频率与时间测量

频率与时间测量

频率与时间测量

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

遥感原理与应用

遥感原理与应用(高起专)2014年春季考试单选题 1. 可见光波谱波段范围位于_____。(5分) (A) 100~400nm (B) 400~700nm (C) 700~1000nm (D) 1000~1200nm 参考答案:B 2. 遥感图像统计分析通常包括计算图像的直方图、均值、方差、中值、陡度、峰态、相关系数矩阵和协方差矩阵等,其中用来描述整幅图像的灰度值分布的离散程度。(5分) (A) 均值 (B) 方差 (C) 中值 (D) 峰值 参考答案:B 3. 是基于可见光红光波段(R)与近红外波段(NIR)对绿色植物的响应的反差,用两者简单的比值来表达其反射率的差异的植被指数。(5分) (A) 比值植被指数(RVI) (B) 归一化差值植被指数 (C) 绿度植被指数 (D) 垂直植被指数 参考答案:A 4. 机载LIDAR系统,也称机载激光扫描测图系统,是一种的现代光学遥感系统,能直接获得高精度三维地表地形数据,是对传统摄影测量技术在高程数据获取及自动化快速处理方面的主要补充。(5分) (A) 被动式 (B) 主动式 (C) 分幅式 参考答案:B 填空题 5. 介质的______ 、散射系数、______ 、光衰减系数等参数为固有光学特性。(10分) (1). 参考答案: 吸收系数 (2). 参考答案: 散射相函数 6. 目前,消除条带噪音常用的方法有:______ 、直方图匹配法、______ 。(10分)

(1). 参考答案: 矩匹配法 (2). 参考答案: 均匀区法 7. 航片的内方位元素有______ ,像主点坐标y0和______ 。(10分) (1). 参考答案: 像主点坐标x0 (2). 参考答案: 焦距f 问答题 8. 写出监督分类中训练数据选择的步骤。(10分) 参考答案:(1)收集信息,包括分类地区的地图和航片等。 (2)进行野外调查获取研究区域的第一手信息。 (3)设计野外调查路线和内容。 (4)分类数字影像预分析。 (5)找出潜在的训练样区。 (6)定位和绘制训练样区。 (7)检查每个训练样区的各波段频率直方图。 (8)调整和去除双峰频率分布。 (9)合并训练数据信息并用于分类程序,进行计算机监督分类过程。 解题思路: 9. 不同的地物具有不同的电磁波反射和辐射特性,因而表现在遥感图像上具有不同的灰度和色调。正是这种特性,使我们可以利用遥感图像进行地物识别、提取所需要的信息,所以掌握地物在不同状态不同波段下的反射、辐射或者散射特征是非常重要的。 自行举例说明4种以上不同地物的散射特征。(10分) 参考答案: 解题思路:

模块四 时间与频率的测量

模块四时间与频率的测量 §4-1数字式频率计 学习目标 1、了解数字式频率计的基本组成和主要技术指标 2、熟悉数字式频率计的测量原理 3、掌握数字式频率计的使用 数字式频率计是一种用电子学方法测出一定时间间隔内输入的脉冲数目,并以数字形式显示测量结果的测量仪表。数字式频率计的核心是电子计数器,其作用是在一定的时间间隔内进行累加计数,以完成各种测量。实际上,它还可以进行计数测量周期、平均周期、频率比、时间间隔、累订数、计时等其他操作。 一、数字式频率计的组成 数字式频率计一般由频率/电压(f/U)转换器和数字式电压基本表配合组成。f/U转换器的作用是将被测频率信号转换成直流电压,然后送入数字式电压基本表进行测量,其工作程序如图4-1-1所示。f/U转换器主要由6部分组成,各部分的名称及功能见表4-1。 图4-1-1 数字式频率计的工作方框图 表4-1 f/U转换器的组成及各组成部分的功能

从f/U转换器输出的、与被测频率成正比的直流电压直接送到数字式直流 电压表即可测量出被测信号的频率。 二、数字式频率计的工作原理 被测信号f x经放大整形后成为计数脉冲CP(如图4-1-2a和b所示),送到 控制门。由石英晶体振荡器产生的振荡信号经分频器分频后输出时间基准信号 T ,并打开控制门,如果控制门打开的时间正好是1s,则通过控制门送入计数器a 的CP脉冲个数,就是被测信号的频率。这就是数字式频率表的基本工作原理。 显然,频率表显示的是在T a这段时间内被测信号的平均值。 在数字式频率计中,控制门每打开一次,就完成一个测量过程,过程结束自 动回到零位,接着重复下一个测量过程。换句话说,控制门每开闭一次,显示器 就显示一次被测信号的频率,而且控制门开闭的时间间隔可以调节。于是,数字 式频率表就会以不同的速度重复闪动,显示出被测信号的频率。

摄影测量与遥感-自学手册

摄影测量与遥感 第一章摄影测量与遥感概述 第二章摄影测量基础 第三章遥感基础 第四章摄影测量与遥感处理系统 第五章野外像片调绘与像片控制测量 第六章基于摄影测量与遥感的4D产品生产

通过本课程的学习,学生能够对摄影测量与遥感有总体的认识。了解摄影测量和遥感的历史和趋势,掌握相关概念。掌握摄影测量与遥感的原理,利用遥感和摄影测量的技术手段获得4D产品,掌握摄影测量与遥感的野外和室内处理流程和要点。具体如下: 第一章摄影测量与遥感概述 摄影测量的任务、分类和发展;遥感及其发展;摄影测量与遥感的结合。 第二章摄影测量基础 单张航摄像片解析;像点坐标的量测;立体测图的原理与方法;摄影测量解析计算基础;数字摄影测量基础 第三章遥感基础 遥感的基础知识;遥感图像特征;常用卫星遥感简介;遥感图像的解译 第四章摄影测量与遥感处理系统 数字摄影测量系统;遥感数字图像处理系统;机载LIDAR和车载移动测图系统 第五章野外像片调绘与像片控制测量 野外像片调绘;像片控制测量 第六章基于摄影测量与遥感的4D产品生产 4D产品生产的数据流;解析空中三角测量;数字高程模型;数字正射影像图;数字线划地图;数字栅格地图

本章重点: 1、理解摄影测量的概念、特点和任务 2、掌握摄影测量的类别和发展历程 3、掌握遥感概念、类别和发展历程 4、掌握摄影测量技术与遥感技术的相辅相成的关系和相互促进技术特点 参考书: 1、梅安新,彭望渌,秦其明.2005. 遥感导论[M].北京:高等教育出版社. 2、张剑清,潘励,王树根. 2008.摄影测量学(第二版)[M].武汉:武汉大学 出版社. 3、国家测绘局职业技能鉴定指导中心.2010.测绘综合能力[M]. 北京:测绘出版社. §1.1 摄影测量概述 一、学习提要 1、摄影测量的任务 2、摄影测量的类型 3、摄影测量的发展历程 二、思考题 1、什么是摄影测量? P102 2、摄影测量的任务是什么? P102 3、摄影测量有哪几种分类方式,分别可分为哪些类别? P102 4、摄影测量经历了哪三个发展历程?其特点是什么? P103 5、数字摄影测量与传统摄影测量的根本区别是什么? P103 (1)产品是数字化的;(2)以计算机视觉替代人眼的立体观测。

精确的频率和时间测量-时基的选择

少年易学老难成,一寸光阴不可轻 - 百度文库 1 精确的频率和时间测量 - 时基的选择 上篇文章谈到了频率和时间测量的分辨率和精度。相信很多工程师会感兴趣测量一个结果后,其误差或不确定度到底是多少。测量的不确定度是由3个因素构成的,即 基本不确定度 = k* (随机不确定度 ± 系统不确定度 ± 时基不确定度) 事实上,要获得准确的随机不确定度和系统不确定度是一件非常恐怖的事情。它是与众多参数相关的非常复杂的函数。如果诸位有兴趣了解这个,可以到网上查阅安捷伦53200 系列频率计数器的详细资料,出版号是 5990-6283CHCN 。 好在安捷伦的工程师将这个复杂的运算公式做成了一个简单的表格。您只需输入测量的相关设置和结果,这个表格可以自动帮助你得出不确定度。如果有兴趣,可以与安捷伦的电话服务中心联系 400-810-0189 关于随机不确定度和系统不确定度,这与闸门时间和测量次数密切相关。简单地讲,延长闸门时间和增加测量次数,都可以降低者两个不确定度。但时基的不确定度是由计数器本身的老化和工作环境,以及其本身的相位噪声等参数决定的。频率计数器的测量精度始于时基,因为它建立了测量输入信号的参考。更好的时基有可能得到更好的测量。例如,如果时基的月老化率是0.1ppm ,仪器在校准后一个月内使用,它对10MHz 信号测量带来的不确定度则是 1Hz 。 但如果老化率是0.01ppm, 其带来的不确定度只有0.1Hz. 环境温度对石英晶体的振动频率有很大影响,可根据热行为把时基技术分为三类: 1. 标准时基。标准或“室温”时基,不使用任何类型的温度补偿或控制。其最大优点是便宜,但它也有最大的频率误差。下图中的曲线示出典型晶体的热行为。随着环境温度的改变,频率输出能变化5ppm 或更高。对于1MHz 信号为±5Hz ,因此是测量中必须考虑的重要因素。在通用侧测试仪器,如示波器、函数信号发生器、频谱仪中,采用的是这种时基。在过去低端的频率计数器,其标准配置的时基也这这种得标准时基 2. 温度补偿时基。有时,我们也称之为高稳时基。一种解决晶体热变化的方法是让振荡器电路中的其它电子元件补偿其热响应。这种方法可稳定其热行为,把时基误差降低到约0.1ppm (对1MHz 信号为±10.1Hz )典型的事安捷伦53200A 系列频率计数器标准配置的时基就是这种,其老化率可达到0.1ppm 。 有时,这种时基也被用于输出频率精度更高的信号源,如安捷伦的33520A 系列函数和任意波性发生器,这种时基就是一个选件 3. 恒温槽控制。稳定振荡器输出的最有效方法是让晶体免受温度变化。计数器设计师把晶体放入恒温槽,保持其温度在热响应曲线的特定点。从而能得到好得多的时基稳定度,典型误差只有0.0025ppm (对于1MHz 信号为±0.0025Hz )。

时间间隔测量技术综述

高精度时间间隔测量方法综述 孙 杰 潘继飞 (解放军电子工程学院,安徽合肥,230037) 摘要:时间间隔测量技术在众多领域已经获得了应用,如何提高其测量精度是一个迫切需要解决的问题。在分析电子计数法测量原理与误差的基础上,重点介绍了国内外高精度时间间隔测量方法,这些方法都是对电子计数法的原理误差进行测量,并且取得了非常好的效果。文章的最后给出了高精度时间间隔测量方法的发展方向及应用前景。 关键词:时间间隔;原理误差;内插;时间数字转换;时间幅度转换 Methods of High Precision Time-Interval Measurement SUN Jie , PAN Ji-fei (Electronic Engineering Institute of PLA, HeFei 230037, China ) Abstract: Technology of time-interval measurement has been applied in many fields. How to improve its precision is an emergent question. On the bases of analyzing electronic counter ’s principle and error, this paper puts emphasis upon introducing high precision time-interval measurements all over the world. All these methods aim at electronic counter ’s principle error, and obtain special effect. Lastly, the progress direction and application foreground of high precision time-interval measurement methods are predicted. Key Words: time interval; principle error; interpolating; time-to-digital conversion; time-to-amplitude conversion 0引言 时间有两种含义,一种是指时间坐标系中的某一刻;另一种是指时间间隔,即在时间坐标系中两个时刻之间的持续时间,因此,时间间隔测量属于时间测量的范畴。 时间间隔测量技术在通信、雷达、卫星及导航定位等领域都有着非常重要的作用,因此,如何高精度测量出时间间隔是测量领域一直关注的问题。本文详细分析了目前国内外所采用的高精度时间间隔测量方法,指出其发展趋势,为研究新的测量方法指明了方向。 1 电子计数法 1.1 测量原理与误差分析 在测量精度要求不高的前提下,电子计数法是一种非常好的时间间隔测量方法,已经在许多领域获得了实际应用,其测量原理如图1 量化时钟频率为 0f ,对应的周期001f T =,在待测脉冲上升沿计数器输出计数脉冲个数N M ,,1T ,2T 为待测脉 冲上升沿与下一个量化时钟脉冲上升沿之间的时间间隔,则待测脉冲时间间隔x T 为: ()210T T T M N T x -+?-= (1) 然而,电子计数法得到的是计数脉冲个数N M ,,因此其测量的脉冲时间间隔为: ()0' T M N T x ?-= (2) 比较表达式(1)(2)可得电子计数法的测量误差为21T T -=?,其最大值为一个量化时钟周期0T ,产生的原因是待 测脉冲上升沿与量化时钟上升沿的不一致,该误差称为电子计数法的原理误差。 除了原理误差之外,电子计数法还存在时标误差,分析表达式(2)得到: ()()00'..T M N T M N T x ?-+-?=? (3) 比较表达式(3)(2): ()()00 ''T T M N M N T T x x ?+--?=? (4) 根据电子计数法原理,()1±=-? M N ,0'T T M N x =-,因此: 00'0'T T T T T x x ??+±=? (5) 00'T T T x ??即为时标误差,其产生的原因是量化时钟的稳定度00T T ?,可以看出待测脉冲间隔x T 越大,量化时钟的稳 定度导致的时标误差越大。 作者简介:孙杰: (1975—),男(汉族),安徽合肥人,解放军电子工程学院讲师 潘继飞:(1978—),男(汉族),安徽凤阳人,解放军电子工程学院信号与信息处理专业博士生

摄影测量与遥感实习心得

摄影测量与遥感实习心得摄影测量与遥感实习是摄影测量学和遥感技术相应用的综合实习课。下面搜集了摄影测量与遥感,欢迎阅读! 摄影测量与遥感实习心得【1】一、实习目的 摄影测量与遥感实习是摄影测量学和遥感技术相应用的综合实习课。本课程的任务是通过实习掌握摄影测量的原理、影像处理方法、成图方法,掌握遥感的信息获取、图像处理、分类判读及制图的方法和作业程序。从而更系统地掌握摄影测量与遥感技术。通过实习使我们更熟练地掌握摄影测量及遥感的原理,信息获取的途径,数字处理系统和应用处理方法。进一步巩固和深化理论知识,理论与实践相结合。培养我们的应用能力和创新能力、工作认真、实事求是、吃苦耐劳、团结协作的精神,为以后从事生产实践工作打下坚实的理论与实践相结合的综合素质基础。 二、实习内容 1)遥感影像图制作; 2)相片控制测量; 3)航空摄影测量相对立体观察与两侧; 4)航片调绘、遥感图像属性调查; 5)相片及卫片的判读及调绘 6)调绘片的内页整饰 7)撰写,提交成果。 三、实习设备与资料 1)摄影测量与遥感书本上的理论知识。

2)通过电脑查找有关这门学科的实践应用及其它相关知识等。 3)电脑上相关的摄影测量的图片信息资料及判读方法。 4)现有的实习报告模板及大学城空间里的相关教学资料。 四、实习时间与地点 时间:20XX年6月19日20XX年6月26日。 地点:学校图书馆、教室、寝室及搜集摄影测量与遥感这门学科的资料等相关地方。 五、实习过程 5.1摄影测量与遥感学的发展情景 摄影测量与遥感是从摄影影像和其他非接触传感器系统获取所研究物体,主要是地球及其环境的可靠信息,并对其进行记录、量测、分析与应用表达的科学和技术。随着 摄影测量发展到数字摄影测量阶段及多传感器、多分辨率、多光谱、多时段遥感影像与空间科学、电子科学、地球科学、计算机科学以及其他边缘学科的交叉渗透、相互融合,摄影测量与遥感已逐渐发展成为一门新型的地球空间信息科学。由于它的科学性、技术性、应用性、服务性以及所涉及的广泛科学技术领域,其应用已深入到经济建设、社会发展、国家安全和人民生活等各个方面。 5.2单张像片测量原理 单张像片测图的基本原理是中心投影的透视变换,而摄影过程的几何反转则是立体测图的基本原理。广义来说,前一情况的基本原理也是摄影过程的几何反转。20世纪30年代以后,摄影过程的几何反转都是应用各种结构复杂的光学机械的精密仪器来实现的。50年代,开始应用数学解析的方式来实现。图1就是用光学投影方法实现摄影几

对摄影测量基本原理的认识

对摄影测量基本原理的认识 宋剑虹 (贵州大学矿业学院测绘工程 09级2班) 内容摘要 摄影测量【photogrammetry】有二百多年的历史了。通过对摄影测量的学习和认识。本文从摄影测量最基本的原理出发,简单回顾了它的发展历程,本文立足于对武汉大学第二版《摄影测量》教程的学习以及对摄影测量基础知识的了解和认识后,阐述了摄影测量的一些基本知识。着重阐述了当代摄影测量技术最新理论的发展。尤其是对摄影测量的分类,分别阐述大地摄影测量、航空摄影测量、航天摄影测量的一些基本原理后相关技术要点。对大地摄影测量、航空摄影测量的内外业的有关步骤和相应技术作了一定的论述。最后,总结出自己的在学习过程中的对摄影测量的认识,作为测绘专业学生,我更看到新的希望。 关键词:摄影测量测量技术基本原理航天技术

目录 一、引言 (3) 二、摄影测量概述 (3) (一)关于摄影测量 (3) 1.摄影测量学的定义和任务 (3) 2.摄影测量的特点 (3) (二)摄影测量的发展阶段 (4) 三、摄影测量学的分类 (4) (一)地面摄影测量 (4) 1.地面摄影测量的基本原理 (4) 2.地面立体摄影测量的摄影方式 (4) 3.地面摄影测量分为外业工作和内业工作 (5) (二)航空摄影测量 (5) 1.航空摄影测量的基本原理 (5) 2.航空摄影测量的测图方法 (6) 3.航空摄影测量的作业分外业和内业 (7) (三)航天摄影测量 (7) 1.航天摄影测量的基本原理 (8) 2.航天摄影测量的特点 (8) 3.航天摄影测量的应用前景 (8) 四、结语 (8)

一、引言 摄影测量学有二百多年的历史了。最初叫图形量学(据 Iconometry 而来,或译作量影术)。1837年,发明摄影技术后,才叫摄影测量学。数学家勃兰特早在18世纪就论述了摄影测量学的基础——透视几何理论。1839年,法国报到了摄影像片的产生后,摄影测量学开始了它的发展历程。19世纪中叶,法国陆军上校劳塞达利用所谓“明箱”装置,测制了万森城堡图。劳塞达被公认为“摄影测量之父”。航空技术发达以后,摄影测量学被称为航空摄影测量学。1975年,卫星上天后,航空测量发展到了航天摄影测量。 通过上世纪八九十年代对数字摄影测量的研究、开发与推广,进入21世纪,我国数字摄影测量以世人难以想象的速度发展,数字摄影测量工作站在中国的摄影测量生产中获得了普遍的应用与推广,摄影测量的教学也由过去只有少数院校才能进行的“贵族”式的教学得到了极大的普及。目前,全国至少有40多所大专院校的测绘工程专业开设摄影测量课程,这极大地拓宽了摄影测量所需人才的培养渠道。 二、摄影测量概述 (一)关于摄影测量 1.摄影测量学的定义和任务 摄影测量【photogrammetry】指的是通过影像研究信息的获取、处理、提取和成果表达的一门信息科学。传统摄影测量学定义:是利用光学摄影机获取的像片,经过处理以获取被摄物体的形状、大小、位置、特性及其相互关系的一门学科。摄影测量学是测绘学的分支学科,它的主要任务是用于测绘各种比例尺的地形图、建立数字地面模型,为各种地理信息系统和土地信息系统提供基础数据。摄影测量学要解决的两大问题是几何定位和影像解译。几何定位就是确定被摄物体的大小、形状和空间位置。几何定位的基本原理源于测量学的前方交会方法,它是根据两个已知的摄影站点和两条已知的摄影方向线,交会出构成这两条摄影光线的待定地面点的三维坐标。影像解译就是确定影像对应地物的性质。 2.摄影测量的特点 在影像上进行量测和解译,主要工作在室内进行,无需接触物体本身,因而很少受气候、地理等条件的限制;所摄影像是客观物体或目标的真实反映,信息丰富、形象直观,人们可以从中获得所研究物体的大量几何信息和物理信息;可以拍摄动态物体的瞬间影像,完成常规方法难以实现的测量工作;适用于大范围地形测绘,成图快、效率高;产品形式多样,可以生产纸质地形图、数字线划图、数字高程模型、数字正摄影像等。

航天摄影测量

航天摄影测量的原理分析 航天摄影测量是指以卫星、飞船和飞机等航天器为运载工具,利用各种传感器在轨道空间获取地球表面上的地物、地貌影像等信息数据,通过系统软件分析、处理形成各种用途专题地图的测绘方法。 航天摄影测量是伴随着空间技术、摄影技术、图像数字传输与处理、全球定位和计算机技术的发展而产生的测量新技术,从其原理与应用角度看其应属于摄影测量学科的一个分支,是航空摄影测量技术的进一步拓展。 1、航天摄影测量的基本原理 航天摄影测量是航空摄影测量技术在空间摄影条件下的进一步应用,由于其成像原理与航空摄影有着本质的区别,因此,在技术上同样有着与其相区别的处理方法。但就其原理讲与航空摄影测量没有本质的区别,同样是利用立体影象进行立体模型的恢复与建立,从而测绘出一定比例尺的地形图。目前基于技术的发展和相关学科的技术现状,模型的建立是基于有理多项式 () RPC Rational Polynomial Coefficient 进行的。具体如下所述:有理多项式影像模型用两组不同的多项式函数分别计算从地面坐标( 经度, 纬度, 高程) 到影像的行列坐标,具体的数学表达式如下: 1 , , / 1 , , 2 , ()()()() , / 2 , , Row P Xn Yn Zn Q Xn Yn Zn Col P Xn Yn Zn Q Xn Yn Zn == 其中:Row 、Col 是影像坐标,, , Xn Yn Zn 是地面坐标, 1, 2,...,20n = ,因此要完成以上三次多项式计算需要420?个参数,Spacing Jmaging 公司提供的IKONOS 立体像 对的RPC 参数,如下所示: LINE OFF 影像坐标的行偏移 SAMP OFF 影像坐标的列偏移 LAT OFF 纬度偏移 LONG OFF 经度偏移 HEIGHT OFF 高程偏移 LINE SCALE 影像坐标的行缩放比例 SAMP SCALE 影像坐标的列缩放比例 LAT SCALE 纬度缩放比例 LONG SCALE 经度缩放比例 HEIGHT SCALE 高程缩放比例 1 20LINE NUM COEFF to 有关行变换的第一组参数( 1- 20) 1 20LINE DEN COEFF to 有关行变换的第二组参数( 1- 20) 1 20SAMP NUM COEFF to 有关列变换的第一组参数( 1- 20) 1 20SAMP DEN COEFF to 有关行变换的第二组参数( 1- 20) 假设物方的点84WGS 和83NAD 坐标系的经纬度及高程() , , Latitude Longitude Height ,其中(), Latitude Longitude 以度为单位,Height 以米为单位。 首先利用下式进行规格化, 得到规格化坐标(,,)P L H :

时间频率测量技术的发展与应用

时间频率测量技术的发展与应用 陈洪卿 (中国科学院国家授时中心) 1时间频率精密测量的目的和意义 信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关 重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程 技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,几乎无所不及。 中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导、定位、天文观察、大地测量、地质勘探、电网调配、电子对抗、交通管理、精密测量、科学研究等领域,设备需求量很大;标准频率与时间信号可以通过电磁波发射、传播、接收,直接为各种应用服务。 时间是国际单位制中的最基本的物理量之一,也是目前能够实现的测量不确定度最小的物理量。时间测量的精密度可小于10—18,准确度可达10一15。这使时间频率在计量、测量领域中起着十分突出的领先和独特作用[3]。因此,其它的物理量,如果能够通过一定的物理关系和物理常数转化为时间 频率量来进行测量,用时间测量来表征,那么,该物理量的测量 精度将会大大提高,并使计量单位趋向于统一。典型的例子,莫过于长度单位一米的定义。100 多年前,为适应世界贸易和科学技术发展需求,为统一国际长度度量单位和标准,成立国际米 制委员会,并确定和保持米尺原器,成为现代国际公制计量系统的基础。长度单位一米的测量 精度好不容易才达到10一8[4]。而今,由光速不变原理和L=CT确定长度,长度单位l米=真 空中光在1/299 792458秒时间内传播的距离,这样就可以用时间测量来表征长度测量,其精 度就提高到lO一9以上。作为原始基准的独立定义的长度单位,蜕变成由时间一光速联合定义的导出单位,长度单位就统一于时间单位了。此外,通过交流约瑟夫森量子效应,从加在约瑟 夫森结上的电压V与所产生的交流电频率之间的关系f=(2e/h)/v和国际协定常数值2e/h=483 597.9GHz/V,由测量频率求得电压;也可以求得电流、电阻以及温度等等[3]。

3频率测量及短期频率稳定度表征解读

频率测量及短期频率稳定度表征 在时间频率领域,频率测量及短期频率稳定度的表征与测量是时间频率计量的基本内容也是时间频率发展的基础,是非常重要的,其理论与方法也相对完善。中国计量科学研究院于1981年建立了标准频率检定装置,1987年建立了短期频率稳定度检定装置,为全国频率量值的准确统一做出了巨大贡献。本文简要介绍频率测量的基本原理与短期频率稳定度表征的基本理论与测量方法。 一.频率测量 按照国家时间频率计量检定系统表,频率量值的传递,主要是通过各种频率标准来进行,因此对频率标准的测量显得尤其重要。本文涉及的测量仅指对频标的测量,即对输出波形为正弦波,输出频率单一的频率源的测量。 各种频率测量方法最基本的原理是将被测信号与已知的标准信号即参考源进行比较,得到被测信号的频率。对参考源的基本要求是,频率稳定度要比被测源高3倍,其他技术指标高一个数量级。 1.普通计数法 被测信号 f x 被测信号经放大整形后变为脉冲信号,晶振作为参考信号经分频后产生各种闸门信号,控制电子门,在闸门时间内,计数脉冲个数,设闸门时间为τ,计数为N ,则被测频率为: τ N f x = (1) 若被测频率的标称频率为f 0,则相对频率偏差为: τ ττ0000)(f f N f f f y x -=-= (2) 为求频率测量误差,对(2)式求微分,最终结果为 τ ττ τx f d dy 1)(±= (3) 第一项为计数器的时基误差,等于晶振的准确度,第二项为±1误差即量化误差。还有一项为触发误差,在频率测量中触发误差误差的影响很小,可以忽略。第一项误差,可通过提高参考源的准确度或稳定度,如采用高稳晶振或原子频标来减小,但第二项误差是无法克服的,1/f x τ为计数法的测量分辨力。为提高测量分辨力,产生了以下较常用的测量方法。 2.多周期同步法 一般计数法测频时,存在±1误差,取样时间一定时,±1误差与频率成反比,

时间频率测量技术的发展与应用

21世纪中国电子仪器发展战略研讨会2004年9月时间频率测量技术的发展与应用 陈洪卿 (中国科学院国家授时中心) 1时间频率精密测量的目的和意义 信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关 重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程 技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,几乎无所不及。 中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导、定位、天文观察、大地测量、地质勘探、电网调配、电子对抗、交通管理、精密测量、科学研究等领域,设备需求量很大;标准频率与时间信号可以通过电磁波发射、传播、接收,直接为各种应用服务。 时间是国际单位制中的最基本的物理量之一,也是目前能够实现的测量不确定度最小的物理量。时间测量的精密度可小于10—18,准确度可达10一15。这使时间频率在计量、测量领域中起着十分突出的领先和独特作用[3]。因此,其它的物理量,如果能够通过一定的物理关系和物理常数转化为时间频率量来进行测量,用时间测量来表征,那么,该物理量的测量 精度将会大大提高,并使计量单位趋向于统一。典型的例子,莫过于长度单位一米的定义。100 多年前,为适应世界贸易和科学技术发展需求,为统一国际长度度量单位和标准,成立国际米 制委员会,并确定和保持米尺原器,成为现代国际公制计量系统的基础。长度单位一米的测量 精度好不容易才达到10一8[4]。而今,由光速不变原理和L=CT确定长度,长度单位l米=真 空中光在1/299 792458秒时间内传播的距离,这样就可以用时间测量来表征长度测量,其精 度就提高到lO一9以上。作为原始基准的独立定义的长度单位,蜕变成由时间一光速联合定义的导出单位,长度单位就统一于时间单位了。此外,通过交流约瑟夫森量子效应,从加在约瑟 夫森结上的电压V与所产生的交流电频率之间的关系f=(2e/h)/v和国际协定常数值2e/h=483 597.9GHz/V,由测量频率求得电压;也可以求得电流、电阻以及温度等等[3]。

时间频率测量技术的发

时间频率测量技术的发展与应用

21世纪中国电子仪器发展战略研讨会2004年9月时间频率测量技术的发展与应用 陈洪卿 (中国科学院国家授时中心) 1时间频率精密测量的目的和意义 信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,几乎无所不及。 中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导、定位、天文观察、大地测量、地质勘探、电网调配、电子对抗、交通管理、精密测量、科学研究等领域,设备需求量很大;标准频率与时间信号可以通过电磁波发射、传播、接收,直接为各种应用服务。 时间是国际单位制中的最基本的物理量之一,也是目前能够实现的测量不确定度最小的物理量。时间测量的精密度可小于10—18,准确度可达10一15。这使时间频率在计量、测量领域中起着十分突出的领先和独特作用[3]。因此,其它的物理量,如果能够通过一定的物理关系和物理常数转化为时间频率量来进行测量,用时间测量来表征,那么,该物理量的测量 精度将会大大提高,并使计量单位趋向于统一。典型的例子,莫过于长度单位一米的定义。100 多年前,为适应世界贸易和科学技术发展需求,为统一国际长度度量单位和标准,成立国际米 制委员会,并确定和保持米尺原器,成为现代国际公制计量系统的基础。长度单位一米的测量精度好不容易才达到10一8[4]。而今,由光速不变原理和L=CT确定长度,长度单位l米=真 空中光在1/299 792458秒时间内传播的距离,这样就可以用时间测量来表征长度测量,其精 度就提高到lO一9以上。作为原始基准的独立定义的长度单位,蜕变成由时间一光速联合定义的导出单位,长度单位就统一于时间单位了。此外,通过交流约瑟夫森量子效应,从加在约瑟 夫森结上的电压V与所产生的交流电频率之间的关系f=(2e/h)/v和国际协定常数值2e/h=483 597.9GHz/V,由测量频率求得电压;也可以求得电流、电阻以及温度等等[3]。

对摄影测量基本原理的认识

对摄影测量基本原理的认识 (贵州大学矿业学院测绘工程 09级2班) 内容摘要 摄影测量【photogrammetry】有二百多年的历史了。通过对摄影测量的学习和认识。本文从摄影测量最基本的原理出发,简单回顾了它的发展历程,本文立足于对武汉大学第二版《摄影测量》教程的学习以及对摄影测量基础知识的了解和认识后,阐述了摄影测量的一些基本知识。着重阐述了当代摄影测量技术最新理论的发展。尤其是对摄影测量的分类,分别阐述大地摄影测量、航空摄影测量、航天摄影测量的一些基本原理后相关技术要点。对大地摄影测量、航空摄影测量的内外业的有关步骤和相应技术作了一定的论述。最后,总结出自己的在学习过程中的对摄影测量的认识,作为测绘专业学生,我更看到新的希望。 关键词:摄影测量测量技术基本原理航天技术

目录 一、引言 (3) 二、摄影测量概述 (3) (一)关于摄影测量 (3) 1.摄影测量学的定义和任务 (3) 2.摄影测量的特点 (4) (二)摄影测量的发展阶段 (4) 三、摄影测量学的分类 (4) (一)地面摄影测量 (5) 1.地面摄影测量的基本原理 (5) 2.地面立体摄影测量的摄影方式 (5) 3.地面摄影测量分为外业工作和内业工作 (5) (二)航空摄影测量 (6) 1.航空摄影测量的基本原理 (7) 2.航空摄影测量的测图方法 (7) 3.航空摄影测量的作业分外业和内业 (9) (三)航天摄影测量 (9) 1.航天摄影测量的基本原理 (10) 2.航天摄影测量的特点 (10) 3.航天摄影测量的应用前景 (10) 四、结语 (10)

一、引言 摄影测量学有二百多年的历史了。最初叫图形量学(据 Iconometry 而来,或译作量影术)。1837年,发明摄影技术后,才叫摄影测量学。数学家勃兰特早在18世纪就论述了摄影测量学的基础——透视几何理论。1839年,法国报到了摄影像片的产生后,摄影测量学开始了它的发展历程。19世纪中叶,法国陆军上校劳塞达利用所谓“明箱”装置,测制了万森城堡图。劳塞达被公认为“摄影测量之父”。航空技术发达以后,摄影测量学被称为航空摄影测量学。1975年,卫星上天后,航空测量发展到了航天摄影测量。 通过上世纪八九十年代对数字摄影测量的研究、开发与推广,进入21世纪,我国数字摄影测量以世人难以想象的速度发展,数字摄影测量工作站在中国的摄影测量生产中获得了普遍的应用与推广,摄影测量的教学也由过去只有少数院校才能进行的“贵族”式的教学得到了极大的普及。目前,全国至少有40多所大专院校的测绘工程专业开设摄影测量课程,这极大地拓宽了摄影测量所需人才的培养渠道。 二、摄影测量概述 (一)关于摄影测量 1.摄影测量学的定义和任务 摄影测量【photogrammetry】指的是通过影像研究信息的获取、处理、提取和成果表达的一门信息科学。传统摄影测量学定义:是利用光学摄影机获取的像片,经过处理以获取被摄物体的形状、大小、位置、特性及其相互关系的一门学科。摄影测量学是测绘学的分支学科,它的主要任务是用于测绘各种比例尺的地形图、建立数字地面模型,为各种地理信息系统和土地信息系统提供基础数据。摄影测量学要解决的两大问题是几何定位和影像解译。几何定位就是确定被摄物体的大小、形状和空间位置。几何定位的基本原理源于测量学的前方交会方法,它是根据两个已知的摄影站点和两条已知的摄影方向线,交会

精确的频率和时间测量 - 时基的选择

精确的频率和时间测量- 时基的选择 上篇文章谈到了频率和时间测量的分辨率和精度。相信很多工程师会感兴趣测量一个结果后,其误差或不确定度到底是多少。测量的不确定度是由3个因素构成的,即 基本不确定度= k* (随机不确定度±系统不确定度±时基不确定度) 事实上,要获得准确的随机不确定度和系统不确定度是一件非常恐怖的事情。它是与众多参数相关的非常复杂的函数。如果诸位有兴趣了解这个,可以到网上查阅安捷伦53200 系列频率计数器的详细资料,出版号是5990-6283CHCN。好在安捷伦的工程师将这个复杂的运算公式做成了一个简单的表格。您只需输入测量的相关设置和结果,这个表格可以自动帮助你得出不确定度。如果有兴趣,可以与安捷伦的电话服务中心联系400-810-0189 关于随机不确定度和系统不确定度,这与闸门时间和测量次数密切相关。简单地讲,延长闸门时间和增加测量次数,都可以降低者两个不确定度。但时基的不确定度是由计数器本身的老化和工作环境,以及其本身的相位噪声等参数决定的。频率计数器的测量精度始于时基,因为它建立了测量输入信号的参考。更好的时基有可能得到更好的测量。例如,如果时基的月老化率是0.1ppm,仪器在校准后一个月内使用,它对10MHz 信号测量带来的不确定度则是1Hz。但如果老化率是0.01ppm, 其带来的不确定度只有0.1Hz. 环境温度对石英晶体的振动频率有很大影响,可根据热行为把时基技术分为三类: 1. 标准时基。标准或“室温”时基,不使用任何类型的温度补偿或控制。其最大优点是便宜,但它也有最大的频率误差。下图中的曲线示出典型晶体的热行为。随着环境温度的改变,频率输出能变化5ppm或更高。对于1MHz信号为±5Hz,因此是测量中必须考虑的重要因素。在通用侧测试仪器,如示波器、函数信号发生器、频谱仪中,采用的是这种时基。在过去低端的频率计数器,其标准配置的时基也这这种得标准时基 2. 温度补偿时基。有时,我们也称之为高稳时基。一种解决晶体热变化的方法是让振荡器电路中的其它电子元件补偿其热响应。这种方法可稳定其热行为,把时基误差降低到约0.1ppm(对1MHz信号为±10.1Hz)典型的事安捷伦53200A系列频率计数器标准配置的时基就是这种,其老化率可达到0.1ppm。有时,这种时基也被用于输出频率精度更高的信号源,如安捷伦的33520A系列函数和任意波性发生器,这种时基就是一个选件 3. 恒温槽控制。稳定振荡器输出的最有效方法是让晶体免受温度变化。计数器设计师把晶体放入恒温槽,保持其温度在热响应曲线的特定点。从而能得到好得多的时基稳定度,典型误差只有0.0025ppm(对于1 MHz 信号为±0.0025Hz)。

时间频率测量仪器

时间/频率测量仪器时间综合测量仪时间测量仪高精度时间测量仪 西安同步电子科技有限公司是最专业的陕西时间测量厂家。 产品概述 SYN5104型时间综合测试仪是一款便携式时间频率综合测试设备,接收GPS(全球定位系统)卫星信号,使用GPS定时信号对本机进行时间频率同步,对被测信号进行实时测量,为时间同步装置的现场检测、校验、验收提供了有效而便捷的解决方案。 产品功能 1) 在结构设计上,将时间标准源、时差测量和测试结果显示三块功能实现一体化, 从而可以在一台便携式智能仪表中方便而准确地完成测试项目; 2) 测试功能齐全:时间准确度、频率准确度、报文准确度; 3) 测试数据自动保存,测试结果可输出; 4) 采用GPS卫星定时信号控制内置振荡器提供高精度时间频率标准,测量精度100 ns; 5) 能直接测量,在前面板上直接显示被测时钟和标准时间的时差,测量方式直观方便; 6) 可便携移动,既可用于现场,又可用于检测机构; 7) 可以输出时间信号与更高级的标准时间源进行比对,以标定本测试仪的精度等级。也可用于给现场有需求的设备提供高精度的时间信号; 8) 测量数据自动保存; 产品特点 a) 精度高、高性价比; b) 功能齐全、性能可靠; c) 频率比对数值自动存储和计算; d) 高精度、高可靠性、方便性和直观性。 技术指标 输入信号 10MHz 路数

1路 波形 正弦 电平 ≥+7dBm 物理接口 BNC 1PPS 路数 1路 电平 TLL 脉冲宽度 ≥2μs 物理接口 BNC 1PPM 路数 1路 电平 TTL 脉冲宽度 ≥2μs 物理接口 BNC RS-232C时间报文数据接口 DB9针形接头 IRIG-B122(AC)交流码接口 三芯航插

相关文档
最新文档