初升高数学之衔接专题:专题六 二次函数的最值问题

初升高数学之衔接专题:专题六  二次函数的最值问题
初升高数学之衔接专题:专题六  二次函数的最值问题

专题六 二次函数的最值问题

【要点回顾】

1.二次函数2 (0)y ax bx c a =++≠的最值.

二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a

=-

处取得最小值2

44ac b a

-,无最大值;当0a <时,函数在2b x a =-处取得最大值

2

44ac b a

-,无最小值. 2.二次函数最大值或最小值的求法.

第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 3.求二次函数在某一范围内的最值.

如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值. 第一步:先通过配方,求出函数图象的对称轴:0x x =; 第二步:讨论:

[1]若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧。

[2] 若0a >时求最大值或0a <时求最小值,需分两种情况讨论:

①对称轴02m n

x +≤,即对称轴在m x n ≤≤的中点的左侧;

②对称轴02

m n

x +>,即对称轴在m x n ≤≤的中点的右侧;

说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值

范围相应位置,具体情况,参考例4。

【例题选讲】

例1求下列函数的最大值或最小值.

(1)5322--=x x y ; (2)432+--=x x y .

分析:由于函数5322--=x x y 和432+--=x x y 的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. 解:(1)因为二次函数5322--=x x y 中的二次项系数2>0,所以抛物线

5322--=x x y 有最低点,即函数有最小值.因为5322--=x x y =8

49

)43(22-

-x ,所以当43

=x 时,函数5322--=x x y 有最小值是8

49-.

(2)因为二次函数432+--=x x y 中的二次项系数-1<0,所以抛物线

432+--=x x y 有最高点,

即函数有最大值.因为432+--=x x y =4

25

)23(2++-x ,所以当2

3

-=x 时,函数432+--=x x y 有最大值425.

例2当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.

说明:二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.

根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:

例3当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.

可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-

例4当1t x t ≤≤+时,求函数215

22

y x x =

--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.

解:函数215

22

y x x =--的对称轴为1x =.画出其草图.

(1) 当对称轴在所给范围左侧.即1t >时:当x t =时,2min 15

22

y t t =--;

(2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,

2m i n

1511322

y =?--=-; (3) 当对称轴在所给范围右侧.即110t t +

22min 151

(1)(1)3222

y t t t =+-+-=-.

综上所述:2

213,023,0115

,1

2

2t t y t t t t ?-

=-≤≤???-->?

例5某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售

量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.

(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;

(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为

(30)y m x =-,又

1

m x =-.2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤

(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下

∴当42x =时,2max 342252424860432y =-?+?-=

∴当每件商品的售价定为42元时每天有最大销售利润,

最大销售利润为432元.

【巩固练习】

1.抛物线2(4)23y x m x m =--+-,当m = _____ 时,图象的顶点在y 轴上;当

m = _____ 时,图象的顶点在x 轴上;当m = _____ 时,图象过原点.

2.用一长度为l 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 ________ .

3.设0a >,当11x -≤≤时,函数21y x ax b =--++的最小值是4-,最大值是0,求,a b 的值.

4.已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.

5.求关于x 的二次函数221y x tx =-+在11x -≤≤上的最大值(t 为常数).

【巩固练习】答案

1.4 14或2,3

2

2.

2

2

16

l

m 3.2,2

a b

==-. 4.

1

4

a=-或1

a=-.

5.当0

t≤时,

max 22

y t

=-,此时1

x=;当0

t>时,

max 22

y t

=+,此时1

x=-.

第一讲 数与式 1、 绝对值 (1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 ,0,||0,0,,0.a a a a a a >?? ==??-,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。 ②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。 ③2 2 ()()()()f x g x f x g x >?>。 (2)利用零点分段法解含多绝对值不等式: ①找到使多个绝对值等于零的点. ②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1. 求不等式354x -<的解集 例2.求不等式215x +>的解集 例3.求不等式32x x ->+的解集 例4.求不等式|x +2|+|x -1|>3的解集. 例5.解不等式|x -1|+|2-x |>3-x . 例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习 解下列含有绝对值的不等式: (1)13x x -+->4+x (2)|x +1|<|x -2|

(3)|x -1|+|2x +1|<4 (4)327x -< (5)578x +> 3、因式分解 乘法公式 (1)平方差公式 22 ()()a b a b a b +-=- (2)完全平方公式 222 ()2a b a ab b ±=±+ (3)立方和公式 2233 ()()a b a ab b a b +-+=+ (4)立方差公式 2233 ()()a b a ab b a b -++=- (5)三数和平方公式 2222 ()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223 ()33a b a a b ab b +=+++ (7)两数差立方公式 33223 ()33a b a a b ab b -=-+- 因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法. 1.十字相乘法 例1 分解因式: (1)x 2 -3x +2; (2)2 672x x ++ (3)22 ()x a b xy aby -++; (4)1xy x y -+-. 2.提取公因式法 例2.分解因式: (1)()()b a b a -+-552 (2)32 933x x x +++ 3.公式法 例3.分解因式: (1)164 +-a (2)()()2 2 23y x y x --+ 4.分组分解法 例4.(1)x y xy x 332 -+- (2)2 2 2456x xy y x y +--+-

人教版初中数学二次函数专项训练及解析答案 一、选择题 1.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B. C.D. 【答案】B 【解析】 【分析】 由题意可求m<﹣2,即可求解. 【详解】 ∵抛物线y=x2+2x﹣m﹣1与x轴没有交点, ∴△=4﹣4(﹣m﹣1)<0 ∴m<﹣2 ∴函数y=的图象在第二、第四象限, 故选B. 【点睛】 本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键. 2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是() A.原数与对应新数的差不可能等于零 B.原数与对应新数的差,随着原数的增大而增大 C.当原数与对应新数的差等于21时,原数等于30 D.当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】

解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误. 故答案选:D . 【点睛】 本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号. 3.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=2 22ax bx +, 且1x ≠2x ,则12x x +=2.其中正确的有( ) A .①②③ B .②④ C .②⑤ D .②③⑤ 【答案】D 【解析】 【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】 解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则- 2b a =1,b=-2a

初升高数学衔接讲义 前言 【数学科是什么?】 数学是研究数量、结构、变化以及空间模型等概念的一门学科。 【初中数学与高中数学学习方法上有什么变化?】初中:学 习? 模仿; 高中:学习? 模仿? 自主探究。 ⑴知识量的差异。 初中数学知识少、浅、难度容易、知识面窄。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。 量的剧增,要求有较高的自学能力。初中有时间进行反复多次的练习,而高中,课程都在加深,一天的时间又不会加长,集中学习的时间相对比初中少,需要学生自主学习。 ⑵模彷与创新的区别。初中学生多是模彷做题,模彷老师思维推理较多,而高中,随着知识的难度加大 和知识面的广泛,学生不能全部模彷,需要整合创新。 ⑶学生自学能力的差异。 高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。 ⑷思维习惯上的差异。思维习惯上的差异。初中知识范围小,层次低,知识面窄,思维受局限,高中知 识的多元化和广泛性,要求学生全面、细致、深刻、严密的分析和解决问题。如从二维空间到三维空间的思想转化, 个别学生难理解。 ⑸定量与变量的差异。初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。 学生在分析问题 时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在 高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想(函数与方程思想、数形结合思想、分类讨论、化归思想)

二次函数的应用 一 二次函数的实际应用 (教材P51探究3) 图1中是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降1 m 时,水面宽度增加多少? 图1 解:以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系(如图), 可设这条抛物线表示的二次函数为y =ax 2. 由抛物线经过点(2,-2),可得 -2=a ×22,a =-12 . 这条抛物线表示的二次函数为y =-12 x 2. 当水面下降1 m 时,水面的纵坐标为y =-3. 由y =-3解得x 1=6,x 2=-6, 所以此时水面宽度为2 6 m , 所以水面宽度增加(26-4)m. 【思想方法】 建模:把问题中各个量用两个变量x ,y 来表示,并建立两种量的二次函数关系,再求二次函数的最大(小)值,从而解决实际问题.应用最多的是根据二次函数的最值确定最大利润,最节省方案等问题.注意:建立平面直角坐标系时,遵从就简避繁的原则,这样求解析式就比较方便. 某隧道横断面由抛物线与矩形的三边组成,尺寸如图2所示. (1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立直角坐标系,求该抛物线对应的函数解析式; (2)某卡车空车时能通过此隧道,现装载一集装箱,集装箱宽3 m ,车与集装箱共高4.5 m ,此车能否通过隧道?并说明理由. 图2 解:(1)设抛物线对应的函数解析式为y =ax 2 抛物线的顶点为原点,隧道宽6 m ,高5 m ,矩形的高为2 m , 所以抛物线过点A (-3,-3), 代入得-3=9a , 解得a =-13 所以函数关系式为y =-x 2 3 . (2)如果此车能通过隧道,集装箱处于对称位置,

二次函数应用题专题复习(含答案) 1、(2016?葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)请直接写出y与x的函数关系式; (2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元 (3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少 * 2.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件. (1)若公司每天的现售价为x元时则每天销售量为多少 (2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元

( 3.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式; (2)求出销售单价为多少元时,每天的销售利润最大最大利润是多少 (3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内(每天的总成本=每件的成本×每天的销售量) ^

初高中天衣无缝衔接教程(2020版) 专题13初高中衔接综合测试A 卷 1.某农业大镇2018年葡萄总产量为1.2万吨,预计2020年葡萄总产量达到1.6万吨,求葡萄总产量的年平均增长率,设葡萄总产量的年平均增长率为x ,则可列方程为( ) A .2 1. 2(1) 1.6x += B .2 1. 6(1) 1.2x -= C . 1. 2(12) 1.6x += D .( )2 1.21 1.6x += 【答案】A 【解析】 解:由题意知,葡萄总产量的年平均增长率为x , 根据“2018年葡萄总产量为1.2万吨,预计2020年葡萄总产量达到1.6万吨”可得:2 1.2(1) 1.6x +=. 故选:A . 2.下列四个选项中,可以表示21 11 x x x -++的计算结果的选项是( ) A .2 1x - B .1x - C .()2 1x - D .( )2 11 x x -+ 【答案】B 【解析】 解:2211(1)(1) 11111 x x x x x x x x x -+--===-++++ 故选:B. 3.若分式242 x x --的值为0,则x 的值为( ) A .±2 B .2 C .﹣2 D .4 【答案】C 【解析】 解:由题意可得:240x -=且20x -≠, 解得:2x =- 故选C.

4.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD 沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为() A.5 B.7 C.8 D.13 2 【答案】B 【解析】 作CH⊥AB于H,如图. ∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形, ∴CH= 3 2 AB=43,AH=BH=4. ∵PB=3,∴HP=1. 在Rt△CHP中,CP=22 (43)1 =7. ∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,P A为半径的弧上, ∴当点A′在PC上时,CA′的值最小, ∴∠APQ=∠CPQ,而CD∥AB, ∴∠APQ=∠CQP, ∴∠CQP=∠CPQ, ∴CQ=CP=7. 故选B.

二次函数总复习经典练习题 1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( ) (A)没有交点. (B)只有一个交点. (C)有且只有两个交点. (D)有且只有三个交点. 2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( ) (A)2. (B)1. (C)3. (D)4. 3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( ) (A)6. (B)4. (C)3. (D)1. 4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( ) (A)没有交点. (B)有两个交点,都在x轴的正半轴. (C)有两个交点,都在x轴的负半轴. (D)一个在x轴的正半轴,另一个在x轴的负半轴. 5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( ) (A)x= a b . (B)x=2. (C)x=4. (D)x=3. 6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax+b图象的只可能是 ( ) 7.二次函数y=2x2-4x+5的最小值是______. 8.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与y=-x2形状相同.则这个二次函数的解析式为______. 9.若函数y=-x2+4的函数值y>0,则自变量x的取值范围是______. 10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:

销量(个) 80 100 110 100 80 60 为获得最大利润,销售商应将该品牌电饭锅定价为 元. 11.函数y =ax 2 -(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为______. 12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽 1.6AB m ,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________. 13.(本题8分)已知抛物线y =x 2 -2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式. 14.(本题8分)抛物线y =ax 2 +2ax +a 2 +2的一部分如图3所示,求该抛物线在y 轴左侧与 x 轴的交点坐标. 15.(本题8分)如图4,已知抛物线y =ax 2 +bx +c (a >0)的顶点是C (0,1),直线l :y =-ax +3与这条抛物线交于P 、Q 两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q 的坐标. 16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元? 17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月 图3 y x O 1 图4 P Q y x O

第二部分 专题六 类型五 1.对于直线l 1:y =ax +b (a <0,b >0),有如下定义:我们把直线l 2:y =-1 a (x +b ) 称为它的“姊线”.若l 1与x ,y 轴分别相交于A ,B 两点,l 2与x ,y 轴分别相交于C ,D 两点,我们把经过点A ,B ,C 的抛物线C 叫做l 1的“母线”. (1)若直线l 1:y =ax +b (a <0,b >0)的“母线”为C :y =-12x 2 -x +4,求a ,b 的值; (2)如图,若直线l 1:y =mx +1(m <0),G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM ,若OM = 5 6 ,求出l 1的“姊线”l 2与“母线”C 的函数解析式; (3)将l 1:y =-3x +3的“姊线”绕着D 点旋转得到新的直线l 3:y =kx +n ,若点P (x , y 1)与点Q (x ,y 2)分别是“母线”C 与直线l 3上的点,当0≤x ≤1时,|y 1-y 2|≤3,求k 的 取值范围. 解:(1)对于抛物线y =-12x 2 -x +4,令x =0,得到y =4,∴B (0,4), 令y =0,得到-12x 2 -x +4=0,解得x =-4或2,∴A (2,0),C (-4,0). ∵y =ax +b 的图象过点A ,B , ∴? ?? ?? b =4,2a +b =0,解得? ?? ?? a =-2, b =4. (2)如答图所示,连接OG ,OH . ∵点G ,H 为斜边中点,∴OG =12AB ,OH =1 2CD . ∵l 1:y =mx +1,∴l 1的“姊线”l 2为y =-1 m (x +1), ∴B (0,1),A (-1m ,0),D (-1,0),C (0,-1 m ), ∴OA =OC ,OB =OD . ∵∠AOB =∠COD ,∴△AOB ≌△COD , ∴AB =CD ,∠ABO =∠CDO ,∴OG =OH . ∵OG =GB ,OH =HC ,

二次函数压轴题 1. 如图①,抛物线y =ax 2+(a +2)x +2(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点P (m ,0)(0

∴OB =2, ∵OP =m , ∴AP =4-m , ∵PM ⊥x 轴, ∴△OAB ∽△P AN , ∴OB OA =PN P A ,即24=PN 4-m , ∴PN =1 2(4-m ), ∵M 在抛物线上, ∴PM =-12m 2+3 2m +2, ∵PN ∶MN =1∶3, ∴PN ∶PM =1∶4, ∴-12m 2+32m +2=4×1 2(4-m ), 解得m =3或m =4(舍去), 即m 的值为3; (3)如解图,在y 轴上取一点Q ,使OQ OP 2 =3 2,

第1题解图 由(2)可知P 1(3,0),且OB =2, ∴OP 2OB =3 2,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2, ∴QP 2BP 2 =OP 2OB =32, ∴当Q (0,92)时,QP 2=3 2BP 2, ∴AP 2+3 2BP 2=AP 2+QP 2≥AQ , ∴当A 、P 2、Q 三点在一条直线上时,AP 2+QP 2有最小值, 又∵A (4,0),Q (0,9 2), ∴AQ = 42 +(92)2=1452, 即AP 2+32BP 2的最小值为145 2. 2. 如图,已知二次函数y =ax 2+bx +4的图象与x 轴交于

〖知识点〗二次函数、抛物线的顶点、对称轴和开 口方向 〖大纲要求〗 1.理解二次函数的概念; 2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象; 3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想; 4.会用待定系数法求二次函数的解析式; 5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。 内容 1)二次函数及其图象 如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax2+bx+c(a≠0)的顶点是 ,对称轴是

,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h. 〖考查重点与常见题型〗 1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图像经过原点, 则m的值是 2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数 y=kx2+bx-1的图像大致是()

y y y y 1 1 0 x o-1 x 0 x 0 - 1 x A B C D 3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x= ,求这条抛物线的解析式。 4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:

第二部分专题六类型二 1.(2018·创新同盟联考)已知抛物线y =a (x -m )2 +2m (m ≠0)经过原 点,其顶点为P ,与x 轴的另一交点为A . (1)P 点坐标为m , 2m );A 点坐标为(2m , 0);(用含m 的代数式表示) (2)求出a ,m 之间的关系式; (3)当m >0时,若抛物线y =a (x -m )2 +2m 向下平移m 个单位后经过(1,1),求此抛物线的表达式; (4)若抛物线y =a (x -m )2 +2m 向下平移|m |个单位后与x 轴所截的线段长,与平移前相比有什么变化?请直接写出结果. 解:(1)P (m,2m ),A (2m,0). (2)将x =0,y =0代入y =a (x -m )2 +2m 得 am 2+2m =0,∵m ≠0, ∴am +2=0, am =-2,a =-2 m . (3)当m >0时,抛物线y =a (x -m )2 +2m 向下平移m 个单位后:y =a (x -m )2 +m , 由于经过(1,1),∴a (1-m )2 +m =1,am 2 -2am +a +m =1,又am =-2, 所以a =m -3代入am =-2, 解得a 1=-1, m 1=2;a 2=-2, m 2=1. 此时抛物线的关系式为y =-(x -2)2 +4或y =-2(x -1)2 +1. (4)与x 轴所截的线段长,与平移前相比是原来的 22或6 2 倍. 说明:①当m >0时,则a <0,原抛物线y =a (x -m )2 +2m 经过原点, 故可化为y =ax 2-2amx ,向下平移m 个单位后为y =ax 2 -2amx -m ,(am =-2,a =-2m ) 平移前:d =2m ,平移后:d ′=|x 1-x 2|=2m , ②当m <0时,则a >0,原抛物线y =a (x -m )2 +2m 经过原点, 故可化为y =ax 2 -2amx ,向下平移-m 个单位后为y =ax 2 -2amx +m ,(am =-2,a =-2m ) 平移前:d =-2m ,平移后:d ′=|x 1-x 2|=-6m , ∴与x 轴所截的线段长,与平移前相比是原来的 22或6 2 倍.

二次函数专题训练(含答案) 一、 填空题 1 2 1. 把抛物线V X 向左平移2个单位得抛物线 ,接着再向下平移 3个 2 单位,得抛物线 2. 函数V 二-2X 2 ? x 图象的对称轴是 _____________ ,最大值是 3. 正方形边长为3,如果边长增加x 面积就增加V ,那么V 与x 之间的函数关系是 . 4. 二次函数V = _2x 2 ? 8x -6,通过配方化为V = a(x - h)2 ? k 的形为 _— 5. 二次函数V = ax 2 c ( c 不为零),当x 取x i , X 2 (X I M X 2)时,函数值相等,贝U X i 与X 2的关系是 _______ . ____ 6. 抛物线V = ax 2 bx c 当b=0时,对称轴是 _________________ ,当a , b 同号时,对称轴在 V 轴 ______________ 侧,当a , b 异号时,对称轴在 y 轴 ________________ 侧. 7. 抛物线V - -2(x 1)2 -3开口 _______________ ,对称轴是 __________ ,顶点坐标是 . 如果V 随x 的增大而减小,那么 x 的取值范围是 8. 若a ::0,则函数y=2x 2,ax-5图象的顶点在第 ________________ 象限;当时,函 4 数值随x 的增大而 ________ . _____ 9. 二次函数 V 二ax 2 bx c ( a 丰0)当a 0时,图象的开口 a :::0时,图象的开 口 ___________ ,顶点坐标是 ________ . ____ 1 2 10. 抛物线y (x -h)2,开口 ______________________ ,顶点坐标是 ______________ ,对称轴 是 ______ . _____ 2 11. 二次函数y 二-3(x )( )的图象的顶点坐标是(1, -2 ). 1 2 12.已知 y (x 1)2 -2,当 X 3 13.已知直线V =2x -1与抛物线V =5x 2 ? k 交点的横坐标为2,则k= ___________________ ,交 点坐标为 _______ . ____ ^x 2 2 x 化成V 二a(x - h)2 k 的形式是 3 15.如果二次函数 V =x 2 -6x m 的最小值是1,那么m 的值是 、选择题: _____________ 时,函数值随x 的增大而减小 14.用配方法将二次函数

第一讲数与式 1、绝对值 (1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 a,a0, | a | 0,a0, a, a0. (2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数 a 和数b之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式 ① f (x) a(a 0) ,去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。 ② f (x) a(a 0) ,去掉绝对值后,保留其等价性的不等式是 f (x) a或 f ( x) a 。 ③ f (x) g ( x) f 2 ( x)g 2 (x) 。 (2)利用零点分段法解含多绝对值不等式: ①找到使多个绝对值等于零的点. ②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1段进行讨论. ③将分段求得解集,再求它们的并集. 例 1.求不等式3x 5 4 的解集 例 2. 求不等式2x 1 5的解集 例 3. 求不等式x 3 x 2 的解集 例 4. 求不等式 | x+ 2| + | x- 1| > 3 的解集.

例 5. 解不等式 | x- 1| + |2 -x| > 3-x. 例 6. 已知关于x 的不等式| x-5|+| x-3|< a 有解,求 a 的取值范围. 练习 解下列含有绝对值的不等式: (1)x 1 x 3 >4+x (2) | x+1|<| x-2| (3) | x- 1|+|2 x+1|<4 (4)3x 2 7 (5)5x 7 8 3、因式分解 乘法公式 ( 1)平方差公式( a b)( a b)a2b2 ( 2)完全平方公式( a b) 2a22ab b2 ( 3)立方和公式( a b)(a2ab b2 )a3b3 ( 4)立方差公式( a b)(a2ab b2 )a3b3 ( 5)三数和平方公式( a b c)2a2b2c22(ab bc ac) 33223

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值范围.

初升高数学衔接班第3讲 高中数学入门(三) 重、难点 不等式的性质 【典型例题】 [例1] 29.0=a ,?=46tan b ,?-?=44cos 44sin c ,试比较a 、b 、c 大小。 解:b a c <<<<10 ∴ c a b >> [例2] 比较2、33、55的大小。 解:∵ 8)2(6= 9)3(63= ∴ 332< ∵ 32)2(10= 25)5(105= ∴ 552> ∴ 35325<< [例3] 设50≤c ,且c b a a 222+=-和322-=+c b a 同时成立,试比较 a 、 b 、 c 大小。 解:易知03242>--=a a b ,故1-a ∴ 53≤--=-a a a c ,a c > 012)3(442<--=-a a b ∴ b a c >> [例4] 已知1)1(22+<+m a 对任意实数m 都成立,求a 的取值范围。 解:∵ 12+m 的最小值为1 ∴ 1)1(2<+a ,2 1->0 ② b a >>0 ③ b a >>0 ④ 0>>b a 问其中哪些条件可以推出结论 b a 11<? 解:①、②、④ [例6] 解不等式:m x ≥+1(m 为字母系数) 解: (1)0≤m 时,只须01≥+x ,1-≥x (2)0>m 时,有???≥+≥+2101m x x ∴ 12-≥m x 【模拟试题】 1. 比较大小:?=89sin a ,?=45tan b ,? =1cos 1c 2. 已知a x ≤对任意43≤≤-x 都成立,求a 的取值范围。 3. 解关于x 的不等式:a x ≥-12(a 为系数) 4. 解不等式① 011<+-x x ② 03>+x x

〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗 1. 理解二次函数的概念; 2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会 用描点法画二次函数的图象; 3. 会平移二次函数y =ax 2 (a ≠0)的图象得到二次函数y =a(ax +m)2 +k 的图象,了解特 殊与一般相互联系和转化的思想; 4. 会用待定系数法求二次函数的解析式; 5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点 坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。 内容 (1)二次函数及其图象 如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax 2 +bx+c(a ≠0)的顶点是)44, 2(2 a b a c a b -- ,对称轴是a b x 2- =,当a>0时, 抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y=a (x+h )2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h. 〖考查重点与常见题型〗 1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2额图像经过原点, 则m 的值是 2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数 y =kx 2+bx -1的图像大致是( ) 3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中 档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =5 3 ,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如: 已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐

★ 专题六 二次函数的最值问题 【要点回顾】 1.二次函数2 (0)y ax bx c a =++≠的最值. 二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值244ac b a -,无最小值. 2.二次函数最大值或最小值的求法. 第一步确定a 的符号,a >0有最小值,a <0有最大值; 第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 3.求二次函数在某一范围内的最值. 如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值. 第一步:先通过配方,求出函数图象的对称轴:0x x =; 第二步:讨论: [1]若0a >时求最小值或0a <时求最大值,需分三种情况讨论: ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧。 [2] 若0a >时求最大值或0a <时求最小值,需分两种情况讨论: ①对称轴02 m n x +≤ ,即对称轴在m x n ≤≤的中点的左侧; ②对称轴02m n x +>,即对称轴在m x n ≤≤的中点的右侧; 说明:求二次函数在某一范围内的最值,要注意对称轴与自变量的取值范围相应位置,具体情况,参考例4。 【例题选讲】

例1求下列函数的最大值或最小值. (1)5322--=x x y ; (2)432+--=x x y . 答案:(1)4 7)2(531 例2当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 答案:5;1min max -=-=y y 例3当0x ≥时,求函数(2)y x x =--的取值范围. 答案1-≥y 例4当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x = --的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时:当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2m i n 1511322 y =?--=-; (3) 当对称轴在所给范围右侧.即110t t +

2020-2021九年级数学二次函数的专项培优练习题及答案解析 一、二次函数 1.(6分)(2015?牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题: (1)求抛物线的解析式; (2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长. 注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣ . 【答案】(1)y=-2x-3;(2). 【解析】 试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长. 试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得: ,解得: ,∴抛物线的解析式是:y=-2x-3;(2)∵点 E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE= = .∵点F 是AE 中点,点H 是抛物线的对称轴与 x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×= .∴ 线段FH 的长 . 考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理. 2.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .

1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 ,0,||0,0,,0.a a a a a a >??==??-,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5). 2. 乘法公式 我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式 2233()()a b a a b b a b +-+=+; (2)立方差公式 2233()()a b a a b b a b -++=-; (3)两数和立方公式 33223()33a b a a b a b b +=+++; (4)两数差立方公式 3322()33a b a a b a b b -=-+-. 练 习 1.填空: (1)221111()9423 a b b a -=+( ); (2)(4m + 22)164(m m =++ ); (3 ) 2222(2)4(a b c a b c +-=+++ ). 2.选择题: (1)若212 x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213 m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数

相关文档
最新文档