欠驱动步行机器人实时仿真系统设计

欠驱动步行机器人实时仿真系统设计
欠驱动步行机器人实时仿真系统设计

基于云的机器人问答系统设计与实现

第五届“挑战杯,中国联通 安徽省大学生课外学术科技作品竞赛 研究报告 基于云的机器人问答系统设计与实现 薛建 2013年4月 目录 一、序言^ 1 1. 1研究背景^ 1 1.1.1人机交互技术^ 1 1.1.2自然语言识别技术^ 2 1.2国内外研究现状分析^ 3 二、系统设计^ 4 2^

1设计思路^ 4 2’ 1. 1机器人隱0 ^ 5 2‘ 1. 2讯飞语音云^ 5 2.1.3百度问答服务云 ^ 6 2.2详细设计^ 7 2.2^ 1机器人隱0模块^ 7 2.2.2讯飞语音云模 块^ 9 2.2.3百度问答服务云模块^ 10 三、系统性能分析^ 12 四、应用前景与展望未来^ 13 五、参考文献^ 14

一、序言 随着机器人技术和人工智能研究的发展,越来越多的智能机器人进入到人们的日常生活当中,但是目前人与机器人之间的交互仍然主要是通过按钮、开关等命令方式,这种交互方式显得很生硬,不够人性化。为了使得人与机器人的交互方式更加方便、自然、和谐,基于自然语义识别的人机交互系统的研究显得十分重要,这也是近年来人机交互技术的研究重点。基于云计算的机器人问答系统使用了讯飞语音云和百度知道问答服务云,实现了用户向机器人提出问题,机器人经过短暂“思考”回答出相应的答案并且在说话的同时做出相应行为的功能,该系统实现了一定程度的自然语义的识别,提供了一种更加人性化的人机交互方式。 基于云的机器人问答系统运用当前主流的云技术,将机器人技术、语音识别技术和网络查询技术结合在一起,建立一套机器人问答服务系统,提供了一种更加人性化的基于自然语言的人机交互方式。云技术的使用,提高了语音识别的效率和问题答案的准确率,为系统的可行性提供了保证。 1.1研究背景 1.1.1人机交互技术 人机交互技术是指通过计算机输入、输出设备,以有效的方式实现人与计算机对话、交换信息的技术。人们可以借助键盘、鼠标、操作杆、位置跟踪器、数据手套等设备,用手、脚、声音、姿态和身体的动作、视线甚至脑电波等向计算机传递信息;计算机通过打印机,绘图仪、头盔式显示器、音频等输出设备或显示设备给人提供信息。 目前,人机交互技术正处于多通道、多媒体的智能人机交互阶段,已经取得了不少研究成果,不少产品已经问世。侧重多媒体技术的有:触摸式显示屏实现的“桌面”计算机,能够随意折叠的柔性显示屏制造的电子书,从电影院搬进客厅指日可待的30显示器,使用红绿蓝光激光二极管的视网膜成像显示器;侧重多通道技术的有:“汉王笔”手写汉字识别系统,结合在微软的了处16〖?0操作系统中数字墨水技术,广泛应用于0打1。60?的中文版等办公、应用软件中的181八匕^0106 连续中文语音识别系统,输入设备为摄像机、图像采集卡的手势识别技术,以1?只0肥手机为代表的可支持更复杂的姿势识别的多触点式触摸屏技术,以及1?只0肥中基于传感器的捕捉用户意图的隐式输入技术。 人机交互技术领域热点技术的应用潜力已经开始展现,比如智能手机配备的地理空间跟踪技术,应用于可穿戴式计算机、隐身技术、浸入式游戏等的动作识别技术,应用于虚拟现实、遥控机器人及远程医疗等的触觉交互技术,应用于呼叫路由、家庭自动化及语音拨号等场合的语音识别技术,对于有语言障碍的人士的无声语音识别,应用于广告、网站、产品目录、杂志效用测试的眼动跟踪技术,针对有语言和行动障

基于GPS的机器人导航系统

基于GPS的机器人导航系统 一、课题的来源及意义 随着社会经济的飞速发展和科学技术的全面进步,以及人口老龄化、年青一代知识化、农林、水产、建筑、电力矿业、医疗等非制造领域中的熟练工人将日益短缺,智能机器人的出现成为不可阻挡的历史潮流。但是如何实现机器人的高精度位移和动作成了当今时代的一大课题。 新一代智能机器人的研发在国内外已经受到越来越多的重视。在工业发达的美、日等国,已研制出用于手工业、医疗、服务等领域的微小型机器人,如日本安川电机公司的SCORBOTER-V个人机器人,具有高轻度、高性能、高安全、高通用性的特点。机器人的研究范畴将更加宽广,研究方法更加多样,研究对象更加复杂,与材料、物理、生物、信息等学科领域的交叉与融合更加深入。 二、方案设计及选择 1. 总体方案设计 本设计以新华龙公司的C8051F330单片机为控制核心,通过GPS模块C3-370C实现机器人的精确导航定位。GPS模块实时接收卫星发射的时间、日期、经度、纬度、高度等信息,并通过RS232发送给单片机,单片机接收到信息后,根据GPS的NMEA-0183协议对接收到的卫星信息进行提取,获得所需要的时间、经度、纬度等有用信息,通过与当前所处位置坐标的比对计算,控制机器人的运行方向,从而实现机器人的精确导航。由于卫星是不停地发送信息的,所以GPS 模块转发给单片机的数据量也是非常庞大的,所以,本设计采用外部扩展SRAM 来存储接收到的卫星信息。并用LCD显示模块实时显示机器人当前所处的位置坐标和时间等信息,并给系统留有4 x 4的矩阵键盘接口,可以通过手动输入自行设定机器人的下一站位置坐标,实现机器人的灵活运动和控制功能。冷启动时,系统启动时间1分钟以内,精度可达30米左右;热启动时,系统启动时间30秒以内,若上电发送定位修正信息,精度可达10米左右。其系统框图如图1-1所示

移动机器人导航技术总结

移动机器人的关键技术分为以下三种: (1)导航技术 导航技术是移动机器人的一项核心技术之一[3,4]"它是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动"目前,移动机器人主要的导航方式包括:磁导航,惯性导航,视觉导航等"其中,视觉导航15一7]通过摄像头对障碍物和路标信息拍摄,获取图像信息,然后对图像信息进行探测和识别实现导航"它具有信号探测范围广,获取信息完整等优点,是移动机器人导航的一个主要发展方向,而基于非结构化环境视觉导航是移动机器人导航的研究重点。 (2)多传感器信息融合技术多传感器信息融合技术是移动机器人的关键技术之一,其研究始于20世纪80年代18,9]"信息融合是指将多个传感器所提供的环境信息进行集成处理,形成对外部环境的统一表示"它融合了信息的互补性,信息的冗余性,信息的实时性和信息的低成本性"因而能比较完整地,精确地反映环境特征,从而做出正确的判断和决策,保证了机器人系统快速性,准确性和稳定性"目前移动机器人的多传感器融合技术的研究方法主要有:加权平均法,卡尔曼滤波,贝叶斯估计,D-S证据理论推理,产生规则,模糊逻辑,人工神经网络等"例如文献[10]介绍了名为Xavier的机器人,在机器人上装有多种传感器,如激光探测器!声纳、车轮编码器和彩色摄像机等,该机器人具有很高的自主导航能力。 (3)机器人控制器作为机器人的核心部分,机器人控制器是影响机器人性能的关键部分之一"目前,国内外机器人小车的控制系统的核心处理器,己经由MCS-51、80C196等8位、16位微控制器为主,逐渐演变为DSP、高性能32位微控制器为核心构成"由于模块化系统具有良好的前景,开发具有开放式结构的模块化、标准化机器人控制器也成为当前机器人控制器的一个研究热点"近几年,日本!美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构!网络功能的机器人控制器"我国863计划智能机器人主题也已对这方面的研究立项 视觉导航技术分类 机器人视觉被认为是机器人重要的感觉能力,机器人视觉系统正如人的眼睛一样,是机器人感知局部环境的重要“器官”,同时依此感知的环境信息实现对机器人的导航。机器人视觉信息主要指二维彩色CCD摄像机信息,在有些系统中还包括三维激光雷达采集的信息。视觉信息能否正确、实时地处理直接关系到机器人行驶速度、路径跟踪以及对障碍物的避碰,对系统的实时性和鲁棒性具有决定性的作用。视觉信息处理技术是移动机器人研究中最为关键的技术之一。

欠驱动单杠体操机器人研究综述

Dynamical Systems and Control 动力系统与控制, 2016, 5(2), 48-60 Published Online April 2016 in Hans. https://www.360docs.net/doc/ef14710853.html,/journal/dsc https://www.360docs.net/doc/ef14710853.html,/10.12677/dsc.2016.52006 A Survey on Research of the Underactuated Horizontal Bar Gymnastic Robot Dasheng Liu, Guozheng Yan Institute of Medical Precision Engineering and Intelligent System, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Received: Mar. 25th, 2016; accepted: Apr. 22nd, 2016; published: Apr. 25th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/ef14710853.html,/licenses/by/4.0/ Abstract The gymnastic robot is a nonlinear, strongly coupled, multi-state underactuated system and be- longs to the natural unstable systems in the stable region. This kind of system can reflect the key problems of many control areas, and a lot of scholars have devoted themselves to the research of controlling the gymnastic robot. This paper reviews the domestic and foreign research on the ho-rizontal bar gymnastic robot. In the paper, the relevant theories and methods of the research on the dynamic modeling and motion control of the gymnastic robot are analyzed and discussed, the control on the swing up, balance, acceleration and giant-swing motion movement of the gymnastic robot is analyzed in detail, furthermore, the existing problems are discussed, and the development trend in the future is prospected. Keywords Gymnastic Robot, Underactuated, Control Strategy, Nonlinear System 欠驱动单杠体操机器人研究综述 刘大生,颜国正 上海交通大学电子信息与电气工程学院医学精密工程及智能系统研究所,上海 收稿日期:2016年3月25日;录用日期:2016年4月22日;发布日期:2016年4月25日

一种智能机器人系统设计和实现.

一种智能机器人系统设计和实现 我们从广泛意义上理解所谓的智能机器人,它给人的最深刻的印象是一个独特的进行自我控制的"活物".其实,这个自控"活物"的主要器官并没有像真正的人那样微妙而复杂。智能机器人具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这就是筋肉,或称自整步电动机,它们使手、脚、长鼻子、触角等动起来。我们称这种机器人为自控机器人,以便使它同前面谈到的机器人区分开来。它是控制论产生的结果,控制论主张这样的事实:生命和非生命有目的的行为在很多方面是一致的。正像一个智能机器人制造者所说的,机器人是一种系统的功能描述,这种系统过去只能从生命细胞生长的结果中得到,现在它们已经成了我们自己能够制造的东西了 嵌入式是一种专用的计算机系统,作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是是由单个程序实现整个控制逻辑。嵌入式技术近年来得到了飞速的发展,但是嵌入式产业涉及的领域非常广泛,彼此之间的特点也相当明显。例如很多行业:手机、PDA、车载导航、工控、军工、多媒体终端、网关、数字电视…… 1 智能机器人系统机械平台的搭建 智能机器人需要有一个无轨道型的移动机构,以适应诸如平地、台阶、墙壁、楼梯、坡道等不同的地理环境。它们的功能可以借助轮子、履带、支脚、吸盘、气垫等移动机构来完成。在运动过程中要对移动机构进行实时控制,这种控制不仅要包括有位置控制,而且还要有力度控制、位置与力度混合控制、伸缩率控制等。智能机器人的思考要素是三个要素中的关键,也是人们要赋予机器人必备的要素。思考要素包括有判断、逻辑分析、理解等方面的智力活动。这些智力活动实质上是一个信息处理过程,而计算机则是完成这个处理过程的主要手段。 机器人前部为一四杆机构,使前轮能够在一定范围内调节其高度,主要功能是在机器人前部遇障碍时,前向连杆机构随车轮上抬,而遇到下凹障碍时前车轮先下降着地,以减小震动,提高整机平稳性。在主体的左右两侧,分别配置了平行四边形侧向被动适应机构,该平行四边形机构与主体之间通过铰链与其相连接,是小车行进的主要动力来源。利用两侧平行四边形可任意角度变形的特点,实现自适应各种障碍路面的效果。改变平行四边形机构的角度,可使左右两侧车轮充分与地面接触,使机器人的6个轮子受力尽量均匀,加强机器人对不同路面的适应能力,更加平稳地越过障碍,并且更好地保证整车的平衡性。主体机构主要起到支撑与连接机器人各个部分的作用,同时,整个机器人

一类多自由度欠驱动手臂机器人的控制策略_赖旭芝

一类多自由度欠驱动手臂机器人的控制策略1 赖旭芝o (中南大学自动控制系长沙410083) 摘要针对多自由度欠驱动手臂机器人提出一种模糊逻辑控制、模糊变结构控制和线性二次调节控制相结合的控制策略。首先用模糊逻辑控制实现快速平滑地摇起,然后用模糊变结构控制确保从摇起区进入平衡区,最后用线性二次调节方法平衡它。 关键词欠驱动手臂机器人,模糊控制,变结构控制 0前言 对于n自由度欠驱动手臂机器人的运动控制问题在国内外还是一个新的控制领域。文献[1]探讨了n自由度欠驱动手臂机器人基于部分反馈的运动控制问题,此控制策略理论依据不充分,同时存在在n自由度欠驱动手臂机器人的平衡区难以捕捉到该系统的实际控制问题。这样一来,n自由度欠驱动手臂机器人的摇起控制目标就很难实现。 本文依据n自由度欠驱动手臂机器人动力学方程,从摇起能量需增加的角度出发,推导仅有n-1个驱动装置的摇起控制方案。然后,设计模糊变结构控制器对欠驱动手臂机器人进行系统解耦,来实现从摇起控制到平衡控制的快速过渡控制。最后,用线性二次调节器对它进行平衡控制,以实现n 自由度欠驱动手臂机器人的控制目标。 1模糊逻辑控制器的设计 1.1动力学方程 用广义坐标描述多自由度欠驱动手臂机器人的动力学方程为[2] M(q)&q+C(q,¤q)¤q+g(q)=S(1)其中,q=[q1q2,q n]T,S=[S1S2,S n]T,C(q,¤q)I R n@n为作用在机器人连杆上的哥氏矩阵,g (q)I R n为重力,S I R n为驱动力矩,没有驱动装置的力矩为零,M(q)I R n@n为惯性矩阵。对称正定矩阵。机器人运动方程中的各部分具有下列性质: M(q)是对称正定阵; &M(q)-C(q,¤q)是反对称矩阵。 1.2摇起控制器的设计 n自由度欠驱动手臂机器人的运动控制空间分两个子区间:一个是在不稳定平衡点附近的区域叫平衡区;另一个是除平衡区以外的所有运动空间叫摇起区。 从摇起过程能量增加的角度出发,寻找摇起控制规律。其能量为 E(q,¤q)=T(q,¤q)+V(q)(2) T(q,¤q)为动能,V(q)为热能,它们分别为 T(q,¤q)= 1 2 ¤q T M(q)¤q(3) V(q)=6n i=1V i(q)=6n i=1m i gh i(q),i=1,,,n (4)其中,V i(q)和h i(q)分别为第i杆的势能和质量中心的长度。 在整个摇起区,为满足能量不断增加,能量的导数必须满足下面的条件。 ¤E(q,¤q)\0(5)根据(2)、(3)和(4)式可得 ¤E(q,¤q)=¤q T M(q)&q+1 2 ¤q T¤M(q)¤q+¤V(q)(6) (1)式可改写为 &q=M-1(q)(S-C(q,¤q)¤q-g(q))(7)从(4)式可推出 ¤V(q)=g T(q)¤q(8)把(7)和(8)代入(6)式得 ¤E(q,¤q)=¤q T S+1 2 ¤q T(¤ M(q)-2C(q,¤q))¤q(9)利用¤ M(q)-C(q,¤q)为反对称矩阵,所以有 81 1 o女,1966年生,副教授;研究方向:智能控制,机器人控制和非线性控制;联系人。 (收稿日期:2000-06-27) 国家自然科学基金和湖南省科研专项基金资助项目。

基于机器人操作系统的机器人定位导航系统实现

龙源期刊网 https://www.360docs.net/doc/ef14710853.html, 基于机器人操作系统的机器人定位导航系统实现 作者:姜楚乔孙焜范光宇张鹏飞 来源:《科学大众》2019年第09期 摘 ; 要:轮式机器人的定位导航技术是当前业界的研究热点。目前,大多机器人是在室内进行工作,定位导航是保证机器人能在室内正常工作的关键技术之一。文章采用当前流行的机器人操作系统,通过激光雷达等传感器对环境进行扫描,并基于扫描点云数据匹配实现室内定位和导航,通过ROS和程序实现结果验证该系统具有良好的定位导航效果。 关键词:轮式机器人;机器人操作系统;激光雷达;SLAM;最短路径 自1959年世界第一台机器人诞生至今,机器人在市场上占有越来越重要的地位。从最初大型工厂的工业机器人,到现今走入千家万户的扫地机器人,机器人越来越贴近人类的日常生活。在众多种类的机器人中,轮式机器人占有较大份额。2014—2019年的全球機器人市场规 模平均增长率约为12.3%,在机器人市场结构中,服务机器人占比约为1/3。在我国,由于国家对公共基础建设投资力度强,所以服务机器人的市场需求尤为显著。2019年,我国服务机 器人市场规模有望达到22亿美元,高于全球服务机器人市场增速[1]。 在服务机器人的开发中,为达到自由移动、服务于多数人的目的,大多采用轮式机器人,且多属于室内服务机器人。场景多用于仓库搬运、室内引导、室内物品采集传递等。为保证机器人在一定空间内可以顺利地完成各项工作,机器人的精准定位和导航成为研究轮式机器人首要攻克难点。 机器人操作系统(Robot Operating System,ROS)是当前流行的机器人开发环境平台,该平台采用分布式架构,集成了底层驱动程序管理、程序发行包管理、程序间传递消息、硬件描述等相关服务[2]。由于该操作系统是开源操作系统,采用分布式架构,可扩展性高,因而可 单独设计每个运行程序,同时运行程序又具有松散耦合性。因此,自2010年正式发布以来,ROS操作系统受到众多机器人开发者的喜爱。 目前,机器人主要采用激光雷达作为定位导航的主要硬件,常见的激光雷达主要采用斜射式激光三角测距技术,雷达通过激光器扫描周围物体,当扫描到目标检测物体时,激光会发生反射和散射,反射光线经过接收器的透镜汇聚为光斑,光斑成像在感光耦合组件(Charge-coupled Device,CCD)的位置传感器上,机器人能更快速、精确地建图。当目标物体移动时,雷达内部嵌入式芯片,通过接收到的角度信息和距离信息,结合光斑的移动来计算目标物体的移动。

AUV水下机器人运动控制系统设计方案(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告课程名称:运动控制技术 姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中

机器人导航方法与制作流程

一种机器人导航方法,属于机器人导航控制技术领域。方法包括:步骤S01,获取驱动轮和旋转编码器信息,计算机器人里程;步骤S02,获取九轴传感器采集信息,基于融合算法计算机器人的偏航角Z、横滚角X和俯仰角Y;步骤S03,获取激光导航模块扫描信息,定位机器人的平面位置;步骤S04,基于机器人里程、偏航角Z、横滚角X、俯仰角Y和激光导航模块的扫描结果,提取机器人周围信息并生成二维地图;步骤S05,获取视觉导航模块的图像信息,提取机器人在空间中所处的位置、方向和环境信息,建立环境模型;步骤S06,基于二维地图和环境模型,生成全景空间地图。本技术使得机器人在高精度综合导航上定位精度可达豪米级别,且消除了机器人运动累积误差。 权利要求书 1.一种机器人导航方法,其特征在于,应用于在底盘设置配有旋转编码器的驱动轮、九轴传 感器和激光导航模块,以及在头部设置视觉导航模块的机器人,方法包括:

步骤S01,获取驱动轮和旋转编码器信息,计算机器人里程; 步骤S02,获取九轴传感器采集信息,基于融合算法计算机器人的偏航角Z、横滚角X和俯仰角Y; 步骤S03,获取激光导航模块扫描信息,定位机器人的平面位置; 步骤S04,基于机器人里程、偏航角Z、横滚角X、俯仰角Y和激光导航模块的扫描结果,提取机器人周围信息并生成二维地图; 步骤S05,获取视觉导航模块的图像信息,提取机器人在空间中所处的位置、方向和环境信息,建立环境模型; 步骤S06,基于二维地图和环境模型,生成全景空间地图。 2.根据权利要求1所述的一种机器人导航方法,其特征在于,所述步骤S01具体包括: 步骤S11,获取驱动轮和旋转编码器信息,计算机器人的左轮速度vl和右轮速度vr; 步骤S12,根据机器人的左轮速度vl和右轮速度vr,依据公式计算机器人前进速度v,并依据公式计算机器人绕圆心运动的角速度w; 步骤S13,根据机器人前进速度v和机器人绕圆心运动的角速度,依据公式计算机器人圆弧运动的半径。 3.根据权利要求2所述的一种机器人导航方法,其特征在于,所述旋转编码器信息包括左轮旋转圈数、右轮旋转圈数;所述驱动轮信息包括左轮周长、右轮周长;依据左轮旋转圈数和左轮周长计算所述左轮速度vl,依据右轮旋转圈数和右轮周长计算所述右轮速度vr。 4.根据权利要求1所述的一种机器人导航方法,其特征在于,所述九轴传感器包括三轴加速度计、三轴陀螺仪和三轴磁力计。

扫地机器人设计

扫地机器人设计报告

一、功能综述 1、清扫模式:随机清扫、螺旋式清扫、交叉清扫、沿边清扫、定点清扫、预约清扫等相结合,实现全方位立体清扫; 2、智能导航系统:实现对房间地形的重构,自动规划清扫路线; 3、智能安全监控:防撞,防跌落,防缠绕,电池电量监测; 4、创新功能:灰尘量识别,实现床底清扫,手机遥控模式,尖端气流滤尘技术,室内空气质量监测与提醒; 5、其他基础功能:自动返回并充电,灰尘盒安装检查,灰尘盒容量探测。 二、机械及系统设计 扫地机器人机械设计如图1所示。 前 图1 扫地机器人机械设计图 清扫机构,行走机构,吸尘机构是本次设计的重点,也是难点所在。由于机器人运动部件多,运动状态经常改变,必然产生冲击和振动。因此,增加机器人运动平稳性,提高机器人动力学特性尤为重要。为此,在设计时应注意在满足强度和刚度的前提下,尽量减小运动部件的质量,并注意运动部件对转轴的质心装配。 (1)行走驱动轮及驱动电机 该部分主要保证机器人能够在平面内移动。为了保证小车良好的直线性,可采用双电机驱动左右两轮的方式,且在车体的后端装有一个不锈钢万向滚珠,这样可以使小车获取较好的机动性和灵活性及灵活性。前轮驱动的好处是:转向性能得到改善。前轮是转向轮,使得转向时的行驶方向容易控制,不容易出现过度转向的现象,转向安全性也得到提高。 (2)清扫机构 用电机带动两个清扫刷,使左面清扫刷顺时针转动,右面逆时针转动,这样就可以在清扫灰尘时将灰尘集中于吸风口处,为吸尘机构的工作做准备;清扫刷设计成可更换型的,可选择棉质纺织品或尼龙等化纤材料的,以适应不同的工作

环境。 (3)吸尘机构 旨在强大的吸力、将灰尘吸入灰尘储存箱中;这里我们采用尖端气流滤尘技术,全方位,多层次将灰尘一网打尽。 (4)擦地机构 在清扫、吸尘之后,利用安装在壳体下面的清洁布擦出残留在地面上的细小灰尘,同时也能够擦除地面上的顽固污渍,从而保证清洁工作的质量。 扫地机器人功能框图如图2所示。 图2 扫地机器人功能框图 三、功能简介 1、清扫模式: 清扫模式包括随机清扫、螺旋式清扫、交叉清扫、沿边清扫、定点清扫、预约清扫等。 随机清扫是指根据地面状况在其他几种清扫模式之中进行切换; 螺旋式清扫是指绕圈清扫的模式; 交叉清扫是指在不同的区域之间交叉穿梭来清扫,也可以称为Z字形清扫; 沿边清扫是沿着房间的边界进行清扫; 定点清扫是指在指定的位置小范围内清扫; 预约清扫是指每天在指定的时间自动清扫,可以预约一次和一周内任意预约清扫时间,可以放心上班和出差,也可以自动打扫。 2、智能导航系统 扫地机器人的智能导航实质就是路径自动规划。扫地机器人路径自动规划有两种方法::随机式全区域覆盖和规划式全区域覆盖。随机式全区域覆盖方法控制简单,不需要很多的硬件,软件编程也简单,易于实现。但其缺点是移动机器人运行轨迹重复性较大,且运行轨迹不能较快地、充分地覆盖整个区域,这种路

汽车机器人自动导航方案

汽车机器人自动导航方案 本文详细介绍了使用DSP 为图像分析核心,包括车道偏离,仿撞预警,语音录放、键盘及显示、报警及雷达等外围电路的设计,给出一套基于图像分析+雷达测距的汽车自动导航系统软硬件解决方案。一,功能系统装配在汽车上后,能结合本车的速度自动判断车前方的障碍物,当车辆前方出现障碍物对本车构成威胁时,他能自动报警,提醒驾驶人员注意,驾驶员就能及时采取相应的措施。驾驶员未听到报警或听到报警未采取措施或采取措施迟缓或者出现失误时,它能使汽车自动减速、自动刹车,有效的保护车辆和乘车人员的安全。障碍物不构成威胁时,能使汽车处于正常状态,不影响本车提速和超车,无 论白天、夜晚,该装置都能有效发挥自动防撞作用1,及时准确地测量出行驶 中的车辆前方障碍物的距离,可以对驾驶员起到提前预警的作用,减少和避免撞车事故2,防止汽车拐弯时,和盲点车侧面相撞或者刮蹭,3,行至交叉口时可通过雷达判断是否堵车,3,通过智能分析发现路线偏离,提醒报警(单线, 改线,无线)4,在大灯坏,雨天,傍晚,大雾等特殊环境中行车5,通过视频分析防司机瞌睡6,预留GPS 电子狗,DVR 黑盒子功能接口。7,预留LCD,选留hud 抬头显示接口。8,可探测企图接近车身的行人二,解决方案,实现 如下:主要有测距系统、信息处理系统和刹车执行系统三部分组成。测距系统:该系统采用摄像头图像处理技术,经过严谨的科学论证、精确的计算研制而成,他的主要作用是探测前方障碍物的距离。信息处理系统:对测距系统发来的信息,通过计算机编码程序进行识别运算和处理,然后根据处理要求向刹车执行系统发出指令,来实现对刹车执行系统的控制。刹车执行系统:根据信息处理系统发出的指令,刹车执行系统按照要求进行有效的制动。1.产品 体积小,安装简便,操作使用方便,切适用于任何车型,在不改变原车结构和

博士生课程空间机器人关键技术

博士生课程空间机器人关键技术

1空间机器人概述 2数学力学基础 3冗余自由度机器人 4柔性机械臂 5欠驱动机器人 6机器人灵巧手 (一)空间机器人的概述 1.空间机器人在空间技术中的地位 从20世纪50年代,以美国和苏联为首的空间技术大国就在空间技术领域展开了激烈的竞赛。 i 苏联 1957年8月3日,前苏联研制的第一枚洲际弹道导弹SS-6首次发射成功。不久,前苏联火箭总设计师柯罗廖夫从美国新闻界得知美国试图在1957-1958年的国际地球物理年里发射一颗人造地球卫星。于是,他立即将SS-6导弹稍加修改,将弹头换上一个结构简单的卫星,抢先将第一颗人造卫星送上了太空。 接着,在第一颗人造卫星发射后一个月,即11月3日,又用SS-6导弹作航天运输工具,将装有小狗“莱伊卡”的第二颗人造卫星送入太空的圆形地球轨道。 1959年5月,前苏联又将“月球”l号人造卫星送入了月球轨道。 ii 美国 在1958年以前,以“红石”近程导弹和“维金”探空火箭为基础,分别研制成“丘比特”C和“先锋”号等小型运载火箭,用于发射最初的几个有效载荷仅为数千克至十几千克的小卫星。 发展到今天,从地面实验室研究到人造卫星、空间站、载人飞船、航天飞机、行星表面探测器,空间技术大国都投入了大量人力、物力和财力。空间技术对于天文学、气象、通信、医学、农业以及微电子等领域都产

生了很大的效益。不仅如此,空间技术对于未来国家安全更具有重要的意义。在空间技术发展的过程中空间机器人的作用越来越明显。 20世纪60年代前苏联的移动机器人研究所(著名的俄罗斯Rover科技有限公司前身)研制了世界上第一台和第二台月球车Lunohod-1和Lunohod-2。1976年美国发射海盗一号和二号(Rover-1、Rover-2)的登陆舱相继在在火星表面登陆,通过遥操作机械臂进行火星表面土壤取样。 随着空间技术研究的日益深入,人类空间活动的日益频繁,需要进行大量的宇航员的舱外活动(EV A),这对宇航员不仅危险,而且没有大气层的防护,宇宙射线和太空的各种飞行颗粒都会对宇航员造成伤害。建造国际空间站,以及未来的月球和火星基地,工程浩大,只靠宇航员也是非力所能及的。还有空间产业、空间科学实验和探测,这些工作是危险的,但有一定重复性,各航天大国都在研究用空间机器人来代替宇航员的大部分工作。 此外许多空间飞行器长期工作在无人值守的状态,这些飞行器上面各种装置的维护和修理依靠发射飞船,把宇航员送上太空的办法既不经济,也不现实。在未来的空间活动中,许多工作仅靠宇航员的舱外作业是无法完成的,必须借助空间机器人来完成空间作业。 2空间机器人的任务和分类 1)空间建筑与装配。一些大型的安装部件,比如无线电天线,太阳能电池,各个舱段的组装等舱外活动都离不开空间机器人,机器人将承担各种搬运,各构件之间的连接紧固,有毒或危险品的处理等任务。有人预计,在不久将来空间站建造初期,一半以上的工作都将由机器人完成。 2)卫星和其他航天器的维护与修理。随着人类在太空活动的不断发展,人类在太空的资产越来越多,其中人造卫星占了绝大多数。如果这些卫星一旦发生故障,丢弃它们再发射新的卫星就很不经济,必须设法修理后使它们重新发挥作用。但是如果派宇航员去修理,又牵涉到舱外活动的问题,而且由于航天器在太空中,是处于强烈宇宙辐射的环境之下,有时人根本无法执行任务,所以只能依靠空间机器人。挑战者号和哥伦比亚号航天飞机的坠毁引起人们对空间飞行安全的关注,采用空间机械臂修复哈勃太空望远镜似乎是一件很自然的事情。安装上新的科学仪器(包括一台视野宽阔的摄象仪和一台摄谱仪)后,哈勃望远镜的观测能力可增强十倍以上。空

机器人设计论文

绿化植树机器人设计 摘要: 这个机器人是针对大量绿色植树而设计的,利用机械四足作为其活动方式,机器人通过视频识别系统在有限范围内对地形与植被作出判断,然后通过自动行走系统移动到目标地点前面,再通过机械手取出携带的植物幼苗,通过这个可以360度旋转的机械臂进行种植工作,机械臂可以进行种植、培土、等工作。种植完成后还将用一层可分解的塑料薄膜覆盖植物幼苗,保证其在能够自行成长前的安全。 关键词: 绿化植树、四足行走、山坡作业、视频识别、机械臂操作 设计背景: 地球现在正面临着绿色植被在不断减少的危机,而人类也因为这样要面对日益严峻的环境问题。大量植树还原绿色植被是一个相当重要的手段来解决这个难题,但是依靠人力去做的话,效率始终不够高。所以在这里我想设计一个专门用于大作业量的绿化植树机器人。 设计思路: 这个机器人,是需要面对山坡这样的陡峭地形的,由于特殊的使用环境,机器人的活动方式要求能够灵活的应对颠簸不平的土地,机械四足需要能够根据不同的地势调整四足的高度,确保平稳的行走,这种活动方式才能使机器人轻松到达山崖大部分位置。移动起来必须十分的轻巧,以避免对其他植物的伤害。由于这个机器人对视频识别有着较高的要求,所以必须在这方面有所突破,同时当发现有杂草或者有害植物的时候,还可以通过高温蒸汽将其杀死,来保证种植的植物幼苗的生长。360度旋转的机械臂可以保证种植过程的顺利进行。 详细具体设计方案: 一.整体结构: 1.整个机器人分成上下两大部分,上部分是机械手臂,主要实现机器人的整个种植 操作,下部是机器人的机身和四足,包括:植物幼苗存放仓、红外线距离测量 仪、摄像头、电脑处理系统。 2.机器人是通过电力驱动的,所以必须携带储电池,也是安装在机身。 二.中央处理系统: 机器人的机身将安装一个中央处理系统,作为机器人的大脑,它主要调节机器人三 大系统:机械四足行走系统、机器人视觉系统、机械臂控制系统。中央处理系统要 接收和分析红外线距离测量仪、摄像头、机械臂传感器等反馈信息,以及控制四足 的行进系统、机械臂操作等。 三.机械四足行走系统: 1.机械四足的形状: 一开始的时候,我曾经很困惑于如何把握行走稳定与行走速度之间的平衡,后来设 想出仿人类四肢的关节加上圆形的脚盘这个方案,总体感觉可以满足行走的需要。 2.如何实现行进: 参考了机械小狗的设计,将机械四足连接在机器人的中央处理系统而成为一个整 体,接受中央处理系统的控制。每次改变一个机械足的位置,实现整个机器人的行

商场智能服务机器人的设计

电子技术 ? Electronic Technology 82 ?电子技术与软件工程 Electronic Technology & Software Engineering 【关键词】服务机器人 定位导航 STM32处理器 传感器 1 引言 服务机器人作为一种半自主或全自主工作的机器人,能够完成有益于人类的服务工作,如搬运、清洁、救援等。随着智能服务机器人逐渐走进人们的社会生活领域,它将对提高人类生活质量和服务行业带来深刻的影响。 本文在对国内外服务机器人发展状况和技术研究的基础上,选择应用于商场内的智能导航服务机器人为研究对象,设计了一种集感知、导航、人机交互、饮料瓶回收等功能于一体的商场智能服务机器人。 2 系统总体设计 智能服务机器人的总体设计包含机械系统与控制系统设计两大部分:机械系统的设计主要完成机器人的移动底盘、机械手等结构;控制系统则实现对机器人的功能控制,如完成行走、避障、导航、交互等功能,控制系统又分为硬件系统和软件系统两部分。系统总体设计框图如图1所示。 3 机械结构设计 根据机器人的运动功能要求和工作环境,设计机器人的机械结构包括以下功能: (1)机器人底盘能实现前进、后退和灵活转向的运动功能,具备自定位和自主移动能力;移动速度能在0.1-0.5m/s 内; (2)机器人的手臂可以完成招手,引导和饮料瓶回收等基本动作; (3)机器人头部能实现左右摆头(转动) 商场智能服务机器人的设计 文/李猛 郑召斌 田立国 王岳松 和上下点头的工作; (4)机器人外形完美,亲和力强,身高1.2M 左右,体重在30-40公斤内,且能保证人机交互过程的安全性。 4 控制系统设计 机器人整个控制系统由STM32控制器和PC 工控机两部分组成,两个系统之间通过HTTP-POST 进行通讯:其中下位机部分以STM32控制器为中心,搭载自主导航定位模块和各类传感器,接收上位机发出的各类指令控制机器人的行走、避障等;上位机部分则以工控机为中心,运行机器人应用程序,对下位机发出控制指令,实现定位导航、人机交互灯功能,系统原理图如图2所示。4.1 硬件设计 4.1.1 处理器控制模块 处理器模块是整个控制系统的核心模块,其性能好坏直接决定整个系统的运行效果。本文中的下位机控制器选择高性能的STM32微处理器,其具有丰富的I/O 口外设,多个通信接口,支持多种中断,满足了该机器人系统的需要。 4.1.2 电机驱动模块 电机驱动模块采用L298P 双路2A 直流电机驱动,用于驱动商场智能服务机器人的2个直流电机,实现机器人的移动控制。4.1.3 定位导航模块 定位导航模块采用思岚模块化自主定位导航解决方案,由高性能激光雷达RPLIDAR A2和定位导航控制核心SLANWARE Core 组成,可使机器人实现自主定位、自动建图、路径规划和自动避障,实现了机器人在商场内的自主行走。4.2 软件设计 商场智能服务机器人系统的软件平台设计包括下位机控制程序和上位机应用程序两大部分: 下位机控制程序主要实现机器人的行走、避障、传感器数据采集以及与上位机的通信功能,属于商场智能服务机器人的底层控制。 上位机应用程序则通过对激光数据的处理建立商场环境的地图,实现智能服务机器人的定位导航功能;同时采用语音识别、图像处理技术更好的实现了用户与机器人之间的交互。 上位机应用程序采用面向对象的C++编程语言,基于Visual Studio 2010开发环境进行开发,控制系统软件则采用嵌入式uc/OS-II 操作系统来实现,两者之间采用基于TCP/IP 协议进行通信。 5 结论 随着科技与服务机器人技术的不断发展,服务机器人也越来越受到人们的关注,生活中的多个领域已广泛应用到各种服务机器人。本文研究的商场智能服务机器人,定位于商场内的定位导航、语音交互等功能,具有广阔的应用开发与市场前景。 参考文献 [1]王田苗,陶永,陈阳.服务机器人技 术研究现状与发展趋势[J].中国科学,2012,42(09):1049-1066. [2]邹风山,赵彬.服务机器人导航与 调度系统技术研究[J].微型机与应用,2017,36(07):56-58. [3]沈友建,黄孝鹏,肖建.基于STM32的机 器人自主移动控制系统设计[J].微型机与应用,2016,35(18):12-14. [4]林枫亭,罗艺,孔凡立等. 一种基于云平 台的智能机器人语音交互系统设计[J].电子测试,2018,3:40-42. 作者简介 李猛(1986-),男,山东省滨州市人。硕士研究生。实验师。研究方向为嵌入式系统及应用。 作者单位 天津职业技术师范大学天津市信息传感与智能控制重点实验室 天津市 300222 ●项目支持:天津职业技术师范大学2018年校级科研项目(项目编号:KJ1802)。 图2:系统原理图 图1:系统框图

移动机器人的自主导航

移动机器人的自主导航 一、研究的背景 二、移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多功 能于一体的综合系统。它集中了传感器技术、计算机技术、机械工程、电子工程、自动化控制工程以及人工智能等多学科的研究成果,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、国防、医疗、服务等行业中得到广泛的应用,而且在排雷、搜捕、救援、辐射和空间领域等有害与危险场合都得到很好的应用。 因此,移动机器人技术已经得到世界各国的普遍关注。 三、在自主式移动机器人相关技术的研究中,导航技术是其研究核心,同时也 是移动机器人实现智能化及完全自主的关键技术。导航是指移动机器人通过传感器感知环境信息和自身状态,实现在有障碍的环境中面向目标的自主运动。 导航主要解决以下三方面的问题:(l)通过移动机器人的传感器系统获取环境信息;(2)用一定的算法对所获信息进行处理并构建环境地图;(3)根据地图实现移动机器人的路径规划及运动控制。 四、相关技术 五、移动机器人定位是指确定机器人在工作环境中相对于全局坐标的位置,是 移动机器人导航的基本环节。定位方法根据机器人工作环境的复杂性、配备传感器种类和数量等方面的不同而采用多种方法。主要方法有惯性定位、标记定位、GPS定位、基于地图的定位等,它们都不同程度地适用于各种不同的环境,括室内和室外环境,结构化环境与非结构化环境。 六、惯性定位是在移动机器人的车轮上装有光电编码器,通过对车轮转动的记 录来粗略地确定移动机器人位置。该方法虽然简单,但是由于车轮与地面存在打滑现象,生的累积误差随路径的增加而增大,导致定位误差的逐渐累积,从而引起更大的差。 七、标记定位法是在移动机器人工作的环境里人为地设置一些坐标已知的标记, 八、超声波发射器、激光反射板等,通过机器人的传感器系统对标记的探测来 确定机器人在全局地图中的位置坐标。三角测量法是标记定位中常用的方法,机器人在同一点探测到三个陆标,并通过三角几何运算,由此可确定机器人在工作环境中的坐标。标记定位是移动机器人定位中普遍采用的方法,其可获得较高的定位精度且计量小,但是在实际应用中需要对环境作一些改造,添加相应的标记,不太符合真正意义的自主导航。 九、GPS定位是利用环绕地球的24颗卫星,准确计算使用者所在位置的庞大卫 星网定位系统。GPS定位技术应用已经非常广泛,除了最初的军事领域外,在民用方面也得到了广泛的应用,但是因为在移动导航中,移动GPS接收机定位精度受到卫星信号状况和道路环境的影响,同时还受到时钟误差、传播误差、接收机噪声等诸多因素的影响,因此,单纯利用GPS定位精度比较低、可靠性不高,所以在机器人的导航应用中通常还辅以磁罗盘、光码盘与GPS数据进行

相关文档
最新文档