大学物理电磁学总结大学物理与中学物理电磁学的衔接论文

大学物理电磁学总结大学物理与中学物理电磁学的衔接论文
大学物理电磁学总结大学物理与中学物理电磁学的衔接论文

大学物理电磁学总结|大学物理与中学物理电磁学的衔接论文

作为高等院校理工农科等专业必修的一门基础理论课,大学物理对非物理类专业学生

后续课程的学习和分析解决问题能力的提高都有很大帮助。通过中学物理的学习,大部分

学生对大学物理课程中所要学习的一些物理概念和物理规律自认为很熟悉,往往会忽视这

些概念内涵的理解,特别是相关物理规律的描述当从特殊到一般、均匀到非均匀情况下所

采用的数学手段发生变化,使得许多学生感觉到大学物理的学习比较困难。另一方面,由于中学物理与大学物理在不同的教学环节中有一些区别,大学物理中会介绍当前高新技术领

域中的基础性物理原理,同时大力加强了现代物理学的重要观念。而大一学生还无法从中

学物理的学习惯性中解脱出来,会逐渐对大学物理的学习缺乏兴趣。所以如何在新形势下

做好大学物理与中学物理教学的有效衔接,是目前大学物理教育工作者面对的一个迫切需

要解决的问题。由于大部分概念较为抽象且涉及的数学物理方法较多,电磁学教学一直是

大学物理教学中的一个难点。在多年的教学中发现大部分学生都觉得这部分学习起来感觉很难,概念容易混淆,并且学生自主分析问题、解决问题的能力较差,并对中学物理知识已

形成固定思维模式。大学物理是中学物理的升华,随着深度和难度的增加,如何实现让学生从中学物理到大学物理的顺利过渡,是新形势下教育改革实践的重要内容。文章主要基于

目前大学物理和中学物理中电磁学部分的教学现状出发对本部分知识点进行比较分析,以

期对该部分知识点的教学衔接有所帮助。

1中学物理与大学物理电磁学部分的有效衔接

1.1电学部分的衔接

首先对于电场强度、电场强度的叠加和点电荷的电场等方面,大学物理更强调矢量的

性质,并强调物质存在的两种方式:“场”与“实物”的区别,及弥散性和叠加性。在传统

的中学物理的教材和讲授中,对“场”的这两个特性都是略微指出。只要有场源电荷,就会在空间激发电场,而场的分布与其他实物不同,它具有“无处不在”的弥散性和空间叠加性,而大多实物都是有形态有尺度并占用一定空间的物质,并在同一空间不能叠加。对该部分

讲解可以举生活中的例子,比如现在通讯手段十分发达,可以通过手机在某一个固定位置能够探测到众多的wifi信号来说明“场”的弥散性和叠加性,比如同一个空间可以被无数的“场”同时占用,而不同的实物却不能同时占用同一空间。这样通过生活中的一些实例分析,让学生更加清楚直观地理解“场”的弥散性和叠加性这两个特点。当然也可以证实场

与实物一样,也具有能量、动量和质量等重要性质。正是由于场的弥散性和叠加性这两大

特点,大学物理电磁学部分的学习中对于分均匀分布的电场的计算通常采用微积分的方法,因为对无穷多个小电荷元激发的电场的叠加就是积分。

另一方面,电磁场作为与空间位置有关的矢量点函数,在积分中要涉及到矢量的运算,

这也是电磁场矢量叠加必然的数学工具。以电势为例,下面详细讨论中学物理与大学物理

中的异同。在中学教材中,电势被定义为:如果在电场中选一个标准位置,那么电场中某点

跟标准为止间的电势差。电势差跟高度差相似,被选作标准位置间的电势为零。电势和电

势差单位相同。由电势的概念可知,电场中某点电势在数值上等于单位正电荷由改点移动

到标准位置零电势点时,电场力做的功。电场中某点电势的大小与电势零点的选取有关。在大学物理中,对电势有更加具体的表述。如果选取无穷远处为电势零点,空间中任一点P 的电势就等于:。

由于电场力做功与路径无关,对于空间中任意两点P和Q,我们有,即,表示P、Q两点间的电势差等于P点的电势减去Q点的电势。在实际工作中常常以地面或者电器外壳的电势为0,这样各点的电势值也将随之改变,但是两点之间的电势差与参考点的选取无关。通过比较可知,大学物理对此概念的描述在定性引入的基础上,定量给出了具体的计算公式。另外,对电动势的讲授上,中学教材只是从能量转化的角度定义了电动势是把其他形式的能如化学能转化为电能的本领;大学物理在能量转化的基础上,又引入了“非静电力”等概念来揭示电动势的本质:把单位正电荷从负极通过电源内部移动到正极时非静电力做的功,并给出了具体的数学表达式。

1.2磁学部分的衔接

首先,对于电流磁场的理论知识,中学物理教材定性地描述了电流产生的磁场以及判定磁场方向的一个重要方法,即右手定则或者叫安培定则:用右手握住导线或螺旋管,让伸直的拇指或弯曲的四指的方向与电流的方向一致,弯曲的四指或伸直的拇指所指的就是磁感线的环绕方向螺旋管内部磁感线的方向。通过上述方法可以很容易判定直线电流和通电螺旋管包括环形电流产生的磁场。大学物理教材中首先列举了几种典型的磁现象,如奥斯特实验、磁铁对载流导线的作用等。然后引入磁感应强度以及磁通量的概念,对于任意形状的载流导线在给定点所产生的磁感应强度,可以看作是导线上各个电流元在该点产生的磁感应强度的叠加。可以通过毕奥-萨伐尔后面简称“毕萨”定律定量计算出任意形状的载流导线在给定点产生的磁场大小和方向。当然,用毕萨定律判断载流导线在空间某点产生的磁场方向与中学教材中讲述的根据安培定则判断方向的结论是一致的,只不过用了矢量的数学运算。

其次,在磁场对通电导线的作用的阐述方面,中学物理教材只能计算电流方向与磁场方向垂直的直导线在匀强磁场中所受安培力的大小,并用左手定则判断其方向;大学物理教材可以根据安培定律计算磁场对任意形状载流导线的作用力通常叫安培力,并用矢量叉积法或者右螺旋法则判断其方向。并且大学物理中还可以计算无限长两平行载流直导线间的相互作用力以及磁场对载流线圈的作用力。另外,中学教材从基本的电磁感应现象入手,通过载流导线在磁场中的受力,先定义这种力叫作“安培力”,再详细研究影响安培力大小的因素,写成公式即:B=F/IL。而在大学物理教材中,可以分别从运动电荷在磁场中的受力和安培定律的基础上对磁感应强度进行定义。中学教材中并没有体现磁感应强度的方向与安培力的方向的关系,因为高中生没有学过微元法,用一小段通电导线检测物体所受的安培力,这样的实验演示比较形象直观。但测得的磁感应强度是一小段通电导线在一定范围内的平均值,并不适用于非匀强磁场。大学物理教材中磁感应强度的定义与毕萨定律和安培定律相对应,但在实际上不可能得到单独的电流元,所以没有办法用实验直接确定两个电流元之间的相互作用,只能从闭合载流回路的实验中间接地反推出来结果。

最后,在对电磁感应的学习上,中学物理教材首先是通过一些基本的电磁感应现象来研究电磁感应的产生条件,即只要闭合回路所包围面积的磁通量发生变化,回路中就一定有感应电流产生,另外感应电流的方向可以由楞次定律判断。在中学物理的课堂教学中,应该引导学生通过积极思考和查阅相关资料来主动地获得电磁感应相关的背景知识,要让学生自己深刻体会到这一理论是以法拉第为代表的一批科学家通过很多年的探索才发现的。相比较而言,大学物理教材更强调对法拉第电磁感应定律中动生电动势和感生电动势的理解,即磁通量变化的两种原因上。对于这两部分的讲述重点应该放在感生电场和洛伦兹力这两点上,它们起到一个承前启后的衔接作用:前者为学习电磁波做准备,后者可看作对前面知识的复习和巩固。

2结语

在大学物理电磁学部分教学中,要让学生真切地感受到大学物理不仅仅是中学物理课程的简单重复,让学生能够理解大学物理对研究对象以及所学定理的阐述更具有一般性,要重视高等数学表达式的物理内涵,建立物理思维。所以,做好大学物理和中学物理内容的衔接,有利于学生更深入地理解大学物理的教学内容,增强学习兴趣,提高教学效果。

参考文献

[1]安秉权,张秉让.大学物理与中学物理比较电磁学部分[J].固原师专学报:自然科学版,2002,236:59-62.

[2]尹彩流.《大学物理》电磁学教学中类比法的应用[J].广西民族大学学报:自然科学版,2021,172:98-100.

[3]汪涛.比较法在电磁学教学中的运用[J].新乡师范高等专科学校学

报,2021,175:48-49.

[4]吴英.中学电磁学知识点与大学电磁学部分理论的对比[J].喀什师范学院

报,2021,336:65-68.

[5]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,2021:7.

[6]唐亚楠,潘立军.大学物理和中学物理教学有效衔接的探讨[J].郑州师范教

育,2021,74:26-29.

感谢您的阅读,祝您生活愉快。

大学物理近代物理学基础公式大全

一. 狭 义相对论 1. 爱因斯坦的两个基本原理 2. 时空坐标变换 3. 45(1(2)0 m m γ= v = (3)0 E E γ= v =(4) 2222 C C C C v Pv Pv Pv P E E E E ==== 二. 量子光学基础 1. 热辐射 ① 绝对黑体:在任何温度下对任何波长的辐射都能完全吸收的物体。 吸收比:(T)1B αλ、= 反射比:(T)0B γλ、= ② 基尔霍夫定律(记牢) ③ 斯特藩-玻尔兹曼定律 -vt x C v = β

B B e e :单色辐射出射度 B E :辐出度,单位时间单位面积辐射的能量 ④ 唯恩位移定律 m T b λ?= ⑤ 普朗克假设 h εν= 2. 光电效应 (1) 光电效应的实验定律: a 、n I ∝光 b 、 0 00a a a a e U ek eU e U ek eU e U ek eU e U ek eU νννν----==== (23、 4 三. 1 ② 三条基本假设 定态,,n m n m h E E h E E νν=-=- ③ 两条基本公式 2210.529o n r n r n A == 12213.6n E E eV n n -== 2. 德布罗意波 20,0.51E mc h E MeV ν=== 22 mc mc h h νν== 电子波波长:

h mv λ= 微观粒子的波长: h h mv mv λλ= === 3. 测不准关系 x x P ???≥h 为什么有?会应用解题。 4.波函数 ① 波函数的统计意义: 例1① ② 例2.① ② 例3.π 例4 例5,,设 S 系中粒子例6 例7. 例8. 例9. 例10. 从钠中移去一个电子所需的能量是2.3eV ,①用680nm λ=的橙光照射,能否产生光电效应?②用400nm λ=的紫光照射,情况如何?若能产生光电效应,光电子的动能为多大?③对于紫光遏止电压为多大?④Na 的截止波长为多大? 例11. 戴维森革末实验中,已知电子束的动能310k E MeV =,求①电子波的波长;②若电子束通过0.5a mm =的小孔,电子的束状特性是否会被衍射破坏?为什么? 例12. 试计算处于第三激发态的氢原子的电离能及运动电子的德布罗意波长。 例13. 处于基态的氢原子,吸收12.5eV 的能量后,①所能达到的最高能态;②在该能态上氢原子的电离能?电子的轨道半径?③与该能态对应的极限波长以及从该能态向低能态跃迁时,可能辐射的光波波长?

大学物理电磁学考试试题及答案)

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电 势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ=. (B) E =0,r Q U 04επ= . (C) 2 04r Q E επ= ,r Q U 04επ= . (D) 2 04r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2 )在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 3.在磁感强度为B ? 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平 面的法线方向单位矢量n ?与B ? 的夹角为 ,则通过半球面S 的磁通量(取 弯面向外为正)为 (A) r 2 B . . (B) 2 r 2B . (C) -r 2B sin . (D) -r 2 B cos . [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 O R r P Q n ?B ?α S D I S V B ?

(A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的 导线可以自由运动,则载流I 2的导线开始运动的趋势是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ] 6.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A) R I π20μ. (B) R I 40μ. (C) 0. (D) )1 1(20π -R I μ. (E) )1 1(40π +R I μ. [ ] 7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为 T ,则可求得铁环的相对磁导率r 为(真空磁导率 =4 ×10-7 T ·m ·A -1 ) (A) ×102 (B) ×102 (C) ×102 (D) [ ] y z x I 1 I 2 O R I

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势 为零,则球内距离球心为r 的P 点处的电场强度的大小与电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ=. (C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 2、一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O + 2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面 向外为正)为 (A) πr 2B . 、 (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 4、一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的 霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5、两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以 自由运动,则载流I 2的导线开始运动的趋势就是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ] y z x I 1 I 2

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

大学物理电磁学复习题含答案

题8-12图 8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强. 解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E ? ?)(21210σσε-= 1σ面外, n E ? ?)(21210 σσε+-= 2σ面外, n E ?? )(21210 σσε+= n ? :垂直于两平面由1σ面指为2σ面. 8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E ? , ρ- 球在O 点产生电场'd π4π34 3 0320 OO r E ερ =? ∴ O 点电场'd 33 030OO r E ερ=?; (2) ρ+ 在O '产生电场'd π4d 34 30301OO E ερπ='? ρ-球在O '产生电场002='E ? ∴ O ' 点电场 0 03ερ= ' E ?'OO 题8-13图(a) 题8-13图(b) (3)设空腔任一点P 相对O '的位矢为r ? ',相对O 点位矢为r ? (如题8-13(b)图) 则 0 3ερr E PO ??= ,

3ερr E O P ' - ='??, ∴ 0 003'3)(3ερερερd OO r r E E E O P PO P ? ?????=='-=+=' ∴腔内场强是均匀的. 8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放 在1.0×105N ·C -1 的外电场中,求外电场作用于电偶极子上的最大力矩. 解: ∵ 电偶极子p ? 在外场E ?中受力矩 E p M ? ???= ∴ qlE pE M ==max 代入数字 4536max 100.2100.1102100.1---?=?????=M m N ? 8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ? ? == ?=2 2 2 1 0212 021π4π4d d r r r r q q r r q q r F A εε??)11(2 1r r - 61055.6-?-=J 外力需作的功 61055.6-?-=-='A A J 题8-16图 8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示 0π41 ε= O U 0)(=-R q R q 0π41ε= O U )3(R q R q -R q 0π6ε- = ∴ R q q U U q A o C O 00 π6)(ε= -= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势. 解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l = 则θλd d R q =产生O 点E ? d 如图,由于对称性,O 点场强沿y 轴负方向

大学物理公式大全

大学物理公式大全 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r =dt dr 1. 3速度v=dt ds = =→→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim △t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 0220 0 1.17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y= g a v 22sin 20 1.21飞行时间y=xtga —g gx 2 1.22轨迹方程y=xtga —a v gx 2 202 cos 2 1.23向心加速度 a=R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相 同a n =R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦ R dt d R dt ds v === 1.29角速度 dt φ ωd = 1.30角加速度 22dt dt d d φ ωα== 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速 直线运动状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与

大学物理电磁学部分练习题讲解

大学物理电磁学部分练 习题讲解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理电磁学部分练习题 1.在静电场中,下列说法中哪一个是正确的(D ) (A )带正电荷的导体,其电势一定是正值. (B )等势面上各点的场强一定相等. (C )场强为零处,电势也一定为零. (D )场强相等处,电势梯度矢量一定相等. 2.当一个带电导体达到静电平衡时:D (A )表面上电荷密度较大处电势较高. (B )表面曲率较大处电势较高. (C )导体内部的电势比导体表面的电势高. (D )导体内任一点与其表面上任一点的电势差等于零. 3. 一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布 为(r 表示从球心引出的矢径): ( 0 r r R 3 02εσ) =)(r E )(R r <, =)(r E )(R r >. 4.电量分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为 R ,则b 点处的电势U = )22(813210q q q R ++πε 5.两个点电荷,电量分别为+q 和-3q ,相距为d ,试求: (l )在它们的连线上电场强度0=E 的点与电荷量为+q 的点电荷相距多远? (2)若选无穷远处电势为零,两点电荷之间电势U = 0的点与电荷量为+q 的点电荷相距多远? ? ? d q +q 3-

x θ O d E ? .解:设点电荷q 所在处为坐标原点O ,X 轴沿两点电荷的连线. (l )设0=E 的点的坐标为x ′,则 0) '(43' 42 02 0=-- = i d x q i x q E πεπε 可得 0'2'222=-+d dx x 解出 d x )31(21'1+-=和 d x )13(21' 2-= 其中'1x 符合题意,'2x 不符合题意,舍去. (2)设坐标x 处 U = 0,则 ) (43400x d q x q U -- = πεπε 0]) (4[ 40 =--= x d x x d q πε 得 4/0 4d x x d ==- 6.一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小. 解答:将半球面分成由一系列不同半径的带电圆环组成,带电半球面在圆心O 点处的电场就是所有这些带电圆环在O 点的电场的叠加。 今取一半径为r ,宽度为Rd θ的带电细圆环。 带电圆环在P 点的场强为:() 3222 01 ?4qx E r a x πε= + 在本题中,cos x h R θ==,a r =

大学物理公式大全下册

电磁学 1.定义: ①E 和B : F =q(E +V ×B )洛仑兹公式 ②电势:? ∞ ?= r r d E U 电势差:?-+ ?=l d E U 电动势:? + - ?= l d K ε(q F K 非静电 =) ③电通量:???=S d E e φ磁通量:???=S d B B φ磁通链: ΦB =N φB 单位:韦伯(Wb ) 磁矩:m =I S =IS n ? ④电偶极矩:p =q l ⑤电容:C=q/U 单位:法拉(F ) *自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I = dt dq ; *位移电流:I D =ε 0dt d e φ 单位:安培(A ) ⑦*能流密度: B E S ?= μ 1 2.实验定律 ①库仑定律:0 204r r Qq F πε= ②毕奥—沙伐尔定律:204?r r l Id B d πμ?= ③安培定律:d F =I l d ×B ④电磁感应定律:ε感= –dt d B φ 动生电动势:?+ -??= l d B V )(ε 感生电动势:? - + ?=l d E i ε(E i 为感生电场) *⑤欧姆定律:U=IR (E =ρj )其中ρ为电导率 3.*定理(麦克斯韦方程组) 电场的高斯定理:?? =?0 εq S d E ??=?0 εq S d E 静 (E 静是有源场) ??=?0S d E 感 (E 感是无源场) 磁场的高斯定理:??=?0S d B ??=?0S d B (B 稳是无源场) E =F /q 0 单位:N/C =V/m B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G ) Θ ⊕ -q l

大学物理电磁学测试题

大学物理电磁学测试题 舱室姓名 一.选择?1. 一元电流在其环绕的平面内各点的磁感应强度B 【】(A) 方向相同,大小相等;(B) 方向不同,大小不等; (C) 方向相同,大小不等;(D) 方向不同,大小相等。 2. 下列各种场中的保守力场为: 【】 (A) 静电场;(B) 稳恒磁场;(C) 涡旋电场;(D) 变化磁场。 ??3. 一带电粒子以速度v垂直射入匀强磁场B中,它的运动轨迹是半径为R的圆,若要半径变为2R, 磁场B应变为: (A) 【】2B(B)2B(C)1B2(D)2B 2 ?4. 如图所示导线框a,b,c,d置于均匀磁场中(B的方向竖直向上),线框可绕AB轴转动。导线 通电时,转过?角后,达到稳定平衡,如果导线改用密度为原来1/2的材料做,欲保持原来的稳定 平衡位置(即?不变),可以采用哪一种办法?(导线是均匀的) 【】 ? (A) 将磁场B减为原来的1/2或线框中电流强度减为原来的1/2; (B) 将导线的bc部分长度减小为原来的1/2;

(C) 将导线ab和cd部分长度减小为原来的1/2; ?(D) 将磁场B减少1/4,线框中电流强度减少1/4。 5. 如图所示,L1,L2回路的圆周半径相同,无限长直电流I1,I2,在L1,L2内的位置一样,但在(b) 图中L2外又有一无限长直电流I3,P1与P2为两圆上的对应点,在以下结论中正确的结论是 选择题(4) (A) L1????B?dl?B?dl,且BP1?BP2 (B) L2 L2????B?dl?B?dl,且BP1?BP2 L1L2 【】????(C) B?dl?B?dl,且BP1?BP2 (D) L1L1????B?dl?B?dl,且BP1?BP2 L2 1 二.填空 1.两根平行金属棒相距L,金属杆a,b可在其上自由滑动,如图所示在两棒的同一端接一电动势为E,内阻R的电源,忽略金属棒及ab ?B杆的电阻,整个装置放在均匀磁场中,则a,b杆滑动的极限速度。 2. 如图所示,XOY和XOZ平面与一个球心位于O点的球面相交,在得到的两个圆形交线上分别流有强度相同的电流,其流向各与y轴和z轴的正方向成右手螺旋关系,则由此形成的磁场在O点的方向为: 3. 图示为三种不同的磁介质的填空题(2)B-H关系曲线,其中虚线表示的是B??oH关系.说明a, b, c各代表哪一类磁介质的B-H关系曲线: a 代表的B-H关系曲线 b代表的B-H关系曲线

大学物理电磁学公式总结

大学物理电磁学公式总结 Prepared on 22 November 2020

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强 点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面 均匀带电球体 均匀带电长直圆柱面 均匀带电长直圆柱体无限大均匀带电平面 六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面 均匀带电直线 十、导体静电平衡条件 (1)导体内电场强度为零;导体表面附近场强与表面垂直。(2)导体是一个等势体,表面是一个等势面。 推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系

十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。 十二、电容器的电容 平行板电容器 圆柱形电容器 球形电容器 孤立导体球 十三、电容器的联接 并联电容器 串联电容器 十四、电场的能量 电容器的能量 电场的能量密度 电场的能量 稳恒电流磁场小结一、磁场 运动电荷的磁场 毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场 圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向 六、洛伦兹力 七、安培力公式

八、载流平面线圈在均匀磁场中受到 的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强 电源电动势 一段电路的电动势 闭合电路的电动势当 时,电动势沿电路(或回路)l的正方向, 时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为若时,电动势沿回路l 的正方向,时,沿反方向。对线图,为全磁通。 3、感应电流 感应电量 三、电动势的理论解释 1、动生电动势在磁场中运动的导线l 以洛伦兹力为非电静力而成为一电源,导线上的动生电动势 若,电动势沿导线l的正方向,若,沿反方向。动生电动势的大小为导线单位时间扫过的磁通量,动生电动势的方向可由正载流子受洛伦兹力的方向决定。直导线在均匀磁场的垂面以磁场为轴转动 。平面线圈绕磁场的垂轴转动。 2、感生电动势变化磁场要在周围空间激发一个非静电性的有旋电场E,

大学物理电磁学公式总结

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强 点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面 均匀带电球体 均匀带电长直圆柱面 均匀带电长直圆柱 体 无限大均匀带电平面 六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势 点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面 均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零 ;导体表面附近场强与表面垂直 。 (2) 导体是一个等势体,表面是一个等势面。推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影

响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。 十二、电容器的电容 平行板电容器 圆柱形电容器 球形电容器 孤立导体球 十三、电容器的联接 并联电容器 串联电容器 十四、电场的能量 电容器的能量 电场的能量密度 电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场 毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场 圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强

电源电动势 一段电路的电动势 闭合电路的电动势 当 时,电动势沿电路(或回路)l 的正方向, 时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的 感应电动势为 若时,电动势 沿回路l 的正方向,时,沿反方向。对线图,为全磁通。 3、感应电流 感应电量 三、电动势的理论解释 1、动生电动势在磁场中运动的导线l以洛伦兹力为非电静力而成为一电源,导线上的 动生电动势 若,电动 势沿导线l 的正方向,若,沿反方向。动生电动势的大小为导线单位时间扫过的磁通量,动生电动势的方向可由正载流子受洛伦兹力的方向决定。直导线在均匀磁场的 垂面以磁场为轴转动。平面线 圈绕磁场的垂轴转动。 2、感生电动势变化磁场要在周围空间激发一个非静电性的有旋电场E,使在磁场中的导线l成为一电源,导线上的感生电动 势 有旋电场的环流 有旋电场绕磁场的变化率左旋。圆柱域匀磁场激发的有旋电 场 射光互相垂直,

大学物理公式大全

第一章 质点运动学与牛顿运动定律 1、1平均速度 v = t △△r 1、2 瞬时速度 v=lim 0△t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 1、6 平均加速度a = △t △v 1、7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1、8瞬时加速度a=dt dv =2 2dt r d 1、11匀速直线运动质点坐标x=x 0+vt 1、12变速运动速度 v=v 0+at 1、13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1、14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1、15自由落体运动 1、16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 02200 1、17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1、18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1、19射程 X=g a v 2sin 2 1、20射高Y= g a v 22sin 20 1、21飞行时间y=xtga —g gx 2 1、22轨迹方程y=xtga —a v gx 2 202 cos 2 1、23向心加速度 a=R v 2 1、24圆周运动加速度等于切向加速度与法向加速度矢量与a=a t +a n 1、25 加速度数值 a=2 2 n t a a + 1、26 法向加速度与匀速圆周运动的向心加速度相同 a n =R v 2 1、27切向加速度只改变速度的大小a t = dt dv 1、28 ωΦR dt d R dt ds v === 1、29角速度 dt φ ωd = 1、30角加速度 22dt dt d d φ ωα== 1、31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1、39 F=G 2 2 1r m m G 为万有引力称量=6、67×10-11 N ?m 2 /kg 2 1、40 重力 P=mg (g 重力加速度) 1、41 重力 P=G 2 r Mm 1、42有上两式重力加速度g=G 2 r M (物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)

大学物理电磁学知识点汇总

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基础。)习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

精选-大学物理电磁学部分总结

电磁学部分总结 静电场部分 第一部分:静电场的基本性质和规律 电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。静电场的物质特性的外在表现是: (1)电场对位于其中的任何带电体都有电场力的作用 (2)带电体在电场中运动,电场力要作功——电场具有能量 1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。 电场强度 电势 2、反映静电场基本性质的两条定理是高斯定理和环路定理 要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。重点是高斯定理的理解和应用。 3、应用 (1)、电场强度的计算 a)、由点电荷场强公式 及场强叠加原理 计算场强 q F E a a a r d E q W U 0 i S e q S d E 0 1 r d E L 020 41r r q E i i E E

一、离散分布的点电荷系的场强 二、连续分布带电体的场强 其中,重点掌握电荷呈线分布的带电体问题 b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布 一般诸如球对称分布、轴对称分布和面对称分布,步骤及例 题详见课堂笔记。还有可能结合电势的计算一起进行。 c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算 或电势分布已知的情形),掌握作业及课堂练习的类型即可。 (2)、电通量的计算 2041i i i i i i r r q E E 0 204d r r q E d E U gradU E ) (k z U j y U i x U

a)、均匀电场中S 与电场强度方向垂直 b)、均匀电场,S 法线方向与电场强度方向成q 角 c)、由高斯定理求某些电通量 (3)、电势的计算 a)、场强积分法(定义法)——根据已知的场强分布,按定义 计算 b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用 电势叠加原理计算 第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件 导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状 态。 静电平衡下导体的特性: (1)整个导体是等势体,导体表面是个等势面; (2)导体内部场强处处为零,导体表面附近场强的大小与该 表面的电荷面密度成正比,方向与表面垂直; (3)导体内部没有净电荷,净电荷只分布在外表面。 P P r d E U r dq dU r q U U i i i 0044

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

电磁学公式总结

大学物理电磁学公式总结 ?第一章(静止电荷的电场) 1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。 2.库仑定律:两个静止的点电荷之间的作用力 F =kq1q2 e r= r2 3.电力叠加原理:F=ΣF i , q0为静止电荷 4.电场强度:E=F q0 5.场强叠加原理:E=ΣE i 用叠加法求电荷系的静电场: E=(离散型) E=(连续型) 6.电通量:Φe= 7.高斯定律:=Σq int 8.典型静电场: 1)均匀带电球面:E=0 (球面内) E=(球面外) 2)均匀带电球体:E==(球体内) E=(球体外)

3) 均匀带电无限长直线: E= ,方向垂直于带电直线 4) 均匀带电无限大平面: E=,方向垂直于带电平面 9. 电偶极子在电场中受到的力矩: M=p×E ? 第三章(电势) 1. 静电场是保守场: =0 2. 电势差:φ1 –φ2= 电势:φp =∫E 鈥r (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ= 电荷连续分布的带电体的电势:φ= 4. 电场强度E 与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i +j +k ) 电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。 5. 电荷在外电场中的电势能:W=q φ 移动电荷时电场力做的功:A 12=q(φ1 –φ2)=W 1-W 2 电偶极子在外电场中的电势能:W=-p?E

?第四章(静电场中的导体) 1.导体的静电平衡条件:E int=0,表面外紧邻处Es⊥表面或导体是个等势体。 2.静电平衡的导体上电荷的分布: Q int=0,σ=ε0E 3.计算有导体存在时的静电场分布问题的基本依据: 高斯定律,电势概念,电荷守恒,导体经典平衡条件。 4.静电屏蔽:金属空壳的外表面上及壳外的电荷在壳内的合场强总为零,因而对壳内无影响。?第五章(静电场中的电介质) 1.电介质分子的电距:极性分子有固有电距,非极性分子在外电场中产生感生电距。 2.电介质的极化:在外电场中固有电距的取向或感生电距的产生使电介质的表面(或 内部)出现束缚电荷。 电极化强度:对各向同性的电介质,在电场不太强的情况下 P=ε0(εr-1)E=ε0X E 面束缚电荷密度:σ’=P?e n 3.电位移:D=ε0E+P 对各向同性电介质:D=ε0εr E=εE D的高斯定律:=q0int 4.电容器的电容:C=Q U

相关文档
最新文档