = (3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0 E v B '= 而'223 v v v ''= + 所以,运动过程中粒子的最小速率为v v v =''-' 即:2 2 003E E v v B B ??=+- ??? 2.如图所示,在平面直角坐标系xOy 的第二、第三象限内有一垂直纸面向里、磁感应强度为B 的匀强磁场区域△ABC ,A 点坐标为(0,3a ),C 点坐标为(0,﹣3a ),B 点坐标为(23a -,-3a ).在直角坐标系xOy 的第一象限内,加上方向沿y 轴正方向、场强大小为E=Bv 0的匀强电场,在x=3a 处垂直于x 轴放置一平面荧光屏,其与x 轴的交点为Q .粒子束以相同的速度v 0由O 、C 间的各位置垂直y 轴射入,已知从y 轴上y =﹣2a 的点射入磁场的粒子在磁场中的轨迹恰好经过O 点.忽略粒子间的相互作用,不计粒子的重力. (1)求粒子的比荷; (2)求粒子束射入电场的纵坐标范围; (3)从什么位置射入磁场的粒子打到荧光屏上距Q 点最远?求出最远距离. 【答案】(1)0v Ba (2)0≤y≤2a (3)78y a =,9 4a 【解析】 【详解】 (1)由题意可知, 粒子在磁场中的轨迹半径为r =a 由牛顿第二定律得

高中物理3-3《热学》计算题专项练习题(含答案)

高中物理3-3《热学》计算题专项练习题(含 答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热学计算题(二) 1.如图所示,一根长L=100cm、一端封闭的细玻璃管开口向上竖直放置,管内用h=25cm长的水银柱封闭了一段长L1=30cm的空气柱.已知大气压强为75cmHg,玻璃管周围环境温度为27℃.求: Ⅰ.若将玻璃管缓慢倒转至开口向下,玻璃管中气柱将变成多长? Ⅱ.若使玻璃管开口水平放置,缓慢升高管内气体温度,温度最高升高到多少摄氏度时,管内水银不能溢出. 2.如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧. (i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少? (ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱气体的温度变为多少(大气压强P0=75cmHg,图中标注的长度单位均为cm) 3.如图所示,U形管两臂粗细不等,开口向上,右端封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76cmHg。左端开口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求: ①粗管中气体的最终压强;②活塞推动的距离。

4.如图所示,内径粗细均匀的U形管竖直放置在温度为7℃的环境中,左侧管上端开口,并用轻质活塞封闭有长l1=14cm,的理想气体,右侧管上端封闭,管上部有长l2=24cm的理想气体,左右两管内水银面高度差h=6cm,若把该装置移至温度恒为27℃的房间中(依然竖直放置),大气压强恒为p0=76cmHg,不计活塞与管壁间的摩擦,分别求活塞再次平衡时左、右两侧管中气体的长度. 5.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m的密闭活塞,活塞A导热,活塞B绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于平衡状态,Ⅰ、Ⅱ两部分气体的高度均为l0,温度为T0.设外界大气压强为P0保持不变,活塞横截面积为S,且mg=P0S,环境温度保持不变.求:在活塞A上逐渐添加铁砂,当铁砂质量等于2m时,两活塞在某位置重新处于平衡,活塞B下降的高度. 6.如图,在固定的气缸A和B中分别用活塞封闭一定质量的理想气体,活塞面积之比为S A:S B=1:2,两活塞以穿过B的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、B 中气体的体积皆为V0,温度皆为T0=300K.A中气体压强P A=1.5P0,P0是气缸外的大气压强.现对A加热,使其中气体的体积增大V0/4,,温度升到某一温度T.同时保持B中气体的温度不变.求此时A中气体压强(用P 0表示结果)和温度(用热力学温标表达)

高二物理《静电场》单元测试题附答案

高二物理《静电场》单元测试题A卷 1.下列物理量中哪些与检验电荷无关() A.电场强度E B.电势U C.电势能ε D.电场力F 2.如图所示,在直线MN上有一个点电荷,A、B是直线MN上的两点,两点的间距为L, 场强大小分别为E和2E.则() A.该点电荷一定在A点的右侧 B.该点电荷一定在A点的左侧 C.A点场强方向一定沿直线向左 D.A点的电势一定低于B点的电势 3.平行金属板水平放置,板间距为0.6cm,两板接上6×103V电压,板间有一个带电液滴质量为×10-10 g,处于静止状态,则油滴上有元电荷数目是(g取10m/s2)() A.3×106 B.30 C.10 D.3×104 4.如图所示,在沿x轴正方向的匀强电场E中,有一动点A以O为圆心、以r为半径逆时针转动,θ为OA与x轴正方向间的夹角,则O、A 两点问电势差为( ). (A)U OA =Er (B)U OA =Ersinθ (C)U OA =Ercosθ(D) θ rcos E U OA = 5.如图所示,平行线代表电场线,但未标明方向,一个带正电、电量为10-6 C的微粒在电场中仅受电场力作用,当它从A点运动到B点时动能减 少了10-5 J,已知A点的电势为-10 V,则以下判断正确 的是() A.微粒的运动轨迹如图中的虚线1所示;

B.微粒的运动轨迹如图中的虚线2所示; C.B点电势为零; D.B点电势为-20 V 6.如图所示,在某一真空空间,有一水平放置的理想平行板电容器充电后与电源断开,若正极板A以固定直线00/为中心沿竖直方向作微小振 幅的缓慢振动时,恰有一质量为m带负电荷的粒子 (不计重力)以速度v沿垂直于电场方向射入平行板 之间,则带电粒子在电场区域内运动的轨迹是(设负 极板B固定不动,带电粒子始终不与极板相碰) () A.直线 B.正弦曲线 C.抛物线 D.向着电场力方向偏转且加速度作周期性变化的曲线 7.如图所示,一长为L的绝缘杆两端分别带有等量异种电荷,电量的绝对值为Q,处在场强为E的匀强电场中,杆与电场线夹角α=60°,若使杆沿顺时针方向转过60°(以杆上某一点为圆心转动),则下列叙述中正确的是( ). (A)电场力不做功,两电荷电势能不变 (B)电场力做的总功为QEL/2,两电荷的电势能减少 (C)电场力做的总功为-QEL/2,两电荷的电势能增加 (D)电场力做总功的大小跟转轴位置有关 8.如图,在真空中有两个点电荷A和B,电量分别为-Q和 +2Q,它们相距L,如果在两点电荷连线的中点O有一个半

高中物理磁场经典计算题训练 人教版

高中物理磁场经典计算题训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q , 质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. a b c d A C F D (a ) (b )

(完整版)高中物理静电场经典习题(包含答案解析),推荐文档

1.(2012江苏卷).一充电后的平行板电容器保持两板间的正对面积、间距和电荷量不变, 在两板间插入一电介质,其电容C 和两极板间的电势差U 的变化情况是( ) A.C 和U 均增大B.C 增大,U 减小 C.C 减小,U 增大D.C 和U 均减小 B 2(2012 天津卷).两个固定的等量异号点电荷所产生电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中 A 点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子 只受静电力作用,则粒子在电场中( ) A.做直线运动,电势能先变小后变大 B.做直线运动,电势能先变大后变小 C.做曲线运动,电势能先变小后变大 D.做曲线运动,电势能先变大后变小 C 3.(2012安徽卷).如图所示,在平面直角中,有方向平行于坐标平面的匀强电场,其中 坐标原点O 处的电势为 0 V,点A 处的电势为 6 V, 点 B 处的电势为 3 V, 则电场强度的大小为 ( ) A.200V/m B.200 C.100 V/m D. 100 V/m V/m A 4.(2012重庆卷).空中 P、Q 两点处各固定一个点电荷,其 中 P 点处为正点电荷,P、Q 两点附近电场的等势面分布如题20 图所示,a、b、c、d 为电场中的四个点。则( ) A.P、Q 两点处的电荷等量同种 B.a 点和 b 点的电场强度相同 C.c 点的电热低于 d 点的电势 D.负电荷从 a 到c,电势能减少D 5.(2012海南卷)关于静电场,下列说法正确的是( ) y(cm) ●B(0, 3 ) A(6,0) ● 3 3

A.电势等于零的物体一定不带电 B.电场强度为零的点,电势一定为零 C.同一电场线上的各点,电势一定相等 D.负电荷沿电场线方向移动时,电势能一定增加 D 6.(2012 ft东卷).图中虚线为一组间距相等的同心圆,圆心处固 定一带正电的点电荷。一带电粒子以一定初速度射入电场,实线 为粒子仅在电场力作用下的运动轨迹,a、b、c 三点是实线与虚线 的交点。则该粒子( ) A.带负电 B.在c 点受力最大 C.在b 点的电势能大于在 c 点的电势能 D.由a 点到b 点的动能变化大于有 b 点到c 点的动能变化 CD 7.[2014·北京卷] 如图所示,实线表示某静电场的电场线,虚线表示该电场的等势面.下列判断正确的是( ) A.1、2 两点的场强相等 B.1、3 两点的场强相等 C.1、2 两点的电势相等 D.2、3 两点的电势相等 D 本题考查电场线和等势面的相关知识.根据电场线和等势面越密集,电场强度越大,有E1>E2=E3,但E2和E3电场强度方向不同,故A、B 错误.沿着电场线方向,电势逐渐降低,同一等势面电势相等,故φ1>φ2=φ3,C 错误,D 正确. 1 8.如图所示,A、B 是位于竖直平面内、半径R=0.5 m 的4圆弧形的光滑绝缘轨道, 其下端点B 与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度 E=5×103 N/C.今有一质量为m=0.1 kg、带电荷量+q=8×10-5 C 的小滑块(可视为质 点)从A 点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2, 求: (1)小滑块第一次经过圆弧形轨道最低点B 时B 点的压力.(2)小滑块在水平轨道上通过的总路程.

高中物理经典题库_力学计算题49个

四、力学计算题集粹(49个) 1.在光滑的水平面,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求: 图1-70 (1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 图1-71 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 图1-72 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅

高中物理--静电场测试题(含答案)

高中物理--静电场测试题(含答案) 一、选择题(本题共10小题,每小题4分。在每个小题给出的四个选项中,至少有一个选项是正确的,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.下列物理量中哪些与检验电荷无关? ( ) A .电场强度E B .电势U C .电势能ε D .电场力F 2.真空中两个同性的点电荷q 1、q 2 ,它们相距较近,保持静止。今释放q 2 且q 2只在q 1的库 仑力作用下运动,则q 2在运动过程中受到的库仑力( ) A .不断减小 B .不断增加 C .始终保持不变 D .先增大后减小 3.如图所示,在直线MN 上有一个点电荷,A 、B 是直线MN 上的两点,两点的间距为L , 场强大小分别为E 和2E.则( ) A .该点电荷一定在A 点的右侧 B .该点电荷一定在A 点的左侧 C .A 点场强方向一定沿直线向左 D .A 点的电势一定低于B 点的电势 4.在点电荷 Q 形成的电场中有一点A ,当一个-q 的检验电荷从电场的无限远处被移到电场中的A 点时,电场力做的功为W ,则检验电荷在A 点的电势能及电场中A 点的电势分别为( ) A .,A A W W U q ε=-= B .,A A W W U q ε==- C .,A A W W U q ε== D .,A A W U W q ε=-=- 5.平行金属板水平放置,板间距为0.6cm ,两板接上6×103V 电压,板间有一个带电液滴质量为4.8×10-10 g ,处于静止状态,则油滴上有元电荷数目是(g 取10m/s 2)( ) A .3×106 B .30 C .10 D .3×104 6.两个等量异种电荷的连线的垂直平分线上有A 、B 、C 三点,如图所示,下列说法正确的是

高中物理计算题,中难附答案

动量计算题 1.(2012年广州调研)两个质量不同的物体,如果它们的 A .动能相等,则质量大的动量大 B .动能相等,则动量大小也相等 C .动量大小相等,则质量大的动能小 D .动量大小相等,则动能也相等 1.答案:AC 解析:由动能与动量的关系式p=2k mE 可知,动能相等,则质量大的动量大,选项A 正确B 错误;由动能与动量的关系式E k =p 2/2m 可知,动量大小相等,则质量大的动能小,选项C 正确D 错误。 2.(2012年重庆期末)如题21图所示,光滑圆形管道固定在竖直面内.直径略小 于管道内径可视为质点的小球A 、B 质量分别为m A 、m B ,A 球从管道最高处由静止开始沿管道下滑,与静止于管道最低处的B 球相碰,碰后A 、B 球均能刚好达到与管道圆心O 等高处,关于两小球质量 比值B A m m 的说法正确的是: A .B A m m =2+1 B .B A m m =2-1 C .B A m m =1 D . B A m m =2 2.答案:A 解析:A 球从管道最高处由静止开始沿管道下滑,由机械能守恒定律, m A g2R=2 1m A v 2,到最低点速度v=2R g ,A 球与B 球碰撞,动量守恒,m A v= m B v B +m A v A ;根据碰后A 、B 球均能刚好达到与管道圆心O 等高处,由机械能守恒定律,mgR=2 1mv 2,解得v B =v A =R 2g ,联立解得:B A m m =2+1,选项A 正确。 3.(2012年北京房山期末)如图所示,放在光滑水平面上的矩形滑块是由不同材 料的上下两层粘在一起组成的。质量为m 的子弹以速度v 水平射向滑块,若击中上层,则子弹刚好不穿出;如图a 若击中下层,则子弹嵌入其中,如图b,比较上述两种情况,以下说法中不正确... 的是 A .两次滑块对子弹的阻力一样大 B .两次子弹对滑块做功一样多 C .两次滑块受到的冲量一样大

高中物理电场计算题题

16.(12分) 如图所示,空间存在范围足够大的竖直向下的匀强电场,电场强度大小E =l.0×10-4v/m,在绝缘地板上固定有一带正电的小圆环A。初始时,带正电的绝缘小球B静止在圆环A的圆心正上方,B的电荷量为g= 9×10-7C,且B电荷量始终保持不变。始终不带电的绝缘小球c从距离B为x0= 0.9m的正上方自由下落,它与B发生对心碰撞,碰后不粘连但立即与B一起竖直向下运动。它们到达最低点后(未接触绝缘地板及小圆环A)又向上运动,当C、B刚好分离时它们不再上升。已知初始时,B离A圆心的高度r= 0.3m.绝缘小球B、C均可以视为质点,且质量相等,圆环A可看作电量集中在圆心处电荷量也为q =9×l0-7C的点电荷,静电引力常量k=9×109Nm2/C2.(g取10m/s2)。求:(l)试求B球质量m; (2)从碰后到刚好分离过程中A对B的库仑力所做 的功。

15如图所示一质量为m、带电量为q的小球,用长为L的绝缘细线悬挂在水平向右的匀强电场中,静止时悬线向左与竖直方向成θ角,重力加速度为g。(1)求电场强度E。(2)若在某时刻给小球 一个沿切线方向的初速度v。小球恰好能在竖直平面 内做完整的圆周运动求v。为多大? . 16.(14分)如图:在一绝缘水平面上,一竖直绝缘挡板固定在O点,ON段表面粗糙,长度S=0.02m,NM段表面光滑,长度L=0.5m.在水平面的上方有一水平向左的匀强电场,场强为2×lo5 N/C.有一小滑块质量为5×10-3 kg,带正电,电量为1×l0一7C,小滑块与ON段表面的动摩擦因数为0.4,将小滑块从M点由静止释放,小滑块在运动过程中没有电量损失,与挡板相碰时不计机械能损失。g取l0m/S2.求: (1)小滑块从释放用多长时间第一次与挡板相碰? (2)小滑块最后停在距离挡板多远的位置?

高中物理磁场经典计算题专题

高中物理磁场经典计算 题专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、弹性挡板围成边长为L= 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m=2×10-4kg 、带电量为q=4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2、如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF, DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q,质量为m,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大最短时间为多少 (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的 中心O ,且a=) 10133( L.要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3、在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成 磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度 a b c d A F D (a ) (b )

高二物理电场测试题(附答案)

高二物理电场测试题 一不定向选择题(共8小题,每小题3分,共24分,不全2分) 1.有一个点电荷,在以该点电荷球心,半径为R 的球面上各点相同的物理量是:( ) A.电场强度 B.电势 C.同一电荷所受的电场力 D.同一电荷所具有的电势能 2.有一电场线如图1所示,电场中A 、B 两点电场强度的大小和电势分别为E A 、E B 和φA 、φB 表示,则:( ) A. E A >E B ,, φA >φB B. E A >E B ,, φA <φB C. E A φB D. E A m B , q A β B. m A q B ,α=β 6.两个电容器的电容分别是C 1、 C 2 ,它们的电荷量分别是Q 1 、Q 2,两极间的电压分别为U 1 、U 2,下列判断正确的是:( ) A.若C 1=C 2,则U 1 >U 2时, Q 1 >Q 2 B.若Q 1 =Q 2,则U 1 >U 2时, C 1>C 2 C.若U 1 =U 2,则Q 1 >Q 2时, C 1>C 2 D.上述判断都不对 7.如图3所示,在处于O 点的点电荷+Q 形成的电场中,试 探电荷q 由A 点移到B 点,电场力做功为W 1;以OA 为半径画弧交于OB 于C ,q 由A 点移到C 点电场力做功为 W 2; q 由C 点移到B 点电场力做功为 W 3. 则三者的做功关系以及q 由A 点移到C 点电场力做功为 W 2的大小:( ) A. W 1 =W 2= W 3, W 2=0 B. W 1 >W 2= W 3, W 2>0 C. W 1 =W 3>W 2, W 2=0 D. W 1 =W 2< W 3, W 2=0 8.设法让电子、一价氢离子、一价氦离子和二价氦离子及三价铝离子的混合物经过加速电压 大小为U 的加速电场由静止开始加速,然后在同一偏转电场中偏转,关于它们能否分成几股的说法中正确的是:( ) 二填空题(共2小题,每空4分,共16分) 9.平行板电容器两极间的电势差为100V ,当极板上的电荷量增加1×10-9C 时,极板间某电荷受到的电场力增大为原来的1.5倍,这个电容器的电容是 . 10.先后让一束电子和一束氢核通过同一偏转电场,在下列两种情况下,试分别求出电子的偏转角φe 和氢核的偏转角φH 的正切之比,已知电子和氢核的质量分别为m e 和m H . (1)电子和氢核的初速度相同,则tan φe :tan φH = (2)电子和氢核的初动能相同,则tan φe :tan φH = (3)电子和氢核的初动量相同,则tan φe :tan φH = 三计算题(共7小题, 13,14题10分其它每小题8分,计60分,务必写出必要的理论根据、方程,运算过程及单位.) 11.如图4所示,在真空中用等长的绝缘丝线分别悬挂两个点电荷A 和B ,其电荷量分别为 +q 和-q .在水平方向的匀强电场作用下,两悬线保持竖直,此时A 、B 间的距离为l . 求该匀强电场场强的大小和方向, 12.某两价离子在100V 的电压下从静止开始加速后,测出它的动量为1.2×10-21kg ·m/s,求(1) 这种离子的动能是多少eV?(2)这种离子的质量多大 ? 13.如图5所示,一个质子以初速度v 0=5 ×106m/s 射入一个由两块带电的 平行金属板组成的区域.两板距离为20cm,金属板之间是匀强电场,电场强度 为3×105V/m. 质子质量为m =1.67×10-27kg,电荷量为q =1.60×10-19C.试求(1)质子 由板上小孔射出时的速度大小(2) 质子在电场中运动的时间. 图1 - 图5 - - - + B 图4 O C 图3

高中物理选修计算题

(2009年高考宁夏理综卷) 34. [物理——选修3-3](15分) (2)(10分)图中系统由左右连个侧壁绝热、底部、截面均为S的容器组成。左容器足够高,上端敞 开,右容器上端由导热材料封闭。两个容器的下端由可忽略容积的细管连通。 容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。大气的压强p0,温度为T0=273K,连个活塞因自身重量对下方气体产生的附加压强均为0.1 p0。系统平衡时,各气体柱的高度如图所示。现将系统的底部浸入恒温热水槽中,再次平衡时A上升了一定的高度。用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。氮气和氢气均可视为理想气体。求 (i)第二次平衡时氮气的体积; (ii)水的温度。 6.(2012全国新课标).[物理——选修3-3](15分) (1)(6分)关于热力学定律,下列说法正确的是_________ (填入正确选项前的字母,选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)。 A.为了增加物体的内能,必须对物体做功或向它传递热量 B.对某物体做功,必定会使该物体的内能增加 C.可以从单一热源吸收热量,使之完全变为功 D.不可能使热量从低温物体传向高温物体 E.功转变为热的实际宏观过程是不可逆过程 (2)(9分)如图,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0°C的水槽中,B的容积是A的3倍。阀门S将A和B两部分隔开。A内为真空,B和C内都充有气体。U形管内左边水银柱比右边的低60mm。打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等。假设U形管和细管中的气体体积远小于玻璃泡的容积。 (i)求玻璃泡C中气体的压强(以mmHg为单位) (ii)将右侧水槽的水从0°C加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温。15、(2013年海南物理)如图,一带有活塞的气缸通过底部的水平细管与一个上端开口的竖直管相连,气缸与竖直管的横截面面积之比为3:1,初始时,该装置的底部盛有水银;活塞与水银面之间有一定量的气体,气柱高度为l(以cm为单位);竖直管内的水银面比气缸内的水银面高出3l/8。现使活塞缓慢向上移动11l/32,这时气缸和竖直管内的水银面位于同一水平面上,求初始时气缸内气体的压强(以cmHg 为单位) 16、(2013年新课标Ⅰ卷) 如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V0气缸中各有一个绝热活塞(质量不同,厚度可忽略)。开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为P o和P o/3;左活塞在气缸正中间,其上方为真空; 右活塞上方气体体积为V0/4。现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K,经过一段时间,重新达到平衡。已知外界温度为T0,不计活塞与气缸壁间的摩擦。求: (i) 恒温热源的温度T; (ii) 重新达到平衡后左气缸中活塞上方气体的体积V x。 17、(2013年新课标Ⅱ卷)如图,一上端开口、下端封闭的细长玻璃管竖直放置。玻璃管的下部封有长l1=25.0cm的空气柱,中间有一段长为l2=25.0cm的水银柱,上部空气柱的长度l3=40.0cm。已知大气压强为P0=75.0cmHg。现将一活塞(图中未画出)从玻璃管开口处缓缓往下推,使管下部空气柱长度变为l1’=20.0cm。假设活塞下推过程中没有漏气,求活塞下推的距离。 3l/8 l

高二物理:电场综合练习题(含参考答案)

高二物理3-1电场: 一:电场力的性质 一、对应题型题组 ?题组1 电场强度的概念及计算 1.下列关于电场强度的两个表达式E =F /q 和E =kQ /r 2的叙述,正确的是( ) A .E =F /q 是电场强度的定义式,F 是放入电场中的电荷所受的力,q 是产生电场的电荷的电荷量 B .E =F /q 是电场强度的定义式,F 是放入电场中电荷所受的电场力,q 是放入电场中电荷的电荷量,它适用于 任何电场 C .E =kQ /r 2是点电荷场强的计算式,Q 是产生电场的电荷的电荷量,它不适用于匀强电场 D .从点电荷场强计算式分析库仑定律的表达式F =k q 1q 2r 2,式kq 2 r 2是点电荷q 2产生的电场在点电荷q 1处的场强大 小,而kq 1 r 2是点电荷q 1产生的电场在q 2处场强的大小 2.如图1所示,真空中O 点有一点电荷,在它产生的电场中有a 、b 两点,a 点的场强大小为E a ,方向与ab 连线成 60°角,b 点的场强大小为E b ,方向与ab 连线成30°角.关于a 、b 两点场强大小E a 、E b 的关系,以下结论正确的是( ) 图1 A .E a = 33E b B .E a =1 3 E b C .E a =3E b D .E a =3E b 3.如图2甲所示,在x 轴上有一个点电荷Q (图中未画出),O 、A 、B 为轴上三点,放在A 、B 两点的试探电荷受到的 电场力跟试探电荷所带电荷量的关系如图乙所示,则( ) 图2 A .A 点的电场强度大小为2×103 N/C B .B 点的电场强度大小为2×103 N/ C C .点电荷Q 在A 、B 之间 D .点电荷Q 在A 、O 之间 ?题组2 电场强度的矢量合成问题 4.用电场线能很直观、很方便地比较电场中各点场强的强弱.如图3甲是等量异种点电荷形成电场的电场线,图乙是 场中的一些点:O 是电荷连线的中点,E 、F 是连线中垂线上相对O 对称的两点,B 、C 和A 、D 也相对O 对称.则( )

相关文档
最新文档