我国工业余热回收利用技术综述_连红奎

我国工业余热回收利用技术综述_连红奎
我国工业余热回收利用技术综述_连红奎

第29卷,总第166期2011年3月,第2期《节能技术》

ENERGY CONSERVATION TECHNOLOGY Vol.29,Sum.No.166Mar.2011,No.2

我国工业余热回收利用技术综述

连红奎,李

艳,束光阳子,顾春伟

(清华大学热能工程系,北京100084)

要:节能减排主要依靠工业领域,工业余热利用是重要内容。本文从余热利用过程能量转

换情况角度,概述了国内用于余热利用的热交换技术、热功转换余热发电技术及余热制冷制热技术

及其设备的技术特点及应用概况,分析了工业余热利用中的存在的问题,认为需进一步推广余热锅炉及低温汽轮机余热发电技术,提高中高温余热的利用率,需要强化研究并掌握有机朗肯循环等300?以下低温余热发电技术,积极向工程应用推广,提高低品位余热利用率。

关键词:工业余热利用;热交换技术;热功转换余热发电技术;余热制冷制热;低温有机朗肯循环

中图分类号:TK11+

5文献标识码:A 文章编号:1002-6339(2011)02-0123-06

An Overview of Domestic Technologies for Waste Heat Utilization

LIAN Hong -kui ,LI Yan ,SHU Guang -yangzi ,GU Chun -wei

(Department of Thermal Engineering ,Tsinghua University ,Beijing 100084,China )

Abstract :Waste heat recovery in industry is indispensable in saving energy ,lowering energy consumption and reducing pollutants.This paper overviewed the characteristics and applications of waste heat recovery technologies in China such as heat transfer utilization ,power generation technologies ,refrigeration and heat pump.The dissemination of waste heat boiler and power generation technologies is necessary for in-creasing the ratio of midium /high temperature waste heat utilization ;meanwhile Organic Rankine Cycle system is an effective solution to the low temperature waste heat recovery and the development is a press-ing need.

Key words :waste heat utilization ;waste heat transfer ;power generation technologies ;refrigeration and heat pump ;low temperature Organic Rankine Cycle

收稿日期2010-12-21

修订稿日期2011-01-12

基金项目:杭州中能汽轮动力有限公司支持项目

“低温有机朗肯循环系统及透平的设计与开发”

。作者简介:连红奎(1985 ),男,硕士研究生,研究方向:叶轮机

械与热力学。

0引言

当前,我国能源利用仍然存在着利用效率低、经

济效益差,生态环境压力大的主要问题,节能减排、

降低能耗、提高能源综合利用率作为能源发展战略

规划的重要内容,

是解决我国能源问题的根本途径,处于优先发展的地位。

实现节能减排、提高能源利用率的目标主要依靠工业领域。处在工业化中后期阶段的中国,工业是主要的耗能领域,也是污染物的主要排放源。我

国工业领域能源消耗量约占全国能源消耗总量的

70%,主要工业产品单位能耗平均比国际先进水平高出30%左右。除了生产工艺相对落后、产业结构不合理的因素外,工业余热利用率低,能源(能量)

·

321·

没有得到充分综合利用是造成能耗高的重要原因,我国能源利用率仅为33%左右,比发达国家低约10%,至少50%的工业耗能以各种形式的余热被直接废弃[1-2]。因此从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17% 67%,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大,工业余热回收利用又被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。

1工业余热资源特点

余热资源属于二次能源,是一次能源或可燃物料转换后的产物,或是燃料燃烧过程中所发出的热量在完成某一工艺过程后所剩下的热量。按照温度品位,工业余热一般分为600?以上的高温余热,300 600?的中温余热和300?以下的低温余热三种;按照来源,工业余热又可被分为:烟气余热,冷却介质余热,废汽废水余热,化学反应热,高温产品和炉渣余热,以及可燃废气、废料余热[3]。

具体来说,烟气余热量大,温度分布范围宽,占工业余热资源总量的50%以上,分布广泛,如冶金、化工、建材、机械、电力等行业,各种冶炼炉、加热炉、内燃机和锅炉的排气排烟,而且有些工业窑炉的烟气余热量甚至高达炉窑本身燃料消耗量的30% 60%,节能潜力大,是余热利用的主要对象。冷却介质余热是指在工业生产中为了保护高温生产设备或满足工艺流程冷却要求,空气、水和油等冷却介质带走的余热,多属于中低温余热,余热量占工业余热资源总量的20%。废水废汽余热是一种低品位的蒸汽或凝结水余热,约占余热资源总量的10% 16%;化学反应余热占余热资源总量的10%以下,主要存在于化工行业;高温产品和炉渣余热主要指坯料、焦炭、熔渣等的显热,石化行业油、气产品的显热等;可燃废气、废料余热是指生产过程的排气、排液和排渣中含有可燃成分,如冶金行业的高炉煤气、转炉煤气等。

虽然余热资源来源广泛、温度范围广、存在形式多样,但从余热利用角度看,余热资源一般具有以下共同点[3]:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地、原生产等固有条件限制。

因此工业余热资源利用系统或设备运行环境相对恶劣,要求有宽且稳定的运行范围,能适应多变的生产工艺要求,设备部件可靠性高,初期投入成本高,从经济性出发,需要结合工艺生产进行系统整体的设计布置,综合利用能量,以提高余热利用系统设备的效率。

2工业余热利用技术

余热温度范围广、能量载体的形式多样,又由于所处环境和工艺流程不同及场地的固有条件的限制,生产生活的需求,设备型式多样,如有空气预热器,窑炉蓄热室,余热锅炉,低温汽轮机等。常见的工业余热回收利用方式,有多种分类方式,根据余热资源在利用过程中能量的传递或转换特点,可以将国内目前的工业余热利用技术分为热交换技术、热功转换技术、余热制冷制热技术。

2.1热交换技术

余热回收应优先用于本系统设备或本工艺流程,降低一次能源消耗,尽量减少能量转换次数,因此工业中常常通过空气预热器、回热器、加热器等各种换热器回收余热加热助燃空气、燃料(气)、物料或工件等,提高炉窑性能和热效率,降低燃料消耗,减少烟气排放;或将高温烟气通过余热锅炉或汽化冷却器生成蒸汽热水,用于工艺流程。这一类技术设备对余热的利用不改变余热能量的形式,只是通过换热设备将余热能量直接传递给自身工艺的耗能流程,降低一次能源消耗,可统称为热交换技术,这是回收工业余热最直接、效率较高的经济方法,相对应的设备是各种换热器,既有传统的各种结构的换热器、热管换热器,也有余热蒸汽发生器(余热锅炉)等。

2.1.1间壁式换热器

工业用的换热器按照换热原理基本分为间壁式换热器、混合式换热器和蓄热式换热器。其中间壁式和蓄热式是工业余热回收的常用设备,混合式换热器是依靠冷热流体直接接触或混合来实现传递热量,如工业生产中的冷却塔、洗涤塔、气压冷凝器等,在余热回收中并不常见。

间壁式换热器主要有管式、板式及同流换热器等几类,管式换热器虽然在热效率较低,平均在26% 30%,紧凑性和金属耗材等方面也逊色于其它类型换热器,但它具有结构坚固、适用弹性大和材料范围广的特点,是工业余热回收中应用最广泛的热交换设备。冶金企业40%的换热器设备为管式换热器,允许入口烟气温度达1000?以上,出口烟温约600?,平均温差约300?[4]。板式换热器有翅片板式、螺旋板式、板壳式换热器等,与管式换热器相比,其传热系数约为管壳式的二倍,传热效率高,

·

421

·

结构紧凑,节省材料等。在冶金行业的联合、中小企业多采用板式换热器预热助燃空气,热回收率平均在28% 35%,入口烟气温度700?左右,出口温度达360?[4]。但由于板式换热器使用温度、压力比管式换热器的限制大,应用范围受到限制。对于各种工业炉窑的高温烟气,还常采用块孔式换热器、空气冷却器和同流热交换器等。其中同流换热器属于气-气热交换器,主要有辐射式和对流式两类,应用较为广泛,多用在均热炉、加热炉等设备上回收烟气余热,预热助燃空气或燃料,降低排烟量和烟气排放温度。常见的辐射同流换热器入口烟气温度可达1100?以上,出口烟气温度亦高达600?,可将助燃空气加热到400?,助燃效果好;温度效率可达40%以上,但热回收率较低,平均在26% 35%[5]。2.1.2蓄热式热交换器

蓄热式热交换设备是冷热流体交替流过蓄热元件进行热量交换,属于间歇操作的换热设备,适宜回收间歇排放的余热资源,多用于高温气体介质间的热交换,如加热空气或物料等。

根据蓄热介质和热能储存形式的不同,蓄热式热交换系统可分为显热储能和相变潜热储能。显热储能的系统在工业中应用已久,简单换热设备如常见的回转式换热器;复杂设备如炼铁高炉的蓄热式热风炉、玻璃熔炉的蓄热室。由于显热储能热交换设备储能密度低、体积庞大、蓄热不能恒温等缺点,在工业余热回收中具有局限性。相变潜热储能换热设备利用蓄热材料固有热容和相变潜热储存传递能量,具有高出显热储能设备至少一个数量级的储能密度,因此在储存相同热量的情况下,相变潜热储能换热设备比传统蓄热设备体积减少30% 50%[6]。此外,热量输出稳定,换热介质温度基本恒定,使换热系统运行状态稳定是此类相变潜热储能换热设备的另一优点。相变储能材料根据其相变温度大致分为高温相变材料和中低温相变材料,前者相变温度高、相变潜热大,主要是由一些无机盐及其混合物、碱、金属及合金、氧化物等和陶瓷基体或金属基体复合制成,适合于450 1100?及以上的高温余热回收,应用较为广泛;后者主要是结晶水合盐或有机物,适合用于低温余热回收。

2.1.3基于热管的换热设备

热管是一种高效的导热元件,通过在全封闭真空管内工质的蒸发和凝结的相变过程和二次间壁换热来传递热量,属于将储热和换热装置合二为一的相变储能换热装置。热管导热性优良,传热系数比传统金属换热器高近一个量级,还具有良好的等温性、可控制温度、热量输送能力强、冷热两侧的传热面积可任意改变、可远距离传热、无外加辅助动力设备等一系列优点。热管工作温度分为低温(-200 +50?),常温(50 250?),中温(250 600?),高温(>600?)的热管,需要根据不同的使用温度选定相应的管材和工质[7]。其中碳钢-水重力热管的结构简单、价格低廉、制造方便、易于推广,使得此类热管得到了广泛的应用。实际应用中用于工业余热回收的热管使用温度在50 400?之间,用于干燥炉、固化炉和烘炉等的热回收或废蒸汽的回收,以及锅炉或炉窑的空气预热器[8]。2.1.4余热锅炉

采用蒸汽发生器,即余热锅炉回收余热是提高能源利用率的重要手段,冶金行业近80%的烟气余热是通过余热锅炉回收,节能效果显著。

余热锅炉中不发生燃烧过程,从本质上讲只是一个气-水/蒸汽的换热器,可利用高温烟气余热、化学反应余热、可燃气体余热以及高温产品余热等,生产高压、中压或低压蒸汽或热水,用于工艺流程或进入管网供热。同时,余热锅炉是低温汽轮机发电系统中的重要设备,为汽轮机等动力机械提供做功蒸汽工质。

实际应用中,利用350 1000?高温烟气的余热锅炉居多,和燃煤锅炉的运行温度相比,属于低温炉,效率较低。由于余热烟气含尘量大,含有较多腐蚀性物质,更易造成锅炉积灰、腐蚀、磨损等问题,因此防积灰、磨损是设计余热锅炉的关键。直通式炉型、大容积的空腔辐射冷却室、设置的密封炉墙、除尘室、大量振打吹灰装置都是余热锅炉为解决积灰、磨损问题在结构上的考虑。另外由于受工艺生产场地空间限制,余热锅炉把换热部件分散安装在工艺流程各部位,而不是像普通锅炉一样组装成一体[3]。

近十年随着节能减排工作的推进,国内主要余热锅炉设计制造企业获得加速发展,余热锅炉为适应工业领域产能调整和增长,朝着大型化、高参数方向发展,如有色冶金行业蒸发量50t/h、工作压力4.2MPa的余热锅炉,或钢铁冶金行业蒸发量达100 t/h,工作压力12.5MPa的干熄焦余热锅炉。此外,进一步提高锅炉传热效果、热利用率,减轻积灰、磨损等问题,在锅炉循环方式、受热面结构、锅炉内烟气流道及清灰方式等方面进行改造、革新是余热锅炉技术进步的内容。

2.2热功转换技术

热交换技术通过降低温度品位仍以热能的形式

·

521

·

回收余热资源,是一种降级利用,不能满足工艺流程或企业内外电力消耗的需求。此外,对于大量存在的中低温余热资源,若采用热交换技术回收,经济性差或者回收热量无法用于本工艺流程,效益不显著。因此,利用热功转换技术提高余热的品位是回收工业余热的又一重要技术。

按照工质分类,热功转换技术可分为传统的以水为工质的蒸汽透平发电技术和以低沸点工质的有机工质发电技术。由于工质特性显著不同,相应的余热回收系统及设备组成也各具特点。目前主要的工业应用以水为工质,以余热锅炉+蒸汽透平或者膨胀机所组成的低温汽轮机发电系统[9]。相对于常规火力发电技术参数而言,低温汽轮机发电机组利用的余热温度低、参数低、功率小,在行业内多被称为低温余热汽轮机发电技术,新型干法水泥窑低温余热发电技术是典型的中低温参数的低温汽轮机发电技术[10]。

低温汽轮机机发电可利用的余热资源主要是大于350?的中高温烟气,如烧结窑炉烟气,玻璃、水泥等建材行业炉窑烟气或经一次利用后降温到400 600?的烟气,单机功率在几兆瓦到几十兆瓦,如钢铁行业氧气转炉余热发电、烧结余热发电,焦化行业干熄焦余热发电、水泥行业低温余热发电,玻璃、制陶制砖等建材炉窑烟气余热发电等多种余热发电形式。但从余热资源的温度范围来看,该技术利用的中高温余热,属于中高温余热发电技术。

此外,通过余热锅炉或换热器从工艺流程中回收大量蒸汽,其中低压饱和蒸汽(1MPa左右)、或热水占有很大比例,除用于生产生活,还有大量剩余常被放散。目前利用这类低压饱和蒸汽发电或拖动的技术主要是采用螺杆膨胀动力机技术。该技术具有以下特点[10-11]:可用多种热源工质作为动力源,适用于过热蒸汽、饱和蒸汽、汽液两相混合物,也适用于烟气、含污热水、热液体等;结构简单紧凑,可自动调节转速,寿命长,振动小;机内流速低,除泄露损失外,其他能量损失少,效率高;双转子非接触式的特性,运转时形成剪切效应具有自清洁功能、自除垢能力。螺杆膨胀动力机属于容积式膨胀机,受膨胀能力限制,直接驱动螺杆膨胀动力机的热源应用范围为小于300?的0.15 3.0MPa的蒸汽或压力0.8 MPa以上,高于170?的热水等,由于结构特点,因此螺杆膨胀动力机单机功率受限,多数在1000kW 以下,主要用于余热规模较小的场合。

2.3制冷制热技术2.3.1余热制冷技术

与传统压缩式制冷机组相比,吸收式或吸附式制冷系统可利用廉价能源和低品位热能而避免电耗,解决电力供应不足;采用天然制冷剂,不含对臭氧层有破坏的CFC类物质,具有显著的节电能力和环保效益,在20世纪末得到了广泛的推广应用。

吸收式和吸附式制冷技术的热力循环特性十分相近,均遵循“发生(解析)-冷凝-蒸发-吸收(吸附)”的循环过程,但吸收式制冷的吸收物质为流动性良好的液体,制冷工质为氨-水、溴化锂水溶液等,其发生和吸收过程通过发生器和吸收器实现;吸附式制冷吸附剂一般为固体介质,吸附方式分为物理吸附和化学吸附,常使用分子筛-水、氯化钙-氨等工质对,解析和吸附过程通过吸附器实现。

以溴化锂水溶液为工质的吸收式制冷系统应用最广泛,一般可利用80 250?范围的低温热源,但由于用水做制冷剂,只能制取0?或5?以上的冷媒温度,多用于空气调节或工业用冷冻水,其性能系数COP因制冷工质对热物性和热力系统循环方式的不同而有很大变化,实际应用的机组COP多不超过2,远低于压缩式制冷系统[12],但是此类机组可以利用低温工业余热、太阳能、地热等低品位热能,不消耗高品质电能,而在工业余热利用方面有一定优势。吸收式余热制冷机组制冷效率高,适用于大规模热量的余热回收,制冷量小可到几十千瓦,高可达几兆瓦,在国内已获得大规模应用,技术成熟,产品的规格和种类齐全。

吸附式制冷机的制冷工质对种类很多,包括物理吸附工质对、化学吸附工质对和复合吸附工质对,适用的热源温度范围大,可利用低达50?的热源,而且不需要溶液泵或精馏装置,也不存在制冷机污染、盐溶液结晶以及对金属的腐蚀等问题。吸附式制冷系统结构简单,无噪音,无污染,可用于颠簸震荡场合,如汽车、船舶,但制冷效率相对低,常用的制冷系统性能系数多在0.7以下,受限于制造工艺,制冷量小,一般在几百千瓦以下,更适合利用小热量余热回收,或用于冷热电联产系统[12]。

2.3.2热泵技术

工业生产中存在大量略高于环境温度的废热(30 60?),如工业冲渣水、冷却废水、火电厂循环水、油田废水、低温的烟气、水汽等,温度很低,但余热量大,(水源)热泵技术常被用于回收此类余热资源。

热泵以消耗一部分高质能(电能、机械能或高温热能)作为补偿,通过制冷机热力循环,把低温余

·

621

·

热源的热量“泵送”到高温热媒,如50?及以上的热水,可满足工农商业的蒸馏浓缩、干燥制热或建筑物采暖等对热水的需求。目前,热泵机组的供热系数在3 5之间,即消耗1kW电能,可制得3 5kW 热量,在一定条件环境下是利用略高于环境温度废水余热的经济可行的技术。

当前研制生产的大都是压缩式热泵,中型热泵正在开发,大型热泵尚属空白。压缩式热泵中以水源热泵技术应用最为广泛,可用于火电厂/核电厂循环水余热、印染、轮胎制造、油田、制药等行业的余热回收。例如,电厂以循环水或工艺产热水作为热源水,通过热泵机组提升锅炉给水的品位,使原有的锅炉给水由15?(20、25?)提升到50?,减少锅炉对燃煤的需求量,达到节能降耗的目的[13]。

2.4小结

综上所述,余热利用的技术设备种类繁多,但都有一定的适用条件,应当根据工业余热温度、余热量,结合生产条件、工艺流程、内外能量需求,选择合适的余热利用方式。

目前国内各主要余热资源都有可选的回收利用技术或设备,这些技术在原理上和国外余热利用技术并无本质差别,基本上都是通过上文所述的热交换技术、热功转换技术、制冷制热技术进行余热利用。但由于国外余热回收技术已基本成熟,其设备性能优良,应用广泛,极大地提高了能源利用率。而国内,高、中温余热利用技术设备未得到有效推广普及,低温余热由于相应的利用技术不成熟基本被废弃,造成余热整体利用率低。其中被废弃的200?甚至300?以下的低温工业余热虽然品位低、利用技术难度高,但具有很大比例的余热能量,如在石化行业可达80%。对于此类低温工业余热,基于有机朗肯循环ORC的热力发电系统是有效、经济的利用工业低温热能的技术。

3基于有机介质的低温工业余热发电技术

3.1低温有机朗肯循环

对于工业中大量废弃的200?,甚至300?以下的低温余热,目前无法利用蒸汽/热水闪蒸系统进行有效回收,更适宜采用经济可行的有机朗肯循环余热发电技术。

基于有机介质的低温工业余热发电技术属于热功转换技术,如有机工质朗肯循环、Kalina循环。有机朗肯循环(Organic Rankine Cycle,简称ORC)是以低沸点有机物为工质的朗肯循环,其系统组成及原理示意如图1所示,与常规的蒸汽发电装置的热力循环原理相同,只是循环工质不同而已,系统更简单紧凑。采用这种发电方式对低温范围余热利用有显著优点,余热物流与工质不直接接触,有机工质蒸汽比容小,管道尺寸小,透平通流面积小,单位体积的功率可以较大,非常适宜用于低温余热回收。若选择适宜的有机工质,如干流体和等熵流体,可不设置过热器,降低系统的复杂度,直接将饱和的有机工质蒸汽送入透平膨胀做功后,在透平出口仍是干蒸汽,也不会对透平产生液滴侵蚀。

有机工质的选取是有机朗肯循环余热发电技术的重要环节。通常要求工质应满足:(1)发电性能好,即在相同蒸发温度和冷凝温度下,绝热焓降大;(2)传热性能好,在相同条件下,换热系数大;(3)工质临界参数、常压下沸点等热物理性质适宜;(4)化学稳定性好、不分解、腐蚀性小、毒性小、环保、不易燃易爆;(5)经济性好,既来源丰富,价格低。但是在实际应用中,工质很难同时满足上述全部条件,而且随着国际上对有机工质环保要求的日益提高,可用工质不断更新,因此根据热源类型及温度品位,综合考虑。采用不同有机工质(或者有机工质的混合物),可回收不同温度范围的低温热能,系统简单,运行维护成本低,系统组成示意如图1所示。所选用的工质热物性有所差异,导致其热力循环特征有所不同,相应的热力发电系统也各具特点

图1有机朗肯循环系统示意图

有机朗肯循环发电系统设备中,热交换器、泵与管路阀门等的设计制造可参考化工、制冷行业的热交换设备,发电机是系列产品,仅透平膨胀机的选型设计以及密封技术需要区别对待,进行非标准设计。常用的透平膨胀机有多级轴流透平,适用于温度较高、工质流量大、总焓降大、容量大的情况下,但相对内效率相对低,工艺较复杂;径流式透平相对内效率相对高,结构紧凑、工艺制造简单,但单机容量小,在国外余热利用中有很多应用实例,适用于余热回收量较小的情况。

目前,国外ORC技术已成功商业化,涌现出许

·

721

·

多ORC 设计与制造厂商,如美国ORMAT 公司、意

大利Turboden 、

德国GMK 公司等,普惠、GE 、三菱等著名叶轮机械设计制造企业也成立了专门的ORC

公司。目前,国外ORC 技术的应用已从工业余热回收转向地热、太阳能、生物质等低品位能源。

我国对ORC 系统的研究应用起步晚,目前在ORC 回收低温工业余热的应用尚数空白。近年来,浙江大学、中南大学、清华大学等科研单位对有机工质、热力循环、进行了一定理论或小型实验研究。2008年以来,清华大学和杭州中能汽轮动力有限公司联合开展对ORC 工业余热发电系统的工程应用研究和关键技术研发

[15]

,建立有机朗肯循环热力设

计系统和相应的透平设计系统,

在工质选取、热力系统设计优化、

有机工质透平设计,并进行系统变工况性能分析,将ORC 工业低温余热技术积极向工程应用阶段推进。3.2Kalina 循环

纯工质有机朗肯循环,由于工质的等温蒸发吸热过程与实际的变温低温热源配合不紧密,换热平均温差大,不可逆损失较大。为了减小换热不可逆损失,对纯工质有机物朗肯循环提出了几种改进的方法,如混合工质循环、

Kalina 循环等。Kalina 循环是以氨水混合物为工质的循环系统,最简单的热力

循环是一级蒸馏循环,基本流程如图2所示[14],即一定浓度的氨水溶液经过水泵加压、预热器升温之

后,进入余热锅炉蒸发,形成过热氨水蒸汽进入透平

膨胀做功,然后利用复杂的蒸馏冷却子系统解决氨水混合物冷凝问题,使透平乏汽重新形成一定浓度

的工质溶液,再到达给水泵,完成一个循环[14]

图2一级蒸馏Kalina 循环原理图

Kalina 循环在蒸发过程中工质等压变温蒸发,减少工质吸热过程的不可逆性,而又因为冷凝过程

中的基本工质含氨低,克服了混合工质有机朗肯循环冷凝损失大的弱点。有理论分析,

Kalina 循环比纯工质的ORC 循环系统性能高出15%以上,但在实际运行中,由于氨水混合工质蒸发过程的复杂性

以及系统的复杂性等因素,

Kalina 循环并未表现出非常高的性能。

研究表明,在中低温余热回收利用中,针对不同类型的余热类型,

Kalina 循环和朗肯循环在余热回收利用各方面各有优势,对于温度和流量一定、余热回收利用后以一定的温度排出,用于生产过程的余热源,有机朗肯循环低温余热回收系统更具有优势。

4结语

节能减排、提高能源利用率是我国能源发展战

略的重要内容。我国工业余热资源丰富,回收利用工业余热是节能减排工作的重点。

按照余热能量的传递转换过程,可将国内目前余热利用技术分为热交换技术、热功转换技术和余热制冷制热技术。与热交换技术相对应的设备有各

种换热器、

热管、余热蒸汽发生器(余热锅炉)等,基本适用于各种温度水平的余热回收,但只能对余热

进行热利用,用途受到限制。热功转换技术难度较大,系统复杂,但可将余热回收转换为电功,便于输送和使用,主要有余热锅炉-低温汽轮机发电技术,适用于利用大于350?中高温余热,以干熄焦发电技术和水泥窑纯低温余热发电技术为典型代表;余热制冷制热技术有可利用250?以下余热的吸收式制冷技术、可利用30 60?余热的热泵技术,但其用途需求有限,只能用于一般的生产或生活制冷制热,对余热的回收能力有限。当前中高温余热利用技术普及率不高,低温余热未被利用是我国余热利用率低的原因之一。因此,推进工业节能减排工作,一方面要进一步推广普及中高温余热利用技术,尤其是提高中小型企业余热利用率,要推进余热利用技术与工艺节能相结合,从整个工艺系统分析能源的供给需求,优化工艺系统及其相应的余热利用技术。另一方面,从技术发展看,低温有机朗肯循环技术是利用低温工业余热、地热、太阳能的经济有效方案,但国内未掌握该技术,因此强化研究有机朗肯循环等低温余热发电技

术,并积极进行工程应用推广,对提高低品位余热利

用率会起到重要作用。

(下转第133页)

·

821·

时,温差随着Gr数的增加而增大。这是由于引入质量流速随着Gr数的增加而增加,并且引入变物性时,通道内的粘性影响增加了浮升力,因此导致换热增强,进而使得通道内最大温度比常物性和Bouss-inesq假设时的计算结果偏低。

4结论

通过上述实验和分析,我们得到如下结论:

(1)变物性会使得凸起热源附近的热分布区域有明显的减小,并且热分布区域随着Gr数的增加而更贴近热源块。

(2)由于变物性的引入,相比于常物性和Boussinesq假设,流线分布变得更均匀,且通道内的引入质量流速变大。

(3)当Gr<7.5?104时,考虑变物性对复杂通道内最大温度和平均Nu数的影响不大,而当Gr>7.5?104时,需要考虑变物性对换热的影响。

参考文献

[1]Nasr K B,Chou Ikh R,Kerken I C,Gu Izan I A.Nu-merical study of the natural convection in cavity heated from the lower corner and cooled from the ceiling.Applied Thermal Engi-neering,Vol.26,2006,772-775.

[2]Avram Bar-Cohen,Bounding relations for natural con-vection heat transfer from vertical printed circuit boards,IEEE,Vol.73,No.9,1985,1388-1395.

[3]Gilles Desrayaud,Alberto Fichera,Laminar natural convection in a vertical isothermal channel with symmetric sur-face-mounted rectangular ribs,International Journal of Heat and Fluid Flow,Vol.23,2002,519-529.

[4]G.M.Rao,G.S.V.L.Narasimham,Laminar conjugate mixed convection in a vertical channel with heat generating com-ponents,International Journal of Heat and Mass Transfer,Vol.50,2007,3561-3574.

[5]李隆键,宋长华.有凸出离散热源封闭空腔内耦合自然对流换热[J].重庆大学学报(自然科学版),2001,24(4):125-129.

[6]Guo Z Y and Wu X B,Thermal Drag and Critical Heat Flux for Natural Convection of Air in Vertical Parallel Plates,ASME Journal of Heat Transfer,Vol.115,1993,124-130.[7]B.Zamora and J.Hernhndez,Influence of variable property effects on natural convection flows in asymmetrically-heated vertical channels,Int.Comm.Heat Mass Transfer,Vol.24,No.8,1997,1153-1162.

(上接第128页)

参考文献

[1]王维兴.钢铁工业的节能潜力分析[J].冶金能源,2002,(3).

[2]李洪福,温燕明,孙德民.钢铁企业用电自给可行性探讨[J].钢铁,2010,(1).

[3]赵宗燠.余热利用与锅炉节能[M].银川:宁夏人民出版社,1984.

[4]张凤起,金岩,王凤荣,吕英华,邱玉林.我国钢铁工业余热资源及利用状况[J].钢铁,1990,(4).

[5]康丹凤,王占中,王克.钢铁企业余能资源的利用[J].冶金能源,2002,(5).

[6]付英,曾令可,王慧,刘艳春.相变储能材料在工业余热回收领域的应用研究进展[J].工业炉,2009,(5).[7]谭业锋.工业窑炉废气余热的回收与利用研究[D].济南:山东大学,2006.

[8]赵斌,王子兵.热管及其换热器在钢铁工业余热回收中的应用[J].冶金动力,2005,(3).

[9]张轶.中外水泥窑纯低温余热发电对比[J].中国建材,2005,(6).

[10]张富,张福滨.水泥行业纯低温余热发电技术及现状[J].建材发展导向,2007,(1).

[11]韩巍,李志.螺杆膨胀动力机余热利用系统介绍及前景分析[J].船电技术,2009,(9).

[12]冯驯,徐建.有机朗肯循环系统回收低温余热的优势,节能技术[J].2010,(9).

[13]姜周曙,王如竹.吸收式与吸附式制冷的技术比较[J].流体机械,2001,(8).

[14]郭小丹,胡三高,杨昆,徐鸿.热泵回收电厂循环水余热利用问题研究[J].现代电力,2010,(2).

[15]李艳,连红奎,顾春伟.有机朗肯循环在工业余热回收中的应用[C].2009年中国动力工程学会透平专业委员会2009年学术研讨会论文集,2009.

[16]何新平.Kalina循环与Rankine循环在水泥窑低温余热发电中的热力学对比分析[J].水泥技术,2010,(3).

·

331

·

工业余热利用现状

工业余热利用现状集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

我国工业余热利用现状 摘要:工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。 关键词:工业余热;低温余热利用技术;节能减排 0引言 工业部门余热资源总量极为丰富,“十二五”期间可以开发利用的潜力超过1亿吨标准煤。“十二五”是我国节能减排承前启后的关键时期,国务院和有关部委已就节能减排工作作出全面的决策部署,明确提出单位GDP能耗降低16%左右、单位GDP二氧化碳排放降低17%左右、规模以上工业增加值能耗降低21%左右等多项节能减排目标。工业部门能源消费约占全国能源消费的70%。 目前余热利用最多的国家是美国,它的利用率达到60%,欧洲的达到50%,我国30%。就余热利用来看,我国还有很大的利用空间。中、高温余热发电已经形成了比较完备的产业,而低温余热发电则刚刚开始。 1.工业余热资源特点 工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。 对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。“十二五”时期,综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达亿吨标准煤。 2010年末,余热资源开发利用总量折合为8791万吨标准煤。其中,余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。 从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为亿吨标准煤、9300万吨标准煤、3454万吨标准煤,占这7个工业行业余热资源总量的比重分别为%、%、%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。 从工业余热资源的地区分布来看,“十二五”时期,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河

余热回收项目投资简介

第一章项目总论 一、项目概况 (一)项目名称 余热回收项目 (二)项目选址 某某科技园 项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。 (三)项目用地规模 项目总用地面积12833.08平方米(折合约19.24亩)。 (四)项目用地控制指标 该工程规划建筑系数57.93%,建筑容积率1.49,建设区域绿化覆盖率6.05%,固定资产投资强度194.79万元/亩。 (五)土建工程指标

项目净用地面积12833.08平方米,建筑物基底占地面积7434.20平方米,总建筑面积19121.29平方米,其中:规划建设主体工程14880.03平 方米,项目规划绿化面积1157.77平方米。 (六)设备选型方案 项目计划购置设备共计54台(套),设备购置费1292.82万元。 (七)节能分析 1、项目年用电量871918.06千瓦时,折合107.16吨标准煤。 2、项目年总用水量1792.25立方米,折合0.15吨标准煤。 3、“余热回收项目投资建设项目”,年用电量871918.06千瓦时,年 总用水量1792.25立方米,项目年综合总耗能量(当量值)107.31吨标准 煤/年。达产年综合节能量43.83吨标准煤/年,项目总节能率22.64%,能 源利用效果良好。 (八)环境保护 项目符合某某科技园发展规划,符合某某科技园产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成 项目预计总投资4383.00万元,其中:固定资产投资3747.76万元, 占项目总投资的85.51%;流动资金635.24万元,占项目总投资的14.49%。

工业余热回收、工业余热利用

工业余热回收、余热利用 余热概念:所谓工业余热(又称废热)是指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。这种热量若不加以回收利用,立即排放到大气和江河中,不仅所谓工业余热(又称废热)是指工业生浪费能源,而且还会污染环境。

以钢铁工业为例: 钢铁工业是环境污染、能源消耗大户,烟气除尘、余热回收利用是钢铁工业保护环境、节约能源的对策之一。电炉在生产过程中产生大量含尘、CO的高温烟气,平均每吨钢产生的烟尘量为18-20kg,随烟气带走的热量约150M .严重浪费能源、污染环境。随着电炉技术迅速、全面的发展,其烟气余热回收利用及除尘技术也得到了发展。

热管是余热回收装置的主要热传导元件,与普通的热交换器有着本质的不同。热管余热回收装置的换热效率可达98%以上,这是普通热交换器无法比拟的。 热管余热回收装置体积小,只是普通热交换器的1/3。 其工作原理如右图所示:左边为烟气通道,右边为清洁空气(水或其它介质)通道,中间有隔板分开互不干扰。高温烟气由左边通道排放,排放时高温烟气冲刷热管,当烟气温度>30℃时,热管被激活便自动将热量传导至右边,这时热管左边吸热,高温烟气流经热管后温度下降,热量被热管吸收并传导至右边。常温清洁空气(水或其它介质)在鼓风机作用下,沿右边通道反方向流动冲刷热管,这时热管右边放热,将清洁空气(水或其它介质)加热,空气流经热管后温度升高。

?1、安全可靠性高 常规的换热设备一般都是间壁换热,冷热流体分别在器壁的两侧流过,如管壁或器壁有泄露,则将造成停产损失。热管余热回收器则是二次间壁换热,即热流要通过热管的蒸发段管壁和冷凝段管壁才能传到泠流体。 ?2、热管余热回收器传热效率高,节能效果显著。 ?3、热管余热回收器具有良好的防腐蚀能力 热管管壁的温度可以调节,可以通过适当的热流变换把热管管壁温度调整在低温流体的露点之上,从而可防止露点腐蚀,保证设备的长期运行。由于避开烟气露点,使灰尘不易粘结于肋片和管壁上。同时热管在导热时会产生自振动,使灰不易粘附在管壁和翅片上,因而不会堵灰。

热电余热回收综合利用项目环评报告表

建设项目环境影响报告表 (试行) 项目名称:XXXX分公司余热回收综合利用项目 建设单位(盖章):唐山****热电有限责任公司 编制日期:2013年9月4日 国家环境保护总局制

《建设项目环境影响报告表》编制说明 《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。 1、项目名称――指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。 2、建设地点――指项目所在地详细地址,公路、铁路应填写起止地点。 3、行业类别――按国标填写 4、总投资――指项目投资总额。 5、主要环境保护目标――指项目区周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和距厂界距离等。 6、结论与建议――给出本项目清洁生产、达标排放和总量控制的分析结论确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。 7、预审意见――由行业主管部门填写答复意见,无主管部门项目,可不填。 8、审批意见――由负责审批该项目的环境保护行政主管部门批复。

建设项目基本情况 项目名称XXXX分公司余热回收综合利用项目 建设单位唐山****热电有限责任公司 法人代表联系人 通信地址河北省唐山市**冶区林西林西道 联系电话传真邮政编码建设地点河北省唐山市**冶区林西林西道 立项审批部门批准文号 建设性质技改√行业类别 及代码 4430热力生产和供应 占地面积(平方米) 绿化面积(平方米) 总投资(万元)2126 其中:环保投 资(万元) 2 环保投资占 总投资比例 0.1% 评价经费 (万元) 预期投产日期2013年12月 工程内容及规模: 1工程概况 项目背景:在国家大力推行节能减排能源政策的大背景下,火电厂丰富的余热资源正引起人们越来越多的关注。火力发电机组的绝大部分能量损失是由以下两部分构成的:一部分是锅炉烟气排放带走的热量,另一部分就是凝汽器循环水带走的热量。由于凝汽器循环水的温度往往只比环境温度高10℃左右,品质不高,故人们对这部分能量的利用不够重视,往往就直接排放掉了。这样不但造成了能量的浪费,还给环境带来了热污染。若以循环水为热源,采用水源热泵技术进行集中供热,就能很好地解决这个问题。 目前,XXXX分公司有三台25MW的抽凝式机组,抽汽供热已经基本达到了机组的极限。XXXX分公司热源供热能力为190MW,供热面积达350万平米,供热能力已经饱和,但所在区域供热面积却逐年增加,现有供热能力已不能满足正常需求。 本项目采用以消耗一部分温度较高的高位热能为代价,经过余热回收机组从低温热源吸取热量后再传热给采暖系统循环水,提高了循环水的温度再供给用户的供热技术。凝汽器冷却循环水进、出冷却塔的温度约为30/20℃,三台共有水量9900m3/h,水质干净,可以直接进入的余热回收机组,是非常好的余热资源。余热若按照温差8℃提取,可回收的余热量为92MW,若按照采暖指标60W/平米来计算,该余热全部开发出来可供暖150万平米,可为公司增加经济收益。因此,本项目的建设是可行的, 2

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

我国工业余热利用现状分析

我国工业余热利用现状分析 工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。 1.工业余热资源特点 工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。 对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达3.4亿吨标准煤。 余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。 从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为1.71亿吨标准煤、9300万吨标准煤、3454 万吨标准煤,占这7个工业行业余热资源总量的比重分别为50.3%、27.3%、10.2%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。 从工业余热资源的地区分布来看,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河南,分别为1507万吨标准煤、680万吨标准煤、664万吨标准煤、530万吨标准煤、419万吨标准煤、361万吨标准煤。 从余热资源的来源来看,可分为高温烟气和冷却介质等六类,其中高温烟气余热和冷却介质余热占比最高,分别占50%和20%,而其他来源分别是废水、废

余热回收供热项目EPC工程总体实施方案

余热回收供热项目EPC工程总体实施方案 1. 项目目标(质量、工期、造价) 1.1质量目标 ①设计质量目标:达到国家现行标准;满足现行相关工程建设标准、设计规范(规程)、相应设计文件编制深度要求; ②施工质量目标:符合现行国家有关工程施工验收规范和标准的要求合格。 1.2工期目标 开工日期计划为2014年10月1日(可根据业主、监理和建设单位要求调整),竣工日期为2014年12月21日12:00,保证2014年12月21日12:00实现向市供热管网供暖。 根据本工程情况和我公司能力、类似工程施工经验,我公司完全能确保本工程在业主、监理及建设单位要求的工期内完成,保质保量地将工程交付给业主投入生产。 1.3造价目标 我公司始终站在为业主优质服务、为业主着想的角度,树立工程管理全局观念,通过优秀的人才、科学的管理、先

进的技术、充分的设备投入、经济合理的施工方案、大量新技术新工艺的运用、全部系统的策划和部署、有效的组织、管理、协调和控制,使本工程成本和造价得到最为有效的控制。 ①在工程(经批准的)投资总额范围内,采取限额设计、优化设计的方法,控制工程造价。 ②实行招标采购制度,引进市场价格竞争,降低工程造价. ③严格控制工程变更,降低变更费用。 ④派公司最强干的管理人员,最优秀的施工班组,通过施工工艺优化,施工先进技术的采用,合理的施工方法等综合运用的手段降低施工过程中成本。 1.4职业健康安全管理目标 重大伤亡事故为零; 工伤事故频率不超过10‰; 职业病发生率小于0.1%。 1.5环境保护和文明施工目标 公司的环境方针是“增强法律意识,规范环境行为;节能降耗防污,呵护蓝天净土”。 我们必须在本工程上认真贯彻公司环境方针的内涵: 增强法律意识——自觉遵守国家和地方政府制定的环

【免费下载】冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

各行业余热回收可利用的环节

余热是指能利用而未被利用的热能。我国能源利用率低,工业装备相对落后。如化工、石油化工、建材、轻纺、冶金、动力、造纸、电子电器等行业。在生产中大量的热能直接排空,既浪费能源有污染环境。余热回收就是将浪费的热能回收利用。是提高能源利用率,降低生产成本,保护环境最直接、经济的手段之一。工业燃油、燃气锅炉设计制造时为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度不低于180-220摄氏度,造成部分热能排空;浪费。热管换热器可将烟灰中越50%的热能回收,回收的热能根据用户的需求加热水、空气或其他介质。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得改造投资一年内回收,经济效益显著。余热回收应用范围:包括高温废气余热、冷却介质余热、废气废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废液余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热占约余热总资源的60%。 1、化工及石油化工行业中的应用:(1)小合成氨上、下煤气余热回收(2)中合成氨上、下行煤气余热回收(3)合成氨吹风气燃烧的余热回收(4)合成氨一段炉烟气余热回收(5)30万吨/年合成氨二段转化炉的余热回收(5) 聚酯化纤酯化工艺余热制冷技术 (6)炭黑生产过程余热利用和尾气发电(供热)技术(7)合成氨节能改造综合技术(8)大中型硫酸生产装置低位热能回收技术2、在硫酸工业中的应用:(1)在硫酸生产沸腾焙烧炉沸腾层内的余热回收;一年产10万吨硫酸的工厂可回收5.5万吨蒸汽;(2)从沸腾中出来 SO高温炉气中回收余热;一个年产10万吨硫酸的工厂可回收10.5万吨蒸汽,可发电价的 2 值约600万元;3、在盐酸、硝酸炉的应用:基本同2; 4、在石油化工中的应用:(1)烃类热解路中的余热回收;(工作温度约750~900摄氏度)(2)乙苯脱氢反应器中的余热回收:(3)水泥窑炉中的余热回收:(4)各种陶瓷倒燃炉及隧道窑中的余热回收; 5、在冶金工业中的应用:(1)扎钢连续加热和均热炉中的余热回收;(2)坯件加热炉中的余热回收;(3)线材退火炉中的余热回收;(4)烧结机中的余热回收:已一台180M2的烧结机

工业余热的现状与利用

工业余热现状与利用 姚** 北京科技大学机械学院,100083 摘要:工业余热指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。我国能源利用率相比发达国家较低,至少50%的工业耗能以各种形式的余热被直接废弃。工业余热节能潜力巨大,近年来已经成为我国节能减排工作的重要组成部分。 关键字:工业余热节能减排热管 0引言 当前,我国能源利用仍然存在着利用效率低、经济效益差,生态环境压力大的主要问题。节能减排、降低能耗、提高能源综合利用率作为能源发展战略规划的重要内容,是解决我国能源问题的根本途径,处于优先发展的地位。 实现节能减排、提高能源利用率的目标主要依靠工业领域。处在工业化中后期阶段的中国,工业是主要的耗能领域,也是污染物的主要排放源。我国工业领域能源消耗量约占全国能源消耗总量的70%,主要工业产品单位能耗平均比国际先进水平高出30%左右。除了生产工艺相对落后、产业结构不合理的因素外,工业余热利用率低,能源没有得到充分综合利用是造成能耗高的重要原因。 我国能源利用率仅为33%左右,比发达国家低约10%。至少50%的工业耗能以各种形式的余热被直接废弃。因此从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17%~67%,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大。工业余热回收利用又被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。[1] 1工业余热资源 工业余热来源于各种工业炉窑热能动力装置、热能利用设备、余热利用装置和各种有反应热产生的化工过程等。目前,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。合理充分利用工业余热可以降低单位产品能耗,取得可观的经济效益。 工业余热按其能量形态可以分为三大类,即可燃性余热、载热性余热和有压性余热。 1)可燃性余热 可燃性余热是指能用工艺装置排放出来的、具有化学热值和物理显热,还可作燃料利用的可燃物,即排放的可燃废气、废液、废料等,如放散的高炉气、焦炉气、转炉气、油田伴生气、炼油气、矿井瓦斯、炭黑尾气、纸浆黑液、甘蔗渣、木屑、可燃垃圾等。 2)载热性余热 常见的大多数余热是载热性余热,它包括排出的废气和产品、物料、废物、工质等所带走的高温热以及化学反应热等,如锅炉与窑炉的烟道气,燃气轮机、内燃机等动力机械的排气,焦炭、钢铁铸件、水泥、炉渣的高温显热,凝结水、冷却水、放散热风等带走的显热,以及排放的废气潜热等。 3)有压性余热 有压性余热通常又叫余压(能),它是指排气排水等有压液体的能量。另外,因为工业余热的温度是衡量其质量(品位)的重要标尺,而其温度的高低亦影响了余热回收利用的方式,所以余热也通常按温度高低分为:高温余热,T≥650℃;中温余热,230 ℃≤T<650℃;低温余热,T<230℃。 余热资源来源广泛、温度范围广、存在形式多样.从利用角度看,余热资源一般具有以下共同点:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地等固有条件限制。 2工业余热利用现状 2.1工业余热利用总体现状 我国能源利用率仅为33%左右,比发达国家低

余热锅炉技术论文

目录 1、前言 (2) 2、摘要 (2) 3、施工技术 (2) 3.1安装前告知 (3) 3.2基础验收、测量放线 (3) 3.3设备安装 (3) 3.4管道安装 (4) 3.5煮炉 (9) 3.6调整安全阀 (10) 3.7整体试运行 (10) 3.8锅炉验收 (11) 4.结论 (11)

余热锅炉安装技术论文 1、前言 本文通过对梅钢炼钢二期项目250吨转炉余热锅炉安装技术进行研究,分析炼钢余热锅炉安装工艺,将为以后此类锅炉安装工作提供经验,力争对实际施工起到指导作用,以提高锅炉安装技术水平,提高劳动效率,降低施工成本,提高经济效益。 梅钢炼钢二期250吨转炉余热锅炉是利用转炉炼钢后产生多余热能即余热,把烟道中的水加热到一定温度,经过自然循环或强制循环,最终进入汽包。经汽包水汽分离后,将蒸汽输入汽轮发电机组或其它工段。本系统包括设备及其管路两个大部分,它们的安装程序较多,施工工艺复杂,质量要求高,因而安装过程应重点把握施工的组织安排、质量控制及安全管理。 2、摘要 锅炉安装属特种设备安装作业,因此本工程应严格遵循《特种设备安全监察条例》及《蒸汽锅炉安全监察规程》的规定。本工程设备主要包括汽包、除氧器、烟道、排污扩容器等。管道系统主要包括主蒸汽管道、除氧蒸汽管道、主蒸汽及排汽系统、高压循环系统、低压及给水、排污管道等。 锅炉烟道、汽包单件外形尺寸大,运输至现场摆放占用场地大。合理安排设备进场顺序和时间,尽量做到设备进场直接吊装就位。固定段烟道、尾部烟道、汽包单件重量大,安装位置高,需采用650吨履带吊吊装就位。汽化冷却烟道移动端为引进技术,该设备安装要求高。塔楼设备安装与结构紧密结合,需与结构队伍穿插吊装。锅炉管道系统试压、冲冼管路系统多,管道总量大、分布面广,管道接头形式多样,与设备的接点多,试验压力相对较高,容易出现跑水事故。工序复杂,对每一道试压工序都要进行严格的检查,施工协调管道难度大。锅炉安装完成后还要经试压吹冼、煮炉、试运转等过程。 针对以上特点,本文通过论述其安装工艺以明确施工中的重点为,以避免施工中不必要的返工,提高安装技术水平。 关键词:特种设备安装试压煮炉 3、施工技术 锅炉安装前,要认真组织计划,人员、技术、材料应准备齐全,不能仅靠几

余热回收项目实施方案

第一章总论 一、项目概况 (一)项目名称 余热回收项目 (二)项目选址 某经济新区 项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。 (三)项目用地规模 项目总用地面积9924.96平方米(折合约14.88亩)。 (四)项目用地控制指标 该工程规划建筑系数76.42%,建筑容积率1.09,建设区域绿化覆盖率7.26%,固定资产投资强度199.92万元/亩。 (五)土建工程指标 项目净用地面积9924.96平方米,建筑物基底占地面积7584.65平方米,总建筑面积10818.21平方米,其中:规划建设主体工程8230.01平方米,项目规划绿化面积785.47平方米。

(六)设备选型方案 项目计划购置设备共计42台(套),设备购置费900.53万元。 (七)节能分析 1、项目年用电量867524.29千瓦时,折合106.62吨标准煤。 2、项目年总用水量5447.22立方米,折合0.47吨标准煤。 3、“余热回收项目投资建设项目”,年用电量867524.29千瓦时,年 总用水量5447.22立方米,项目年综合总耗能量(当量值)107.09吨标准 煤/年。达产年综合节能量43.74吨标准煤/年,项目总节能率20.34%,能 源利用效果良好。 (八)环境保护 项目符合某经济新区发展规划,符合某经济新区产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成 项目预计总投资4019.78万元,其中:固定资产投资2974.81万元, 占项目总投资的74.00%;流动资金1044.97万元,占项目总投资的26.00%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

关于我国冶金行业中余热利用现状的探讨

选课课号:(2012-2013-1)-BG11191-320401-1课程类别:公选课 《冶金工程概论》课程考核 (课程论文) 题目:关于我国冶金行业中余热利用现状的 探讨 学生姓名: 学号: 授课教师: 班级: 教师评语: 成绩: 重庆科技学院冶金与材料工程学院 2012年11月中国重庆

关于我国冶金行业中余热利用现状的探讨 陈宏林热动11-03 2011441386 摘要:钢铁冶金行业是我国工业企业节能减排的重点行业,同时增强节能减排和资源的综合利用对钢铁冶金行业提高经济效益和保持可持续发展同样起着至关重要的作用。本文介绍了我国在工业生产中余热资源利用的基本现状,探讨了余热利用技术的进展,并结合我国钢铁冶金行业余热利用方面存在的问题,为科学合理地进行余热利用提出了相关建议。 关键词:冶金;余热利用;现状 Discussion On The Status quo of Waste Heat Utilization in China's Metallurgical Industry Chen Honglin Energy and Power Engineering 11-03 2011441386 Abstract: Iron and steel metallurgy industry is energy saving and emission reduction of China's industrial enterprises in key industries, while enhancing energy conservation and comprehensive utilization of resources to enhance economic efficiency and maintain the sustainable development of the iron and steel metallurgy industry also plays a vital role. Introduced the status of waste heat utilization in China, discussed the advances of waste heat utilization technologies, Combined with the existing problems in China's iron and steel metallurgy industry, waste heat utilization, and put forward relevant proposals for scientific and rational utilization of waste heat. Key words: Metallurgy; waste heat utilization; current situation 1 前言 钢铁冶金行业是我国基础工业中最为重要的行业之一,同时也是一个高能耗的行业,是我国六大行业中的能耗“大户”,据国家统计数据显示,冶金行业总的能耗量占到我国总能耗的10%左右。国家早在“十一五”规划的时候就规定要将单位GDP能耗在“十五”的基础上下降20%,而钢铁冶金行业的节能减排工作就直接关系到了这一目标是否能够实现,钢铁冶金行业成为我国工业企业节能减排的重点行业,同时增强节能减排和资源的综合利用对钢铁冶金行业提高经济效益和保持可持续发展同样起着至关重要的作用。文章从我国钢铁冶金行业的余热利用现状人手,结合我国钢铁冶金行业余热利用方面存在的问题,为科学合理地进行余热利用提出了相关建议。自上世纪六七十年代以来,世界各国余热利用技术发展很快。目前,我国的余热利用技术也得到了长足进步,但是与世界先进水平还有

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

工业余热回收利用途径与技术

工业余热回收利用途径与技术 余热资源普遍存在,特别在钢铁、化工、石油、建材、轻工和食品等行业的生产过程中,都存在丰富的余热资源,所以充分利用余热资源是企业节能的主要内容之一。 余热利用的潜力很大,在当前节约能源中占重要地位。余热资源按其来源不同可划分为六类:1高温烟气的余热2高温产品和炉渣的余热3冷却介质的余热4可燃废气、废液和废料的余热5废汽、废水余热6化学反应余热余热资源按其温度划分可分为三类: 7高温余热(温度高于500℃的余热资源)8中温余热(温度在200-500℃的余热资源)低温余热(温度 低于200℃的烟 气及低于100℃ 的液体) 行业余热资源来源占燃料消耗量的比例治金轧钢加热炉、均热炉、平炉、转炉高炉、焙烧窑等33%以上化工化学反应热,如造气、变换气、合成气等的物理显热;可燃化学热,如炭黑尾气、电石气等的燃料热15%以上建材高温烟气、窑顶冷却、高温产品等约40%玻搪玻璃熔窑、搪瓷窑、坩埚窑等约20%造纸烘缸、蒸锅、废气、黑液等约15%纺织烘干机、浆纱机、蒸煮锅等约15%机械煅造加热炉、冲天炉、热处理炉及汽锤排汽等约15% 、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关文档
最新文档