2021-2022年高考数学大一轮复习板块命题点专练十文

2021-2022年高考数学大一轮复习板块命题点专练十文
2021-2022年高考数学大一轮复习板块命题点专练十文

2021年高考数学大一轮复习板块命题点专练十文

甲说:我去过的城市比乙多,但没去过B城市;

乙说:我没去过C城市;

丙说:我们三人去过同一城市.

由此可判断乙去过的城市为________.

解析:由甲、丙的回答易知甲去过A城市和C城市,乙去过A城市或C城市,结合乙的回答可得乙去过A城市.

答案:A

3.(xx·陕西高考)观察下列等式:

1-1

2

1

2

1-1

2

1

3

1

4

1

3

1

4

1-1

2

1

3

1

4

1

5

1

6

1

4

1

5

1

6

据此规律,第n 个等式可为_________________________________________.

解析:等式的左边的通项为

12n -1-12n ,前n 项和为1-12+13-14+…+12n -1-12n ;右边的每个式子的第一项为1n +1,共有n 项,故为1n +1+1n +2+…+1n +n

. 答案:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)

1.(xx·江西高考)已知数列{a n } 的前 n 项和 S n =2

,n ∈N *. (1)求数列{a n } 的通项公式;

(2)证明:对任意的n >1,都存在m ∈N * ,使得 a 1,a n ,a m 成等比数列.

解:(1)由S n =3n 2-n 2

,得a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=3n -2,当n =1时也适合.

所以数列{a n }的通项公式为:a n =3n -2.

(2)证明:要使得a 1,a n ,a m 成等比数列,

只需要a 2

n =a 1·a m ,即(3n -2)2=1·(3m -2),

即m =3n 2-4n +2,而此时m ∈N *,且m >n .

所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.

2.(xx·北京高考节选)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1=

??? 2a n ,a n ≤18,2a n -36,a n >18(n =1,2,…).记集合M ={a n |n ∈N *}.

(1)若a 1=6,写出集合M 的所有元素;

(2)若集合M 存在一个元素是3 的倍数,证明:M 的所有元素都是3的倍数. 解:(1)6,12,24.

(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数.

由a n +1=??? 2a n ,a n ≤18,2a n -36,a n >18可归纳证明对任意n ≥k ,a n 是3的倍数.

如果k =1,则M 的所有元素都是3的倍数.

如果k >1,因为a k =2a k -1或a k =2a k -1-36,所以2a k -1是3的倍数,于是a k -1是3的倍数.类似可得,a k -2,…,a 1都是3的倍数.

从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.

综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.

n ,n ∈N ,n ≥2.

(1)证明:函数F n (x )=f n (x )-2在? ??

??12,1内有且仅有一个零点(记为x n ),且x n =12+12

x n +1n ; (2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和

为g n (x ),比较f n (x )和 g n (x )的大小,并加以证明.

解:(1)证明:F n (x )=f n (x )-2=1+x +x 2+…+x n -2, 则F n (1)=n -1>0,

F n ? ????12=1+12+? ????122+…+? ??

??12n -2 =1-? ????12n +11-12

-2=-12n <0, 所以F n (x )在? ??

??12,1内至少存在一个零点. 又F n ′(x )=1+2x +…+nx n -1>0,

故F n (x )在? ????12,1内单调递增,所以F n (x )在? ??

??12,1内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,

即1-x n +1n 1-x n -2=0,故x n =12+12

x n

+1n . (2)由题设,f n (x )=1+x +x 2+…+x n

, g n (x )=n +1

x n +12,x >0.

当x =1时,f n (x )=g n (x ).

当x ≠1时,用数学归纳法可以证明f n (x )<g n (x ).

①当n =2时,f 2(x )-g 2(x )=-12

(1-x )2<0, 所以f 2(x )<g 2(x )成立.

②假设n =k (k ≥2)时,不等式成立,即f k (x )<g k (x ).

那么,当n =k +1时,

f k

+1(x )=f k (x )+x k +1<g k (x )+x k +1=k +11+x k 2+x k +1=2x k +1+k +1x k +k +1

2.

又g k +1(x )-2x k +1+k +1x k +k +12

=kx k +1-k +1x k +1

2,

令h k (x )=kx k +1-(k +1)x k +1(x >0), 则h k ′(x )=k (k +1)x k -k (k +1)x k -1 =k (k +1)x k -1·(x -1).

所以当0<x <1时,h k ′(x )<0,h k (x )在(0,1)上递减; 当x >1时,h k ′(x )>0,h k (x )在(1,+∞)上递增. 所以h k (x )>h k (1)=0,

从而g k +1(x )>2x k +1+k +1x k +k +12

. 故f k +1(x )<g k +1(x ),即n =k +1时不等式也成立. 由①和②知,对一切n ≥2的整数,都有f n (x )<g n (x ).

相关主题
相关文档
最新文档