工业实时以太网技术比较(1)

工业实时以太网技术比较(1)
工业实时以太网技术比较(1)

主流实时以太网技术的比较

一、各个实时以太网技术概要summay of different RT-Ethernet tehcnologies

当前,工业实时以太网技术蓬勃发展,正在取代传统的现场总线技术(Profibus,CAN,Interbus,Fieldbus,DeviceNet,Modbus),市场上出现了众多实时通信技术,本文对其进行了比较,这些实时以太网均建立在uS级的循环周期上,而不列入ModBus TCP/IP、Ethernet TCP/IP这些mS级的通信技术,并且也不将非主流的以太网技术列入,纯粹在实时以太网这个领域里进行比较(这里的实时以太网遵循INONA所提出的实时分类级别)。

需要申明的是,本文仅提供一个全景式的概览,而非倾向性的描述,旨在客观公正的对各种技术的特点进行分析,以作为互相交流,不作为选择网络技术的参考依据。

1.1ProfiNet IRT

ProfiNet提供了三个不同的版本,按照其实现和对应用的实时性支持能力为ProfiNet/Cba,ProfiNet RT,ProfiNet IRT,其中ProfiNet/Cba是建立在Soft IP基础上,采用交换机连接方式,由于交换机所带来的时间延迟,因此,无法支持较快的同步速度,ProfiNet并不具备很高的实时性,而RT也无法满足高速运动控制的需求,而ProfiNet IRT则是设计为更快速的运动控制应用,因此,采用了专用的芯片来实现,这使得其速度得到了大幅度的提高,可以达到100个伺服100uS的数据刷新能力,系统抖动为1uS。

目前Profinet已经开始大量使用,而ProfiNet IRT尚未正式得到大量使用.

1.2Ethernet POWERLINK

采用轮询方式,由主站MN和CN构成,系统由SoC开始启动等时同步传输,由主站为每个CN分配固定时间槽,通过这一机制来实现实时数据交换,同时也通过多路复用和节点序列方式来优化网络的效率,支持标准的Ethernet报文,应用层采用CANopen,Ethernet POWERLINK无需专用的芯片,并且可运行在多种OS上。

POWERLINK多路复用技术

Ethernet POWERLINK标准化组织EPSG在2007年宣布放弃对POWERLINK所有专利的拥有,从而使得POWERLINK技术成为了目前实时以太网技术里第一个也是唯一一个”Open Source Technology”-这意味着加入Powerlink组织的成员均拥有此技术。

1.3SERCOSIII

通过主从结构的设计来实现数据交换,在一个SERCOSIII的数据中,主站与从站之间的数据包传输M/S同步数据交换与CC直接交叉通信数据以及Safety数据,由Sync同步管理机制来控制各种数据传输方式的进行。

1.4EtherCAT,采取一种所谓“数据列车”的方式设计,“边传输边处理”的方式按照顺序将数据包发送到各个从节点,然后再回到主站,这样的话,任务的处理将在下一个周期里完成,主节点通常采用PC,而从节点背板间采用LVDS-低压差分驱动信号传输方式,可以达到非常高的数据交换,但是,这同时也意味着从站需要特殊的硬件,ASIC或FPGA,由于EtherCAT有ASIC,其并不主推FPGA方案。

由于采用集束帧的方式,该数据传输方式只能采用环形冗余或星形冗余方式,在拓扑结构上会受到一定的限制,另外,由于其传输是一个循环而处理是一个循环,这就使得它通常需要两个周期才能完成一次交换,其效率较低,通常对于小数据量的系统比较快速,而对大数据量节点数较多时该网络速度反倒较低。

1.5Ethernet/IP CIP

采用消费者与生产者模式运行整个过程。

Ethernet/IP CIP基于原有的Rockwell AB的DeviceNet,ControlNet的控制和信息协议,采用了在OSI的会话层和表示层的修改,作为一种软件形式的协议,它显然具有较高的数据通过率,适应于大块的数据通信,因此,更适合作为网关和交换设备的应用,其实时性却受到一定的限制,但是,它完全兼容标准以太网,因此,具有很好的到工厂与企业的IT层互联的能力。

二、主要特点比较

下表对主要的实时以太网技术的关键参数进行了比较,罗列如下:

比较项

Ethernet

POWERLINK ProfiNet IRT SERCOSIII EtherCAT Ethernet/IP CIP

抖动<<1uS 1uS <1uS

<<1uS <1uS 循环周期100uS(Max) 1ms 25us

100uS 100uS 传输距离100m 100m 40m

100m 100m 直接交叉通信Yes Yes

介质双绞线/M12/光纤双绞线光纤双绞线/M12 光纤

历史2001.11 IRT尚未发布2007 2007 CIP Sync尚未发布是否需特殊硬件无特殊硬件需求Yes/ASIC FPGA

Or

ASIC

Yes:从站 ASIC ASIC

是否需要RTOS No Yes Yes

Yes No 开放性开源技术需授权需授权需授权需授权

原始技术CANopen ProfiBus SERCOS

CANopen DeviceNet

SERCOS ControlNet 硬件实现简单复杂复杂简单简单

软件实现简单简单复杂复杂复杂

始创公司B&R SIEMENS Rexroth Beckhoff Rockwell

AB 推广组织EPSG PNO IGS

ETG ODVA 节点安装数大于600,000 Unvaliable 未知未知 Unvaliable

拓扑结构任意拓扑受限受限(环形)受限(环形)任意拓扑

同步方式 IEEE1588时钟同步IEEE1588时钟同步分布时钟 IEEE1588时钟同步

网络编程简单复杂复杂复杂简单

网络关注I/O,运动控制,Safety 现场总线

运动控制运动控制

I/O

运动控制,Safety I/O,运动控制,Safety

动态配置可以可以否否可以

三、各以太网技术发展历史

实时通信技术的历史渊源将为我们展示各种技术的起源,每项技术都有其继承性,因此,带有其原有的烙印:

3.1.第一个实时以太网-Ethernet Powerlink,在2001年11月,该技术即投入使用,由B&R开发,作为OEM业界领先的控制技术提供商,B&R将其所具有的灵活架构设计、开放性和持续的创新理念融入其中,因此,Powerlink技术便具有了其灵活拓扑结构、功能强大而易用使用、具有未来的可持续发展能力。

3.2.SERCOSIII起始于Bosch Rexroth的SERCOS,SERCOS在1996年即推出的一种适用于CNC和机器人领域的现场总线,该公司传统在CNC和Robotics等应用上,因此,其设计基于CNC应用的设备描述文件,更为侧重运动控制,在初始的SERCOS设计里其拓扑仅支持环形网络,并且只用于传输伺服数据,而不用于传输高速I/O数据,这使得在其应用中通常采用两个不同的总线来处理数据通信,用I/O总线如Profibus,Interbus做逻辑信号传输,而SERCOS则处理伺服间数据,并且第一代的SERCOS并不支持双绞线的连接,而采用了光纤传输,速度为12Mbps最大,为了克服SERCOS这种现场总线的局限性,Bosch Rexroth开发了基于以太网技术的SERCOSIII,并在2007年发布。

3.3.Profinet则建立在Profibus基础上,由于其始创公司SIEMENS在过程控制领域的强大实力,使得其广泛应用于DCS系统、现场仪表层、事件控制等流程工业领域,而2007年Profinet被推出,但是,是一个基于软实现方案,其刷新时间在5mS~100mS等级,因此其实时性并未达到INONA所定义的实时以太网级别,而为了解决在运动控制领域的高实时性要求,SIEMENS计划推出Profinet IRT,而为了实现这一网络的高实时性,则采用了ASIC技术来修改MAC层,IRT尚未得到大量的使用。

3.4.Ethernet/IP,Rockwell AB作为传统的自动化厂商,并且在过程控制领域具有较强的影响力,其传统的Devicenet是一个专业的现场总线,在此基础上的Ethernet/IP并未强调极高的实时性-由于传统的过程控制领域对于实时性的要求并非像高速数据采样、运动控制与CNC 那么高,因此,其Ethernet/IP并不具备高实时性,只在mS等级的循环周期,为了解决这个问题,RA在其系统中采用了SERCOSIII,EtherCAT 接口,但是,未来其仍然聚焦在其自主开发的Ethernet/IP CIP技术,而DeviceNet在使用方面较之Profibus编程和网络配置较为复杂,这也使得其基础上的Ethernet/IP CIP面临这样的问题。

3.5.EtherCAT,其始创公司Beckhoff是一个以PC技术为导向的公司,建立在Windows平台上的技术具有良好的操作性设计,但是Windows 本身不具备高实时性,因此,在PC上添加一个实时操作系统来运行实时网络。

四、节点安装现状与未来发展

4.1.当前安装状况:各以太网技术的发展历史说明其技术的成熟度,Powerlink技术具有最大的市场应用,来自IMS的数据显示如下:

在这份报告中,Ethernet TCP/IP的标准以太网安装节点数最多,这些通常应用于与上位的管理系统的连接,如PLC、IPC与ERP、MRP 系统的连接,通过标准以太网,由于数据没有严格的实时性要求,因此,普通的以太网即可使用,而Modbus基础上升级的Modbus TCP 借助传统的Modbus占据了较大的安装量,但是,这些通常应用于PC到PLC、伺服的程序下载,与HMI的连接或者仪表层的接口,因此,其应用也非是实时性较高的领域,而Ethernet/IP和ProfiNet都是应用于流程工业领域的,其实时性并不是特别高,一般在5mS~100mS 等级,而真正的实时以太网应用则是Ethernet POWERLINK,EtherCAT,SERCOSIII,CC-Link IE,由这一数据统计可以看出,Ethernet POWERLINK具有最大的节点安装数,这与Powerlink技术推出较早有较大的关系,也与Powerlink产品在实时性要求较高的数据采样、运动控制应用有关。

4.2支持厂商

目前EtherCAT由超过1000个支持厂商,而POWERLINK则有超过800个支持厂商,在中国POWERLINK技术因为其“OpenSource Technology”的原因取得了广泛认可,而EtherCAT则由于其先行的市场推广而同样具有众多的开发厂商。SERCOS则在传统的CNC和机器人领域有一定的市场拥护者,ProfiNet由于SIEMENS的强大市场号召力,虽然其推广目前受到ProfiBus的使用而未进行大规模的实际推广,但是,依赖于SIEMENS本身产品如S7-1200,S7-300系列带有ProfiNet接口产品的应用而会快速成长。

4.3未来分析:根据ARC对于未来实时通信的预测,将划分为两大方向,一种是由先天的市场占有而引起的市场发展例如:ProfiNet,Ethernet/IP其主流支持厂商具有较强的市场地位,因此,这类总线将在广泛市场上占据主导,而Ethernet Powerlink、SERCOSIII、EtherCAT则更为偏重于专业市场如智能电网、航空航天、产业机械、医疗等领域各自发挥其专业性。、

POWERLINK的开源技术理念将带给该项技术更多的未来市场支持,尤其是在中国,这一举措将赢得更多的公司信任并加入POWERLINK 阵营。

来自中立机构的预测也显示这几种实时以太网技术的未来市场预测,由此可以看出,ProfiNet 和Ethernet/IP 将占据较大的份额,而POWERLINK 、EtherCAT 、SERCOSIII 同样占据一定的市场份额。

五、性能与功能分析

5.1“短板理论”-通信速度已经不是系统瓶颈,按照短板理论,系统的速度取决于最短的一块板,而非最长的一块板,举例来说,一个系统由多个自动化组件构成,PLC 的CPU 处理速度、I/O 自身的延迟、伺服系统的位置环刷新速度,从目前的技术来看,似乎以太网本身的速度基本上能满足各种应用的需求,各个以太网技术基本上都能够达到100Mbps 的传输、100m 的传输距离需要、小于1uS 的抖动,对于I/O 采样而言这个速度是毫无疑问足够的,而对于CNC 插补计算、机器人的坐标转换而言,目前国内的水平维持在5mS 左右的应用水平,而欧美的主要厂商如KUKA 、ABB 、Staubli 的机器人系统则要求更高的速度处理,小于100uS ,但是,经过分析发现,由于这些传统的机器人系统采用的均是简单的伺服驱动器,不具备速度环自身处理能力,因此,速度环必须放在主站来处理,这使得主站既要处理速度环,也要进行插补计算,并且插补计算发送给各个伺服轴,而伺服轴的速度环位置环又运行在主站上,这使得对于实时性的要求变得非常苛刻,而今天,随着智能伺服技术的发展,速度环与位置环计算完全可以在驱动器上来完成,这也使得原有的对于极高刷新速度的要求降低,这也是为什么这些传统的机器人系统平台开始转向通用平台,而逐渐不再使用原有的专用总线的原因。 评估项 POWERLINK

ProfiNet IRT

SERCOSIII

EtherCAT

Ethernet/IP CIP

传输速率 100Mbps 100Mbps 100Mbps 100Mbps 100Mbps 传输距离 100m 100m 40m 100m 100m 抖动 <<1uS 1uS 1uS 1uS 1uS 循环时间 100uS(Min) 1mS(min) 25uS(min) 125uS(max) 100uS 下一代技术 Gbps/10Gbps Gbps

Gbps

5.2确定性与能观系统

对于一些应用,如测试系统,需要挂接外部的输入信号,从中进行数据分析来判断问题的引发与导向,从而判断系统的改善与设计的调整,这样的测试系统往往具有较高,而这一点体现了系统的客观性,由于采用IEEE1588分布式时钟系统,每个Ethernet 的数据包均有时间戳,而这一时间戳可以在现有的以太网测试工具下进行直观的判断,例如Wireshark 即是这样一款工具。

5.3功能分析

5.3.1直接交叉通信的实现

目前SERCOSIII 、Ethernet POWERLINK 技术均具有直接交叉通信的能力,而这一能力主要体现在从站之间的数据交换,在一个运动控制系统中,可以由此技术来为各个从站之间建立其数学关系,通过两个轴或多个轴之间的直接通信来实现同步关系、补偿关系等,对于运动控制及多个CPU 的处理而言,这一技术将带来极大的便利。而EtherCAT 由于采用的是“边传输边处理”方式,而非采用广播形式发布数据,使得它不具备这一能力,同样,采用该机制的Ethernet/IP CIP 也不具备这一能力。 5.3.2拓扑结构

由于采用标准的以太网结构,因此,Ethernet/IP CIP 和Ethernet POWERLINK 技术则可以实现任意的拓扑结构,而EtherCAT 由于是采

用数据列车的结构,因此,其无法实现灵活的拓扑结构,仅在环形网络中进行数据的传输,这也同时造成了系统的无法动态配置,而必须重新启动网络配置。

5.3.3对于热插拔的支持能力,各个网络由于本身所需要的设计,因此,需要进行热插拔设计。

5.3.4冗余支持能力

Ethernet POWERLINK支持环形冗余设计,这得益于其HUB方式的连接,通常POWERLINK被设计为双口HUB,这也使得它能够通过串联方式与最后的电缆回到主节点的方式构成一个环形冗余网络,当网络中的某个节点断裂时,则系统动态配置为线性网络继续保持数据通信,EtherCAT则具有冗余的支持能力,这也得益于其环形拓扑设计。

5.4未来的发展

5.4.1对待任何一项技术,我们同样需要一种更为长远的眼光去看问题,这样我们就可以更为客观的看问题,从而作出判断与选择,采用ASIC设计的以太网技术由于ASIC本身目前没有一个较为完整的方法来实现高速例如1Gbps的网络支持,因此,将无法实现更高速度的开发,若需要开发则将意味着巨大的成本投入,而POWERLINK由于采用通用的MAC层,因此,可以采用更高速的以太网技术,例如10G网络,这将使得POWERLINK迈入“万兆以太网”时代。

5.4.2开放性支持

由于可以支持各种流行的芯片技术,POWERLINK将在未来能够获得更为经济的技术支持,随着IT技术的发展,采用X86架构、FPGA 等新技术产品的推出,使得POWERLINK始终处于较为有利的方案设计方面的能力。

6.开发与实现

6.1.软件开发的简便性

CANopen之所以被广为使用,是因为它具有最为简单的设备描述文件,而相对而言,ProfiBus、SERCOS总线则具有更为复杂的设备描述和应用层的编程能力,因此,对于CANopen支持的POWERLINK与EtherCAT技术将在开发方面更为简便,应用程序的设计更为快捷,而由于采用复杂的设备描述应用层协议,ProfiNet、Ethernet/IP CIP将使得编程变得更加复杂。

6.2.硬件开发

6.2.1专用芯片-又回到从前吗?

然而,Ethernet技术之所以得到蓬勃发展的原因就在于传统的现场总线的封闭性,而今天,采用专用芯片的技术将使得实时以太网又回到技术壁垒与利益阵营之中,这使得Ethernet发展的初衷无法得到良好的响应,这也使得这些技术必然又面临着新的阻碍。

6.2.2传统的认为ASIC具有更高的性能和快速实现的能力,但是,由于协议本身的应用层软件接口的复杂性,以及通信协议处理与主控制器的标准硬件接口的设计这些因素导致了芯片开发的难度。

6.2.3 Profinet IRT和Ethernet/IP CIP尚未发布其ASIC,而SERCOSIII则提供了多家FPGA芯片的支持,如下:

6.2.4Ethernet POWERLINK则由EPSG组织的成员如Systec、IXXAT、PORT等提供了FPGA Slave方案,可以基于ALTERA和XILINX 的标准芯片,而非专门的ASIC技术,在中国本土,Ethernet POWERLINK中国用户组织则与本土软件中间服务商共同为开发者提供相应的技术支持服务,以使得能够在开源技术与实现之间建立起一个桥梁,低成本的方式实现高性能以太网技术。

6.2.5EtherCAT采用ASIC技术

6.3成本比较分析

6.3.1芯片价格

目前EtherCAT提供的芯片价格为10美元~30美元不等,由于客户采购量的不同价格具有较大的差异,而FPGA芯片由于其价格相对竞争厂商较多而产生价格的优势,一般实现POWERLINK的FPGA芯片价格大约在5~10美元之间,具有一定的成本优势。

6.3.2License费用

由于采用ASIC技术的IP Core需要一定的授权,这带来了巨大的费用支出,并且,这些代码无法修改,而通用的芯片技术则可以带来更为便捷的扩展和代码修改能力,从而满足客户的个性化需求。

Ethernet POWERLINK则无需License费用。

6.4潜在风险

ASIC由于属于私有技术,掌握在某个公司而造成了潜在的投资风险,这些风险包括:

6.4.1供货风险-在产品供应紧张情况下,尤其是2010年整个自动化行业出现的大面积芯片断货情况,这具有一定的不确定性。

6.4.2技术垄断-技术是否按照客户的意愿发展并非可控,在未来,随着需求的变化,个性化的需求逐渐变大的情况下,技术向哪个方向发展将无法得到确定。

6.4.3政治壁垒造成潜在的供货,例如:由于战争与技术封锁造成的潜在风险。

七、实时以太网的开放性分析

开放性不仅仅是互联性设计,也包括了对开放的以太网标准的支持、源代码的开放性、标准硬件实现、标准操作系统平台的支持能力方面来进行评估。

7.1是否支持标准以太网?

是否支持标准以太网的关键在于:

7.1.1.与管理层的互联能力-在未来实现“管控一体化“设计时的连接能力;

7.1.2.是否支持标准以太网同时也是影响其设备未来的生命力的关键,因为-为了突破技术壁垒而采用开放性更好的标准以太网是各种技术出现的初衷,是否支持标准以太网也意味着是否支持未来。

Powerlink提供针对标准以太网的支持能力,ProfiNet& Profinet RT采用软实现的方法可支持标准以太网,而SERCOSIII修改了MAC,虽然物理介质是RJ45,但是其已非标准以太网技术,而EtherCAT的主站支持标准以太网,而从站则不支持以太网技术,Ethernet/IP CIP仅仅是在会话层和表示层的添加,因此,在物理上仍然支持标准以太网技术。

7.2是否能够提供开源代码?

除了POWERLINK技术外,其它的实时以太网均不提供开放的源代码,而EtherCAT则需要购买无限License,支付约20万人民币的费用,ProfiNet则不提供源代码的支持能力,SERCOSIII提供可供下载的IP-Core。

开源技术具有旺盛的生命力,已经在广泛采用OpenSource的IT行业得到验证。

7.3是否可采用开放的芯片来实现?

7.3.1最优性价比

开放的芯片-即市面上可以获取的芯片能够保证开发者获得最高性价比-IT技术与市场的事实早已验证这一点,采用ALTERA或XILINX提供的最新款的芯片往往是在性能上得到很大升级而又成本低廉的,ASIC则需要巨大的量支持,但其量仍然会小于通用芯片本身,因此,在成本上开放的芯片具有更高的性价比。

7.3.2符合未来发展潮流

是否能够跟随以太网持续发展的潮流,将影响各项技术的未来发展,若无法提供足够的开放性支持,则将终究为历史所淘汰,而那些紧随历史潮流的技术将获得巨大的生命力。

7.3.3可选择范围

开放的标准芯片使得厂商具有更大的灵活空间来选择可用的芯片与技术,而不会受制于某个公司的独家技术来限制,这是非常重要的一点,尤其是在军工、航天航空、核电等领域,关系到国家技术的战略安全时更为突出。

POWERLINK为开放芯片支持的实现,可根据需要提供各种开发的平台支持,SERCOSIII也支持FPGA实现,但是其不支持其它的实现方式,因为其需要保证运动控制的高实时性需求,而Ethernet/IP CIP则由于其具有的开放性可以支持各种架构的硬件平台-Intel X86、ARM、FPGA的开发。

7.4是否广泛的支持各种工业操作系统?

EtherCAT发源于Beckhoff的PC控制技术理念,其支持Windows XP & CE,而POWERLINK则支持Windows XP Embedded, Windows CE Embedded以及RT-Linux这一开源技术,并且同时也支持VxWorks、uC/OSII RTOS这些工业自动化、航空航天领域使用的实时操作系统,并且也支持无操作系统的自动化组件开发。

工业以太网与现场总线的优缺点 整理

工业以太网与现场总线的优缺点 1 引言 用于办公室和商业的以太网伴随着现场总线大战硝烟已悄悄地进入了控制领域,近年来以太网更是走向前台,发展迅速,颇引人注目。究其原因,主要由于工业自动化系统正向分布化、智能化的实时控制方面发展,其中通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intranet/Internet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供一个开放的基础构架,而目前的现场总线尚不能满足这些要求。 现场总线的出现确实给工业自动化带来一场深层次的革命,但多种现场总线互不兼容,不同公司的控制器之间不能实现高速的实时数据传输,信息网络存在协议上的鸿沟,导致“自动化孤岛”现象的出现,促使人们开始寻求新的出路并关注到以太网。同时现场总线的传输速率也远远不如工业以太网传输速率快。 2 以太网与工业以太网 2.1 什么是以太网与工业以太网 以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆型号为10 Base T。以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性好。 普通以太网应用到工业控制系统,这种网络叫工业以太网。 2.2 以太网具有的优点 (1)具有相当高的数据传输速率(目前已达到100Mbps),能提供足够的带宽; (2)由于具有相同的通信协议,Ethernet和TCP/IP很容易集成到IT(信息技术)世界; (3)能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架;

工业以太网的特色技术及其应用选择

工业以太网的特色技术及其应用选择 发布时间:2007-05-15 浏览次数:105 | 我要说几句 | ?? 用户解决方案2012优秀论文合订本 ?? NIDays2012产品演示资料套件 ?? 《提高测量精度的七大技巧》资源包 ?? LabVIEW 2012评估版软件 关键词:工业以太网实时特色技术 编者按:工业以太网成为自动化领域业界的技术热点已有时日,其技术本身尚在发展之中,还没有走向成熟,还存在许多有待解决的问题。究竟什么是工业以太网,它有哪些特色技术,如何应用与选择适合自己需求的工业以太网技术与产品,依然是今天人们所关心的问题。 一什么是工业以太网 工业以太网技术,是以太网或者说是互联网系列技术延伸到工业应用环境的产物。前者源于后者又不同于后者。以太网技术原本不是为工业应用环境准备的。经过对工业应用环境适应性的改造,通信实时性改进,并添加了一些控制应用功能后,形成了工业以太网的技术主体。因此,工业以太网是一系列技术的综称。 二工业以太网涉及企业网络的各个层次

企业网络系统按其功能划分,一般称为以下三个层次:企业资源规划层(Enterprise Resource Plan NI ng, ERP)、制造执行层(Manufacturing Excurtion System, MES)和现场控制层(Field Control System,FCS)。通过各层之间的网络连接与信息交换,构成完整的企业信息系统。( 见图1) 图中的ERP与MES功能层属于采用以太网技术构成信息网络。这个层次的工业以太网,其核心技术依然是信息网络中原本的以太网以及互联网系列技术。工业以太网在该层次的特色技术是对其实行的工业环境适应性改造。而现场控制层FCS中,基于普通以太网技术的控制网络、实时以太网则属于该层次中工业以太网的特色技术范畴。可以把工业以太网在该层的特色技术看作是一种现场总线技术。除了工业环境适应性改造的内容之外,通信实时性、时间发布与同步、控制应用的功能与规范,则成为工业以太网在该层次的技术核心。

工业以太网专业术语

工业以太网专业术语 一、拓扑结构 拓扑是网络中电缆的布置。众所周知,EIA-485或CAN 采用总线型拓扑。但在工业以太网中,由于普遍使用集线器或交换机,拓扑结构为星型或分散星型。 二、接线 工业以太网专题">工业以太网使用的电缆有屏蔽双绞线(STP)、非屏蔽双绞线(UTP)、多模或单模光缆。10Mbps 的速率对双绞线没有过高的要求,而在100Mbps 速率下,推荐使用五类或超五类线。 光纤链接时需要一对,常用的多模光纤波长为62.5/125μm 或50/125μm。与多模光纤的内芯相比,单模光纤的内芯很细,只有10μm 左右。通常,10Mbps 使用多模光纤,100Mbps下,单模、多模光纤都适用。 三、接头和连接 双绞线接头中RJ-45 较常见,共两对线,一对用于发送,另一对用于接收。在媒介相关接口(MDI)的定义中,这四个信号分别标识为RD+,RD-,TD+,TD-。 一条通信链路由DTE(数据终端设备,如工作站)和DCE(数据通讯设备,如中继器或交换机)组成。集线器端口标识为MDI-X 端口表明DTE 和DCE 可以使用直通电缆相连。假如是两个DTE或两个DCE相连?可以采用电缆交叉的方法或直接利用集线器提供的上连端口(电缆不要交叉)。 光纤接头有两种,ST 接头用于10Mbps 或100Mbps;SC接头专用于100Mbps。单模纤通常使用SC接头。DTE 与DCE 之间的连接只需依照端口的TX、RX 标识即可。 四、工业以太网与普通商用以太网产品 什么是工业以太网?技术上,它与IEEE802.3 兼容,但设计和包装兼顾工业和商业应用的要求。工业现场的设计者希望采用市场上可以找到的以太网芯片和媒介,兼顾考虑工业现场的特殊要求。首先考虑的是高温、潮湿、震动。第二看是否能方便地安装在工业现场控制柜内。第三是电源要求。许多控制柜内提供的电源都是低压交流或直流。墙装式电源装置有时不能适应。电磁兼容性(EMC)的要求随工业环境对EMI(工业抗干扰)和ESD (工业抗震)要求的不同而变化。现场的安全标准与办公室的完全不同。有时需要的是恶劣环境的额定值。工厂里采用的可能是工业控制柜标准而楼宇系统采用的往往是烟雾标准。显然低价的商用以太网集线器和交换机无法达到这些要求。 五、速度和距离 讨论共享型以太网的距离,不能忽略碰撞域(Collision Domain)的概念。 共享型以太网或半双工以太网的媒体访问是由载波侦听多路访问/碰撞检测(CSMA/CD)确定的。在半双工的通讯方式下,发送和接收不能同时进行,否则数据会发生碰撞。站点发送前,首先要看是否有空闲的信道。发送时,站点还会在一段时间内收听,确保在这一时间内没有其它站点在进行同步传送,最终本站发送成功。反之,发生碰撞,

工业以太网的意义和应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。 Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和Ethernet捆绑在一起之后,Ethernet便采用TCP/IP作为其高层协议,TCP用来保证传输的可靠性,IP则用来确定信息传递路线。 Ethernet的介质访问控制层协议采用CSMA/CD,其工作原理如下:某节点要

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

工业以太网与CAN总线的比较

工业以太网与CAN现场总线的比较 方健 摘要:工业以太网和现场总线是工业控制现场中的两大主要网络通信形式。本文分别简要介绍了工业以太网和CAN总线的内容,并对两者在优缺点、通信协议、在工业信息化网络的应用和通信方案进行了分析和比较。 关键词:CAN现场总线;工业以太网;通信协议;工业控制;通信方案 A comparison between industrial Ethernet and CAN bus Fang Jian (Hubei Normal University school of mechanical electrical and control engineering Hubei, Huangshi,453002) Abstract:Both industrial ethernet and fieldbus are the two primary forms of network communication in the field of industrial control.In this paper ,the content of industrial ethernet and fieldbus are both briefly introduced.And It presents the analysis and comparison between the industrial Ethernet and the fieldbus on relative merits, communication protocol , Industrial information network and communication scheme. Key words:CAN bus;industrial ethernet; communication protocol;industrial control 1、引言 现场总线是应用在生产现场,在微机化测量控制设备之间实现双向串行多节点数字通信的系统。由于其表现出的强大的功能,现场总线已经成为工业生产中不可或缺的核心部分。发展比较成熟的现场总线有FF-Foundation Fieldbus,Lonworks,PROFIBUS,HART,CAN 等等。CAN(Controller Area Net)即控制器局部网依靠各自的优良特性和可靠性,被公认为最有前途的现场总线之一,应用范围遍及从高速网络到低成本的多线路网络。由于各个总线的采用的通信协议完全不同,实现这些总线的兼容和互操作是十分困难的,应用受到了限制,主要应用于低速产品。而具有广泛性和技术先进性的以太网,可以作为现场总线的中高层通信网络,并开始逐步应用到工业控制现场。国内外的许多研究机构都致力于工业以太网的研究,使得工业以太网得到了快速的发展和很好的应用。 2、CAN总线和工业以太网 2.1、CAN总线的简介 CAN(Controller Area Network)-控制器局域网。它是一种有效支持分布式控制或实时控制的串行通信网络。CAN总线最早是由德国Bosch公司在80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆、光导纤维,通信速率可达1Mbps[1]。 CAN 总线通信接口中集成了CAN 协议的物理层,数据链路层功能,可完成对通信数据的成帧处理,包括位填充,数据块编码,循环冗余校验,优先级判别等项工作。CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。

工业以太网技术全面解析

工业以太网技术全面解析 高性能、工厂设备和IT系统集成,以及工业物联网的需求驱动促进了工业以太网的增长。在实时工业以太网中,EPA、EtherCAT、RTEX、Ethernet Powerlink、PROFINET、Ethernet/IP、SERCOS III是主要的竞争者。下面对它们进行简单比较。Ethernet/IP Ethernet/IP是2000年3月由Control Net International和ODV A( Open DevicenetVendors Association共同开发的工业以太网标准。 实现实时性的方法 Ethernet/IP实现实时性的方法是在TCP/IP层之上增加了用于实时数据交换和运行实时应用的CIP协议(Common Industrial Protocol )。 Ethernet/IP在物理层和数据链路层采用标准的以太网技术,在网络层和传输层使用IP协议和TCP、UDP协议来传输数据。UDP是一种非面向连接的协议,它能够工作在单播和多播的方式,只提供设备间发送数据报的能力。对于实时性很高的I/O数据、运动控制数据和功能行安全数据,使用UDP/IP协议来发送。而TCP是一种可靠的、面向连接的协议。对于实时性要求不是很高的数据(如参数设置、组态和诊断等)采用TCP/IP协议来发送。Ethernet/IP采用生产者/消费者数据交换模式。生产者向网络中发送有唯一标识符的数据包。消费者根据需要通过标识符从网络中接收需要的数据。这样数据源只需一次性地把数据传到网上,其它节点有选择地接收数据,这样提高了通信的效率。 Ethernet/IP是在CIP这个协议的控制下实现非实时数据和实时数据的传输。CIP是一个提供工业设备端到端的面向对象的协议,且独立于物理层及数据链路层,这使得不同供应商提供的设备能够很好的交互。另外,为了获得更好的时钟同步性能,2003年ODV A将 IEEE 15888引入Ethernet/IP,并制定了CIPsync标准以提高Ethernet/IP的时钟同步精度。 EPA EPA是在“863”计划的支持下,由浙江大学、清华大学、浙江中控技术公司、大连理工大学、中科院自动化所等单位联合制定,是用于工业测量和控制系统的实时以太网标准。

工业以太网与现场总线的优缺点(精)

工业以太网与现场总线的优缺点1引言用于办公室和商业的以太网伴随着现场总线大战硝烟已悄悄地进入了控制领域,近年来以太网更是走向前台,发展迅速,颇引人注目。究其原因,主要由于工业自动化系统正向分布化、智能化的实时控 制方面发展,其中通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intran et/l nternet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供一个开放的基础构架,而目前的现场总线尚不能满足这些要求。现场总线的出现确实给工业自动化带来一场深层次的革命,但多种现场总线互不兼容,不同公司的控制器之间不能实现高速的实时数据传输,信息网络存在协议上的鸿沟,导致自动化孤岛”现象的出现,促使人们开始寻求新的出路并关注到以太网。同时现场总线的传输速率也远远不如工业以太网 传输速率快。2以太网与工业以太网2.1什么是以太网与工业以太网以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10?100Mbps的速率传 送信息包,双绞线电缆型号为10 Base T。以太网由于其低成本、高可靠性以及10Mbps 的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性好。普通以太网应用到工业控制系统,这种网络叫工业以太网。 2.2以太网具有的优点(1)具有相当高的数据传输速率(目前已达到100Mbps),能提供足够的带宽;(2)由于具有相同的通信协议,Ethernet和TCP/IP很容易集成到IT (信息技术)世界;(3)能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架;(4)在整个网络中,运用了交互式和开放的数据存取技术; (5)沿用多年,已为众多的技术人员所熟悉,市场上能提供广泛的设置、维护和诊断工具,成为事实上的统一标准;(6)允许使用不同的物理介质和构成不同的拓扑结构。2.3工业以太网的优点(1)基于TCP/IP的以太网采用国际主流标准,协议开放、完善不同厂商设备,容易互连具有互操作性;(2)可实现远程访问, 远程诊断;(3)不同的传输介质可以灵活组合,如同轴电缆、双绞线、光纤等; (4)网络速度快,可达千兆甚至更快;(5)支持冗余连接配置,数据可达性 强,数据有多条通路抵达目的地;(6 )系统容易几乎无限制,不会因系统增大而出现不可预料的故障,有成熟可靠 的系统安全体系;(7)可降低投资成本。3主流应用层协议-工业以太网协议由于商用计算机普遍采用的应用层协议不能适应工业过程控制领域现场设备之间的实时通信,所以必须在以太网和TCP/IP协议的基础上,建立完整有效的通信服务模型,制定有效的实时通信服务机制,协调好工业现场控制系统中实时与非实时信息的传输,形成被广泛接受的应用层协议,也就是所谓的工业以太网协议。目前已经制定的工业以太网协议有MODBUS/TCP,HSE, EtherNet/IP, ProfiNet等。MODBUS/TCP协议是法国施耐德公司1999年公布的协议,以一种非常简单的方

六种工业以太网比较

六种工业以太网比较 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

六种工业以太网比较 摘要:当前,工业以太网技术是控制领域中的研究热点。所谓工业以太网,一般来讲是指技术上与商用以太网(即标准)兼容,但在产品设计时,在材质的选用、产品的强度、适用性以及实时性、可互操作性、可靠性、抗干扰性和本质安全等方面能满足工业现场的需要。随着互联网技术的发展与普及推广,Ethernet技术也得到了迅速的发展,Ethernet传输速率的提高和Ethernet交换技术的发展,给解决Ethernet通信的非确定性问题带来了希望,并使Ethernet全面应用于工业控制领域成为可能。目前,几种典型的工业以太网有HSE、PROFInet、Modbus/TCP、EtherNet/IP、Powerlink、EPA六种。本文通过对这六种工业以太网比较,以便更好的应用于系统集成。 关键词:工业以太网、HSE、PROFInet、Modbus、EtherNet、Powerlink、EPA 与传统控制网络相比,工业以太网具有应用广泛、为所有的编程语言所持、软硬件资源丰富、易于与Internet连接、可实现办公自动化网络与工业控制网络的无缝连接等诸多优点。由于这些优点,特别是与信息传输技术的无缝集成以及传统技术无法比拟的传输宽带,以太网得到了工业界的认可。 1.HSE(高速以太网) HSE(High Speed Ethernet Fieldbus)由现场总线基金会组织(FF)制定,是对FF-H1的高速网段的解决方案,它与H1现场总线整合构成信息集成开放的体系结构。 FF HSE的1-4层由现有的以太网、TCP/IP和IEEE标准所定义,HSE和H1使用同样的用户层,现场总线信息规范(FMS)在H1中定义了服务接口,现场设备访问代理(FDA)为HSE提供接口。用户层规定功能模块、设备描述(DD)、功能文件(CF)以及系统管理(SM)。HSE网络遵循标准的以太网规范,并根据过程控制的需要适当

工业以太网的构成及重要性能介绍

工业以太网的构成及重要性能介绍 西门子就逐步地把以太网的概念引入到工业控制领域,到今天,西门子SCALANCE系列工业以太网交换机产品,已经在冶金、烟草、汽车、煤矿、造船、地铁、电力、风电、交通、石化、水处理等多个行业的多个项目中得到了成功的应用,产品线也日臻完善。 工业以太网简介 工业以太网是基于IEEE 802.3(Ethernet)的强大的区域和单元网络。利用工业以太网,SIMATIC NET提供了一个无缝集成到新的多媒体世界的途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供的广泛应用不但已经进入今天的办公室领域,而且还可以应用于生产和过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工和自适应的100M波特率快速以太网(Fast Ethernet,符合IEEE 802.3u的标准)也已成功运行多年。采用何种性能的以太网取决于用户的需要。通用的兼容性允许用户无缝升级到新技术。 为用户带来的利益 市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益:通过简单的连接方式快速装配。 通过不断的开发提供了持续的兼容性,因而保证了投资的安全。 通过交换技术提供实际上没有限制的通讯性能。

各种各样联网应用,例如办公室环境和生产应用环境的联网。 通过接入WAN(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。 SIMATIC NET基于经过现场应用验证的技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。 工业以太网络的构成 一个典型的工业以太网络环境,有以下三类网络器件: 网络部件 连接部件: FC快速连接插座 ELS(工业以太网电气交换机) ESM(工业以太网电气交换机) SM(工业以太网光纤交换机) MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线和光纤 SIMATIC PLC控制器上的工业以太网通讯外理器。用于将SIMATIC PLC连接到工业以太网。 PG/PC上的工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能 为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC

各种工业以太网的区别

各种工业以太网的区别其实就是协议的区别,其中最主要的还是应用层协议的区别。 都是以太网通讯,只是每个公司的叫法不一样,西门子用PROFINET、AB用Ethernet IP、施耐德的MODBUS TCP/IP。 取个例子,以太网就像高速公路,Ethernet/IP、Profinet、Modbus TCP/IP分别像高速公路上的宝马、奔驰、奥迪车,都可以从一个城市把物品运送到另一城市。但是每个车上安装的零件无法和另一车上的零件进行更换。 EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff AutomationGmbH)研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。EtherCAT的特点还包括高精度设备同步,可选线缆冗余,和功能性安全协议(SIL3)。 Ethernet/IP是一个面向工业自动化应用的工业应用层协议。它建立在标准UDP/IP与TCP/IP 协议之上,利用固定的以太网硬件和软件,为配置、访问和控制工业自动化设备定义了一个应用层协议西蒙公司开发 Ethernt/IP属于ODVA组织,Rockwell只是其中一个推广力度比较大的公司而已。施耐德也是ODVA组织的成员,施耐德所有PLC都可以支持Ethernt/IP协议。Ethernt/IP协议是十大总线之一,和Controlnet、Devicenet一起称为CIP总线。可以实现协议间路由,但是需要Rslinx 软件进行配置。通讯时需要设置RPI参数,没有任何客户端的反馈信息,因此不管现场客户端是否收到数据,数据一致由服务器不断的发,缺少相应的检测。 PROFINET由PROFIBUS国际组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。作为一项战略性的技术创新,PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障安全以及网络安全等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以完全兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。 PROFINET是适用于不同需求的完整解决方案,其功能包括8个主要的模块,依次为实时通信、分布式现场设备、运动控制、分布式自动化、网络安装、IT标准和信息安全、故障安全和过程自动化。 MODBUS/TCP是简单的、中立厂商的用于管理和控制自动化设备的MODBUS系列通讯协议的派生产品。显而易见,它覆盖了使用TCP/IP协议的“Intranet”和“Internet”环境中MODBUS 报文的用途。协议的最通用用途是为诸如PLC’s,I/O模块,以及连接其它简单域总线或I/O 模块的网关服务的。 MODBUS/TCP协议是作为一种(实际的)自动化标准发行的。既然MODBUS已经广为人知,该规范只将别处没有收录的少量信息列入其中。然而,本规范力图阐明MODBUS中哪种功能对于普通自动化设备的互用性有价值,哪些部分是MODBUS作为可编程的协议交替用于PLC’s的“多余部分”。 它通过将配套报文类型“一致性等级”,区别那些普遍适用的和可选的,特别是那些适用于特殊设备如PLC’s的报文。 Modbus TCP/IP由Modbus IDA组织提出,有施耐德旗下的Modicon公司主推,在目前施耐德所有PLC产品中都支持,同时也支持Ethernet/IP协议,Modbus TCP/IP是免费的、全开放协议,可以用VB等高级编程语言调用winsock控件即可实现与PLC的数据通讯,因此,很

工业以太网和工业实时以太网的安装,调试和诊断技术(一)

工业以太网和工业实时以太网的安装,调试和诊断技术(一) 1 前言 自从20世纪70年代中期,美国XEROX公司提出了以太网这个新概念,首次提出采用一种传输媒介将Xerox打印机与数个计算机相连进行通讯的构思,即带有冲突检测的载波侦听多路存取(CSMA/CD)的方法以后,短短的三十多年以来,随着科技的不断发展,这一设想在实践中得到了不断的改进,从而形成一致而又强大的局域网技术。IT的工程师们从实际应用出发采取了各种措施改进以太网的技术,今天,作为物理层基础的以太网与最广泛的,标准化的通信协议的TCP/IP的有机结合,成为了现代通信技术最成熟的使用方法。 图1 Robert M. Metcalfe博士著名的草图 以太网技术在办公领域的广泛应用使得从事自动控制技术研究的人们自然而然想到是否也能将日益发展、日益标准化的以太网技术应用到工业的领域之中来。因此,近几年来,在国内的自动控制领域中产生了一个非常热门的话题,即现场总线技术与以太网技术之争,尽管现场总线技术近十多年来在工业控制领域得到了迅速发展,并且在工业自动化系统中得到了广泛的应用。然而随着IT 技术的不断革新,通讯网络技术的不断完善,使得当前从事自动化技术的专业人员面临着一个问题:是否刚刚进入中国的现场总线将被以太网技术所代替?是否Ethernet就是现场总线的未来呢?目前为止,我们对于这个问题还不能给予一个简单的回答,但是专家们公认:自动化技术中通信方式一直在发展变化,并逐渐趋向开放和透明的系统解决方案。信息的连续性正在变得越来越重要。这时候引入以太网和互联网技术将会使目前所谓集中型自动化系统真正成为带有分散型智能化的网络控制。以太网虽然不是一种现场总线,是属于局域网技术,主要用于办公管理系统的通讯。但是由于这种通讯方法的广泛应用和技术的完整性,很多研究人员一直在探索如何将以太网技术应用于工业控制系统领域中去,以满足工业控制系统对通讯提出的要求。但是现场工程师们对以太网的了解大多来自他们对传统商业以太网的认识。许多控制系统工程的网络通信的实施往往由IT部门的技术人员来实施。但是,IT工程师们对于以太网的了解,仅仅局限于办公自动化商业以太网的实施经验,不能发挥以太网在工业控制系统中应用的真正的

工业以太网网络规划原则

工业以太网网络规划原则 不管“工业 4.0”还是“工业互联网”其技术本质都是自动化与信息化的深度融合。在融合的过程中网络会不断地增长。不断增长的网络复杂度为工业控制网络的设计方法提出了新的挑战。 目前实际工业应用的网络一般由控制工程师成设计,网络性能主要由控制工程师经验决定。但是随着网络复杂度增加,这难以保持高效与可靠。在大规模网络中,如何确定网络性能的瓶颈变得非常的棘手。并且,小规模网络中获取的网络设计经验未必适用于大规模网络。控制工程师设计工业控制网络需要保障网络 QoS 性能,避免工业控制网络的性能成为工业自动化系统性能的瓶颈。 工业以太网技术具有价格低廉、稳定可靠、通信速率高、软硬件产品丰富、应用广泛以及支持技术成熟等优点,已成为最受欢迎的通信网络之一。近些年来,随着网络技术的发展,以太网进入了控制领域,形成了新型的以太网控制网络技术。这主要是由于工业自动化系统向分布化、智能化控制方面发展,开放的、透明的通讯协议是必然的要求。以太网技术引入工业控制领域,其技术优势非常明显。工业以太网制造现在信息的强大性跟控制的快捷性,能够实现快速的串联跟控制,为现代工业制造实现真正意义上的“E网到底”奠定了良好的基础。工业以太网已经被业内认为是未来控制网络的最佳解决方案,

也是当前现场总线中的主流技术(如下图1是工业以太网在工业控制系统的各个层级的应用)。 图1、工业以太网在自动化系统各个层级的应用 在上图中虽然从网络的网络上在自动化系统的各个层级都可以是以太网,但在各个层级上的以太网上运行的协议并不相同,这是由于控制系统的应用决定的。在控制系统的各个层级对传输的数据量、响应时间、传输的频次等的要求如下图2所示。

各种工业以太网比较

EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff AutomationGmbH)研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。EtherCAT的特点还包括高精度设备同步,可选线缆冗余,和功能性安全协议(SIL3)。 Ethernet/IP是一个面向工业自动化应用的工业应用层协议。它建立在标准UDP/IP与TCP/IP 协议之上,利用固定的以太网硬件和软件,为配置、访问和控制工业自动化设备定义了一个应用层协议西蒙公司开发 PROFINET由PROFIBUS国际组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。作为一项战略性的技术创新,PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障安全以及网络安全等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以完全兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。 PROFINET是适用于不同需求的完整解决方案,其功能包括8个主要的模块,依次为实时通信、分布式现场设备、运动控制、分布式自动化、网络安装、IT标准和信息安全、故障安全和过程自动化。 MODBUS/TCP是简单的、中立厂商的用于管理和控制自动化设备的MODBUS系列通讯协议的派生产品。显而易见,它覆盖了使用TCP/IP协议的“Intranet”和“Internet”环境中MODBUS 报文的用途。协议的最通用用途是为诸如PLC’s,I/O模块,以及连接其它简单域总线或I/O 模块的网关服务的。 MODBUS/TCP协议是作为一种(实际的)自动化标准发行的。既然MODBUS已经广为人知,该规范只将别处没有收录的少量信息列入其中。然而,本规范力图阐明MODBUS中哪种功能对于普通自动化设备的互用性有价值,哪些部分是MODBUS作为可编程的协议交替用于PLC’s的“多余部分”。 它通过将配套报文类型“一致性等级”,区别那些普遍适用的和可选的,特别是那些适用于特殊设备如PLC’s的报文。 POWERLINK=CANopen+Ethernet 鉴于以太网的蓬勃发展和CANopen在自动化领域里的广阔应用基础,EthernetPOWERLINK 融合了这两项技术的优点和缺点,即拥有了Ethernet的高速、开放性接口,以及CANopen在工业领域良好的SDO 和PDO 数据定义,在某种意义上说POWERLINK就是Ethernet 上的CANopen,物理层、数据链路层使用了Ethernet介质,而应用层则保留了原有的SDO和PDO 对象字典的结构 虽然这些工业以太网都是国际标准,但是指的是IEC 61784里的标准,但是这些工业以太网不都是标准的以太网。即这些工业以太网并不都是符合IEEE802.3U的标准,这当中只有Modbus-TCP和EtherNet/IP是符合IEEE802.3U的,只有符合IEEE802.3U标准的,才能与IT 和以太网将来的发展相兼容。而不符合IEEE802.3U标准的,基本上可以讲不是以太网,它们都对以太网进行了修改,或者是硬件或者是软件,已经不是以太网了。

几种典型工业以太网技术比较

几种典型工业以太网技术比较

1 工业以太网总览 表1给出了常见的几种工业以太网及其管理组织。 表1-1 常见工业以太网及其管理组织列表 上述各种工业以太网管理组织的标识如图1所示。 图1-1 工业以太网管理组织标识 根据从站设备的实现方式,可将工业以太网分为三种类型: (1)类型A ——通用硬件、标准TCP/IP协议 Modbus/TCP、Ethernet/IP、PROFInet/CbA(版本1)采用这种方式。使用标准TCP /IP协议和通用以太网控制器,结构如图1-2所示。这种方式下,所有的实时数据(如过程数据)和非实时数据(如参数配置数据)均通过TCP/IP 协议传输。其优点是成本低廉,实现方便,完全兼容通用以太网。在具体实现中,某些产品可能更改/优化了TCP/IP协议以获得更好的性能,但其实时性始终受到底层结构的限制。

通用以太网控制器IP TCP/UDP IT 应用 HTTP SNMP FTP … 图1-2 工业以太网类型A 结构 (2)类型B —— 通用硬件、自定义实时数据传输协议 Ethernet Powerlink 、PROFInet/RT (版本2)采用这种方式。采用通用以太网控制器,但不使用TCP/IP 协议来传输实时数据,而是定义了一种专用的包含实时层的实时数据传输协议,用来传输对实时性要求很高的数据,结构如图1-3所示。TCP/IP 协议栈可能依然存在,用来传输非实时数据,但是其对以太网的读取受到实时层(Timing-Layer )的限制,以提高实时性能。这种结构的优点是实时性较强,硬件与通用以太网兼容。 通用以太网控制器 IT 应用 HTTP SNMP FTP … 图1-3 工业以太网类型B 结构 (3)类型C —— 专用硬件、自定义实时数据传输协议 EtherCAT 、SERCOS-III 、PROFInet/IRT (版本3)采用这种方式。这种方式在类型B 的基础上底层使用专有以太网控制器(至少在从站侧),以进一步

六种工业以太网比较

六种工业以太网比较 摘要:当前,工业以太网技术是控制领域中的研究热点。所谓工业以太网,一般来讲是指技术上与商用以太网(即IEEE802.3标准)兼容,但在产品设计时,在材质的选用、产品的强度、适用性以及实时性、可互操作性、可靠性、抗干扰性和本质安全等方面能满足工业现场的需要。随着互联网技术的发展与普及推广,Ethernet技术也得到了迅速的发展,Ethernet传输速率的提高和Ethernet交换技术的发展,给解决Ethernet通信的非确定性问题带来了希望,并使Ethernet全面应用于工业控制领域成为可能。目前,几种典型的工业以太网有HSE、PROFInet、Modbus/TCP、EtherNet/IP、Powerlink、EPA六种。本文通过对这六种工业以太网比较,以便更好的应用于系统集成。 关键词:工业以太网、HSE、PROFInet、Modbus、EtherNet、Powerlink、EPA 与传统控制网络相比,工业以太网具有应用广泛、为所有的编程语言所持、软硬件资源丰富、易于与Internet连接、可实现办公自动化网络与工业控制网络的无缝连接等诸多优点。由于这些优点,特别是与信息传输技术的无缝集成以及传统技术无法比拟的传输宽带,以太网得到了工业界的认可。 1.HSE(高速以太网) HSE(High Speed Ethernet Fieldbus)由现场总线基金会组织(FF)制定,是对FF-H1的高速网段的解决方案,它与H1现场总线整合构成信息集成开放的体系结构。 FF HSE的1-4层由现有的以太网、TCP/IP和IEEE标准所定义,HSE和H1使用同样的用户层,现场总线信息规范(FMS)在H1中定义了服务接口,现场设备访问代理(FDA)为HSE提供接口。用户层规定功能模块、设备描述(DD)、功能文件(CF)以及系统管理(SM)。HSE网络遵循标准的以太网规范,并根据过程控制的需要适当增加了一些功能,但这些增

实时的工业以太网EthernetPowerlink

叶莘 贝加莱工业自动化(上海)有限公司北京办事处经理、工学硕士实时的工业以太网Ethernet Powerlink 近十年来,随着互联网技术飞速发展,以太网成为商业通信中的主导网络技术。以太网的通信速率要比目前任何工业现场总线高很多,因它是IT界标准网络技术,成千上万的公司参与开发生产有关产品,使其成本低廉。因此,人们期望以太网也能应用到工控领域中,逐渐取代现有工控行业中繁多的总线系统,用以太网来实现从管理层到工业现场层的贯穿一致性通信。 工控领域和IT界对网络系统有着截然不同的需求,要想有效地应用以太网,必须使其符合工业环境的特殊需求。本文以实时工业以太网标准 Ethernet Powerlink为例,介绍工业以太网的实现方案和现场实际应用情况。 1 标准以太网的实时局限性 目前,标准以太网可达到100Mb/s甚至1000Mb/s的传输速度,远快于任何现场总线系统。但对于工业控制来说,比传输速率更重要的是实时性。实时性的一个重要标志是时间的确定性,通信时数据传输时间不是随机的,而是可事先准确预测的。 以太网虽有很高传输速率却不能保证实现控制设备间的实时通信。标准以太网IEEE802.3的通信机制使数据传输时间可被任意推迟,也就谈不上实时性。而在工控领域中,特别是在对高动态过程的控制中,实时性却必不可少。1.1 工业控制对实时性的要求 1) 实时性 在工业控制系统中,实时可定义为系统对某事件响应时间的可预测性。一个事件发生后,系统须在一个可准确预见的时间范围内作出反应。至于反应时间须有多快,由被控制过程决定。化工热化过程控制有秒级别的反应时间就足够,而在高动态传动控制中系统反应时间必须达到微秒级。 2) 抖动(Jitter) 所谓抖动,是指同样过程每次完成或响应时间上的偏差,也就是时间精确度。抖动大小对一些过程控制如运动控制和一些高精确度闭环控制非常关键。以无轴印刷机为例:设印刷速度为25m/s,也就是说每40mm/μs 。轴间通信如大于40μs抖动,就会有1mm以上的偏差,印刷质量肯定不能满足要求,如图1。 图1 抖动对控制的影响示意图 3) 通信周期时间 控制系统中的程序以周期性循环的方式运行,一个周期内所有输入被刷新,完成计算任务后再被写入输出中,周期时间长短由控制对象决定。高动态传动控制周期往往要达到毫秒级。 系统联网后,网络数据交换速度应和系统运算周期时间相对应。在位置控制、电子齿轮、多轴联动的高精确度运动控制中,刷新时间越短越好。时间越短控制精确度越高,能完成的动态性能也更高。多轴联动中,伺服系统如以400μs的周期进行位置控制,各轴间的信息交换当然也是以400μs周期为最佳,以达到轴间最精确的同步。 1.2 实时级别划分 按照不同过程对实时性要求的不同,可把实时性能划分为四个级别(如图2)。其中实时级别四是工控中对实时性能要求最苛刻的,主要是机械传动和运动控制中对实时性的要求。针对这些实时要求对象可选用不同现场总线系统,如果工业以太网要成为全工控领域标准,就须覆盖所有这些对实时性能和通信周期的需求,也就是须满足最苛刻的实时要求。 图2 4种不同实时级别划分 2 解决以太网实时局限性的传统方法 目前,有几种解决以太网数据传输时间不确定问题的方案,其共同点是:都不改变现有以太网通信机制,协议也是直接使用TCP/IP,有很多局限性。代表性方式有:1) 低冲突概率 如网络中没有太多数据,冲突概率会降低,它随数据通信的增加而呈指数级增长。当网络负载低于或等于10%时,可假设冲突可避免。这种方法局限性:不能充分利用网络带宽,浪费带宽;且不能百分之百保证冲突不会发生。 2) 在冲突域利用网络交换器分段 如图3,利用网络交换器分段是一种完全不同的方案,能完全避免冲突发生。其原理是把可能发生冲突的网域用网络交换器隔开。它有些类似于一组点对点连接。 图3 在冲突域利用网络交换器分段 系列专题——EPSG专栏(二) 后插3

相关文档
最新文档