遗传学DNA甲基化综述

遗传学DNA甲基化综述
遗传学DNA甲基化综述

分子生物学综述

题目:DNA甲基化的研究方法与技术姓名:常一鸣

班级:15级检验一班

学号:2015222672

摘要:DNA 甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。这些方法概括起来可分为三类:基因组整体水平的甲基化检测、基因特异位点甲基化的检测和新甲基化位点的寻找。

关键字:表观遗传学;DNA甲基化;甲基化研究方法

1 导言

早在1942年,C.H.Waddington首次提出表观遗传学(epigenetics)的概念,并指出表观遗传与遗传是相对的,它主要研究基因型和表型的关系。几十年后,霍利迪(R. Holiday)针对表观遗传学提出了更新的系统性论断,也就是人们现在比较统一的认识[1],即在不改变基因组序列的前提下,通过DNA和组蛋白的修饰来调控基因表达,这种修饰以DNA甲基化最为常见。其主要任务是绘制出人类基因组中甲基化可变位点图谱,即不同组织与疾病状态下,5-甲基胞嘧啶出现及其分布频率的图谱,以指导和系统地研究DNA甲基化在人类表观遗传、胚胎发育、基因印记、等位基因失活及肿瘤发生中的重要作用[2]。DNA甲基化的研究,逐渐成为新的研究热点。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。让我一一介绍现有的大部分DNA甲基化研究方法,并对其相关特性进行简要分析与总结。

DNA甲基化是最早发现的基因表观修饰方式之一,可能存在于所有高等生物中。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。甲基化的主要形式有5-甲基胞嘧啶,N6-甲基腺嘌呤和7-甲基鸟嘌呤。原核生物中CCA/TGG和GATC常被甲基化,而真核生物中甲基化仅发生于胞嘧啶。DNA的甲基化是在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5'端的胞嘧啶转变为5'甲基胞嘧啶。这种DNA修饰方式并没有改变基因序列,但是它调控了基因的

表达[3]。脊椎动物基因的甲基化状态有三种:持续的低甲基化状态,如管家基因;去甲基化状态,如发育阶段中的一些基因;高度甲基化状态,如女性的一条失活的X染色体[4]。

1.2 DNA 甲基化的生物学作用

1.2.1 DNA 甲基化与遗传印记、胚胎发育

DNA甲基化在维持正常细胞功能、遗传印记、胚胎发育过程中起着极其重要的作用。研究表明胚胎的正常发育得益于基因组DNA适当的甲基化。例如:缺少任何一种甲基转移酶对小鼠胚胎的发育都是致死性的(Li 等1992年和Okano等1999年)[3]。此外,等位基因的抑制(allelic repression)被印记控制区(imprinting control regions,ICRs)所调控,该区域在双亲中的一个等位基因是甲基化的[4]。印记基因的异常表达可以引发伴有突变和表型缺陷的多种人类疾病。如:脐疝-巨舌-巨大发育综合征(Beckwith-Wiedemann Syndrome, BWS)和Prader-Willi/Angelman综合征等[5]。

甲基化状态的改变是引起肿瘤的一个重要因素,这种变化包括基因组整体甲基化水平降低和CpG岛局部甲基化水平的异常升高,从而导致基因组的不稳定(如染色体的不稳定、可移动遗传因子的激活、原癌基因的表达)[4]和抑癌基因的不表达。如果抑癌基因中有活性的等位基因失活,则发生癌症的机率提高,例如:胰岛素样生长因子-2(IGF-2)基因印记丢失导致多种肿瘤,如Wilm’s瘤[6]。

1.3 DNA 甲基化的研究方法

近15年来,人们越来越认识到DNA甲基化研究的重要性,开发出一列检测DNA的方法。根据研究目的这些方法分为:基因组整体水平的甲基化检测,特异位点甲基化的检测和新甲基化位点的寻找。根据研究所用处理方法不同可以分为:基于PCR 的甲基化分析方法;基于限制性内切酶的甲基化分析方法;基于重亚硫酸盐的甲基化分析方法和柱层法等。

2 甲基化研究方法学回顾

2.1 基因组整体水平甲基化分析

2.1.1 高效液相色谱柱(HPLC)及相关方法

HPLC是一种比较传统的方法,能够定量测定基因组整体水平DNA 甲基化水平。它由Kuo等1980年[7]首次报道。过程是将DNA样品先经盐酸或氢氟酸水解成碱基,水解产物通过色谱柱,结果与标准品比较,用紫外光测定吸收峰值及其量,计算5m C/(5m C+5 C) 的积分面积就得到基因组整体的甲基化水平。这是一种检测DNA甲基化的标准方法。但它需要较精密的仪器。Fraga等2002 年[8]运用高效毛细管电泳法

(HPCE)处理DNA水解产物,以确定5m C 的水平。与HPLC相比,HPCE更加简便、快速、经济。HPLC及HPCE测定基因组整体DNA甲基化水平的敏感性均较高。Oefner 等1992年[9]提出变性高效液相色谱法(DHPLC)用于分析单核苷酸和DNA分子。邓大君等2001[10]将其改进与PCR 联用建立了一种检测甲基化程度的DHPLC分析方法。将重亚硫酸盐处理后的产物进行差异性扩增,由于原甲基化的在重亚硫酸盐处理时仍被保留为胞嘧啶,因此原甲基化的在PCR扩增时,其变性温度也相应上升,使PCR 产物在色谱柱中保留的时间明显延长,这样就可以测定出PCR 产物中甲基化的情况。这种方法的最明显优点是:可用于高通量混合样本检测,能够明确显示目的片段中所有CpG 位点甲基化的情况,但不能对甲基化的CpG 位点进行定位。

2.1.2 SssI 甲基转移酶法[11]

SssI 甲基转移酶能够催化DNA的CpG 位点发生甲基化。3H-S- 腺苷甲硫氨酸(3H-SAM)在SssI 甲基转移酶催化作用使基因组DNA的CpG 位点发生甲基化。通过测定剩余的放射性标记的SAM即可得到原基因组整体甲基化水平,即测到的放射性强度与所测DNA甲基化水平成反比。这种方法的缺点是所使用的SssI 甲基转移酶不稳定,致结果不够精确。

2.1.3 免疫化学法[12]

这种方法是基于单克隆抗体能够与5m C发生特异性反应。应用荧光素标记抗体使之与预先已固定在DEAE膜上的样品DNA特异性结合,对DEAE膜上的荧光素进行扫描得到5m C的水平,其荧光素强度与5m C水

平成正比。Oakeley等1997年[23]报道了这种方法。这种方法需要精密的仪器。

2.1.4 氯乙醛法

Oakeley等 1999年[13]首先描述了这种使用氯乙醛和荧光标记的方法。首先,将DNA经重亚硫酸盐处理使未甲基化的胞嘧啶全部转变为尿嘧啶,而甲基化的胞嘧啶保持不变(Frommer等1992年)[14],然后经过银或色谱柱去除DNA链上的嘌呤,再将样品与氯乙醛共同孵育,这样5m C就转变为带有强荧光的乙烯胞嘧啶,荧光的强度与原5m C 的水平成正比。这种方法可以直接测定基因组整体5m C水平。其优点是所用试剂价格低廉且稳定性好,避免了放射性污染,但缺点是费时

费力,而且氯乙醛是一种有毒的物质。

随着甲基化研究的不断深入,甲基化分析技术将逐步完善。完善的研究技术将提供强有力的技术支持,从而为表观遗传、胚胎发育、基因印记及肿瘤研究提供一些新的思路。

参考文献:

[1]Wu C T, Morris J R. Genes, genetics and epigenetics : a correspondence [J]. Science, 2001, 293: 1103-1105.

[2]黄庆,郭颖,府伟灵.人类表观基因组计划[J].生命的化学,2004,24(2): 101-102.

[3]Dahl C,Guldberg P.DNA methylation analysis techniques [J]. Biogerontology, 2003, 4(4): 233-250.

[4]董玉玮,侯进慧,朱必才等. 表观遗传学的相关概念和研究进展[J].生命的化学, 2005, 22(1): 1-3.

[5] 张永彪,褚嘉祐.表观遗传学与人类疾病的研究进展 [J].遗传, 2005, 27(3): 466-472.

[6]Feinberg A P, Tycko B.The history of cancer epigenetic [J]. Nat Rev Cancer, 2004, 4(2): 143-153.

[7]Kuo K C, McCune R A, Gehrke C W,et al.Quantitative reversed-p hase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA [J].Nucleic Acids Res,1980,8: 4763-4776.

[8]Fraga M F,Uriol E,Borja D L,et al.High-performance capillary electrophoretic method for the quantification of 5-methyl 2-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues [J]. Electrophoresis, 2002, 23: 1677-1681.

[9]Oefner, P J, Bonn G K, Huber C G, et al. Comparative study of capillary zone electrophoresis and high-performance liquid chromatography in the analysis of oligonucleotides and DNA. [J]. Chromatogr, 1992, 625(2): 331-3401.

[10] 邓大君, 邓国仁, 吕有勇等. 变性高效液相色谱法检测CpG 岛胞嘧啶甲基化 [J]. 中华医学杂志, 2001, 80(2), 158–1611.

[11]Wu J,Issa J,Hermen J,et al.Expression of an exogenous eukaryotic DNA methyl transferase gene induces transformation of NIN3T3 ceils [J]. Proc Natl Acad Sci USA, 1993, 90(19): 8891–8895.

[12]Oakeley E J,Podesta A, Jost J P.Devel opmental changes in DNA methylation of the two tobacco pollen nuclei during maturation [J]. Proc Natl Acad Sci USA, 1997, 94: 11721–11725.

[13]Oakeley E J, Schmitt F, Jost J P. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction [J]. Biotechniques, 1999, 27: 744-6,748-50,752.

[14]Frommer M, McDonald L E,Millar D S,et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands [J]. Proc Natl Acad Sci USA, 1992, 89: 1827–1831.

DNA甲基化_去甲基化与癌症

收稿日期:2012-10-04 第一作者:周建生(1988-),男,硕士生,E-mail: zhoujiansheng0902@https://www.360docs.net/doc/ef7526310.html, *通信作者:焦炳华(1962-),男,博士,教授, E-mail: jiaobh@https://www.360docs.net/doc/ef7526310.html, DNA 甲基化/去甲基化与癌症 周建生,杨生生,缪明永,焦炳华* (第二军医大学基础部生物化学与分子生物学教研室,上海 200433) 摘要:DNA 甲基化是真核细胞基因组中常见的可遗传的表观遗传修饰,在调节细胞增殖、分化、个体发育等方面起重要作用,并且DNA 甲基化水平异常与肿瘤的发生发展密切相关。DNA 甲基化及被动去甲基化主要是在DNA 甲基转移酶家族参与下完成的,而DNA 的主动去甲基化机制尚不是很明确。在肿瘤细胞中DNA 的整体甲基化水平显著降低,但抑癌基因的启动子区域却出现高甲基化。目前尽管有DNA 去甲基化药物用于癌症的临床治疗,但药物特异性较差,因而研究特定基因的主动去甲基化机制有助于研发特异性高的药物用于癌症的治疗。 关键词:DNA 甲基化;DNA 去甲基化;癌症;表观遗传治疗 Relationship between DNA methylation/demethylation and cancer ZHOU Jiansheng, YANG Shengsheng, MIAO Mingyong, JIAO Binghua * (Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, the Second Military Medical University, Shanghai 200433, China) Abstract: DNA methylation, the most common heritable epigenetic marker of eukaryote genome, plays a critical role in cell proliferation, differentiation, and development. Aberrant DNA methylation is correlated with the onset and progression of cancer. It is well accepted that DNA methylation and DNA passive demethylation are mainly catalyzed by the family of DNA methyltransferases. However, the mechanism of DNA active demethylation is unclear. In cancer cells, the global genomic levels of DNA methylation are lower, but the promoter methylation levels of tumor suppressor genes are higher than in normal tissues. Several demethylating agents have been applied for the clinical treatment of cancer, but these agents are lack of specificity for target genes. So studying the mechanism of active demethylation of specific genes avails the research and development of high-specificity agents for the treatment of cancer.Key words: DNA methylation; DNA demethylation; cancer; epigenetic therapy 表观遗传的概念最初是由Conrad Hal Waddington 于1942年提出的,他认为基因型通过一些偶然的、不确定的机制决定了不同的表现型[1];1987年Holliday 将这一表观遗传概念用于DNA 甲基化水平改变引起基因表达活性改变现象[2];现代表观遗传是指在基因的DNA 序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可以遗传的表型。主要的表观遗传标记存在于染色体的不 同水平,包括DNA 和组蛋白修饰、组蛋白多样性、直接结合于DNA 或组蛋白上的染色体非组蛋白修饰、核内RNA(nuclear RNA, nRNA)、染色体高度有序的结构及位置效应等。其中,DNA 甲基化作为一种重要的表观遗传修饰,参与许多生物过程,包括基因转录调控、转座子沉默、基因印记、X 染色体失活及癌症的发生发展等。本文主要综述DNA 甲基化/去甲基化机制及DNA 甲基化/去

DNA甲基化和肿瘤的关系

DNA 甲基化与肿瘤 一、DNA甲基化与基因表达 5-甲基胞嘧啶是天然存在的修饰碱基,甲基化的 mCpG ,在DNA 双链中对称出现。哺乳类动物基因组约60 %的表达基因5′端启动子存在未被甲基化的CpG岛,而启动子区域外的CpG岛大都为 mCpG。正常情况下,非活化的X染色体、印迹基因等的启动子区域的CpG岛为甲基化状态,而看家基因的 CpG岛则是去甲基化状态。 DNA 甲基化状态与基因表达呈负相关。其调控作用主要在转录水平抑制基因表达。 DNA甲基化的检测方法 经过亚硫酸盐处理后的DNA中胞嘧啶(C)转变为胸腺嘧啶(T),但是甲基化的中的CpG二核苷酸C 未转变为T,而无甲基化的CpG二核苷酸则发生这种转变,由此可以推断DNA是否发生甲基化。TATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGG CCGCCAGTGTGATGGATATCTGCAGAATTGCCCTTTAGTAT TGTTTGGTGAAATGGTACGTGTTTATAATTTTAGTTATTTAG GAGGTTGAGGTAGGAGGATTTTTTGAGTTTAGGAGTTTAA GTTTAGTTTGGGTAATATAGTTTAGTGGTTATATTAAAAAA AGTAAAATAGTCGGGCGCGGTGGTTTACGTTTGTAATTTTA GTATTTTGGGAGGTCGAGGCGGGTGGATTACGAGGTTAGG AGGTTGAGATTATTTTAAGGGCAAT

DNA 甲基化抑制基因转录的分子机制 ①DNA 双螺旋结构的大沟为DNA 与多种转录因子的作用部位,mCpG的甲基化胞嘧啶突入大沟,抑制转录因子的结合而抑制转录。②mCpG 激活阻遏蛋白因子,如DMAP1、TSG101、 Mi2等,通过阻遏蛋白因子的作用抑制转录。③DNA甲基化与组蛋白乙酰化的研究发现,组蛋白H3、H4 的赖氨酸去乙酰化后带负电荷,与带正电荷的DNA 结合更紧密,不利于转录过程中的聚合物解聚,从而抑制基因转录。甲基化的CpG 结合蛋白(MeCPs) 与DNA 的mCpG结合,并与组氨酸去乙酰化酶(HDAC) 形成复合物共同抑制转录。 二、DNA甲基化与肿瘤 以往的研究认为癌基因激活、抑癌基因失活主要是基因突变、缺失导致的DNA 序列改变。在肿瘤研究中,检测到许多肿瘤的重要基因并未发生突变、缺失,基因表达的异常主要通过DNA 甲基化实现。癌基因的去甲基化和抑癌基因的甲基化状态,可导致癌基因激活、抑癌基因的失活。癌基因的低甲基化和抑癌基因的高甲基化改变是肿瘤细胞的一个重要特征。 DNA 甲基化状态的改变导致基因结构和功能的异常,与肿瘤发生的关系是近年来研究的热点。 DNA甲基化的异常与基因突变、缺失等基因组异常也有密切的关系

DNA甲基化功能汇总

Functions of DNA methylation: islands, start sites, gene bodies and beyond DNA甲基化功能:岛,起始位点,基因体和其他 peter a. jones 摘要 DNA甲基化通常被描述为一个“沉默”的表观遗传标记,的确,5-甲基胞嘧啶的功能最初是在20世纪70年代提出。现在,归功于甲基化绘图的基因组规模的改良,我们可以评估在不同的基因组背景下的DNA甲基化:在基因体上,在调控元件和重复序列上,转录起始位点有或者没有CpG岛。新出现的图片是DNA甲基化功能似乎随背景而改变,DNA甲基化和转录的关系比我们最先认识到的更为微妙。有必要提高我们对DNA甲基化的功能的理解,为了解释这个疾病标记中观察到的变化,比如癌症。 两篇重要的文章在1975年分别表示胞嘧啶残基的甲基化在CpG二核苷酸背景中能作为表观遗传标记。这些文章提出序列可以被重新甲基化,即甲基化通过一种机制的体细胞分裂能够被遗传,包括一种能识别半甲基化CpG回文的酶,甲基基团的存在,可以由DNA结合蛋白和DNA甲基化直接沉默基因解释。虽然这些关键原则中的几个被证明是正确的,解开DNA甲基化与基因沉默的关系已被证明是具有挑战性的。 在CpG序列背景下,在动物身上的大部分工作都集中在5-甲基胞嘧啶(5mC)。据报道,在哺乳动物的其他序列的甲基化广泛分布在植物和一些真菌中。在哺乳动物中,非CpG甲基化的功能目前未知。在这里我主要集中在哺乳动物基因组中的CpG甲基化,包括在其他动物和植物中观察到的差异的讨论。 理解DNA甲基化的功能需要通过基因组考虑甲基化的分布。超过一半的基因脊椎动物的基因组包含短(约1 kb)CpG丰富的区域称为CpG岛(CGIS),其余的基因组因为CpGs而耗尽。当5mC通过自发或酶胸腺嘧啶脱氨基作用被转换成胸腺嘧啶,认为基因组的损失是由于甲基化的序列在种族中的脱氨基;认为CGI存在是因为他们可能是从来没有或只有瞬时甲基化。然而,有很多关于准确定义CGI是什么的讨论,虽然在

DNA甲基化实验操作原理及方法-Hxg

DNA 甲基化重亚硫酸氢盐修饰法(DNA METHYLATION BISULFITE MODIFICATION) 实验操作原理及方法 一、实验目的: 通过本实验,可以检测特定DNA序列的甲基化状态。 二、实验原理: DNA 甲基化是指由S-腺苷甲硫氨酸(SAM)提供甲基基团,在DNA 甲基转移酶(DNA methyltransferases,DNMTs)的作用下,将CpG 二核苷酸的胞嘧啶(C)甲基化为5-甲基化胞嘧啶(5-m C)的一种化学反应。DNA 甲基化是调节基因转录表达的一种重要的表观遗传的修饰方式。 DNA 甲基化主要在转录水平抑制基因的表达。DNA 甲基化引起基因转录抑制的机制可能主要有以下3 种:(1)DNA甲基化直接干扰特异性转录因子与各基因启动子中识别位置的结合。(2)序列特异性的甲基化DNA 结合蛋白与启动子区甲基化CpG 岛结合,募集一些蛋白,形成转录抑制复合物,阻止转录因子与启动子区靶序列的结合,从而影响基因的转录。(3)DNA 甲基化通过改变染色质结构,抑制基因表达。 重亚硫酸氢盐修饰法检测DNA甲基化的基本原理是基于DNA变性后用重亚硫酸氢盐处理,可将未甲基化胞嘧啶修饰成尿嘧啶。此反应的步骤是:1、在C-6位点磺化胞嘧啶残基;2、在C-4处水解去氨基来产生尿嘧啶磺酸盐;3、在碱性条件下去硫酸化。在这个过程中,5-甲基胞嘧啶由于甲基化基团干扰了重亚硫酸氢盐进入到C-6位点而保持着未反应的状态。在重亚硫酸氢盐处理后,使用针对每个修饰后DNA链的引物进行PCR反应。在这个PCR产物中,每5-甲基胞嘧啶显示为胞嘧啶,而由未甲基化胞嘧啶转变成的尿嘧啶则在扩增过程中被胸腺嘧啶所取代。 BSP(bisulfate sequencing PCR) :重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,进行PCR扩增。最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化。

DNA甲基化的总结

DNA甲基化是指在DNA甲基转移酶(DNMTs)的催化下,将甲基基团转移到胞嘧啶碱基上的一种修饰方式。它主要发生在富含双核苷酸CpG岛的区域,在人类基因组中有近5万个CpG岛[5]。正常情况下CpG岛是以非甲基化形式(活跃形式)存在的,DNA甲基化可导致基因表达沉默。DNMTs的活性异常与疾病有密切的关系,例如位于染色体上的DNMT3B基因突变可导致ICF综合征。有报道[6]表明,重度女性侵袭性牙周炎的发生与2条X染色体上TMP1基因去甲基化比例增高有关。DNMT基因的过量表达与精神分裂症和情绪障碍等精神疾病的发生也密切相关。风湿性疾病等自身免疫性疾病特别是系统性红斑狼疮(SLE)与DNA甲基化之间关系已经确定[7],在SLE病人的T细胞发现DNMTs活性降低导致的异常低甲基化。启动子区的CpG岛过度甲基化使抑癌基因沉默,基因组总体甲基化水平降低导致一些在正常情况下受到抑制的基因如癌基因被激活[8],都会导致细胞癌变。 甲基化作用是转录水平上表达调控的基本方式之一。由于宿主细胞基因组DNA中不 同位点的甲基化程度存在某种平衡,并形成一定的空间结构特点。一旦转基因的整合破坏了这种平衡及空间特征,破坏后的结构便成为宿主基因组防御系统识别的信号,使新整合的DNA 序列发生不同程度的甲基化,甲基化基因序列则通过抑制甲基化DNA结合蛋白(MeCP2)的结合而抑制转录的顺利进行Ⅲo。在拟南芥中发现了DNA甲基化可以导致基因沉默汹埘]。在基因沉默过程中,外源或内源性信号引起部分DNA序列中CpG的甲基化,甲基化CpG结合域蛋白2(MeCP2)结合到甲基化的胞嘧啶上聚集HDACs使组蛋白去乙酰化,该蛋白与去乙酰化的组蛋白通过聚集更多的DNA 甲基转移酶来加强沉默信号,从而引起基因沉默H?。 ?。DNA甲基化对染色质结构和基因表达的作用很可能是通过一组蛋白介导的,这些蛋白可能含有共同的高度保守的甲基化的CpG结合结构域(MBD)L45 J。DNA甲基化在基因印记、x染色体失活、某些疾病的发生发展中发挥重要作用。其直接作用机制可能是CpG岛甲基化干扰了一些转录因子(transcription factor,TF)与基因调控区的结合,使甲基从DNA分子大沟中突出,从而阻止转录 因子与基因相互作用。间接机制可能是由于甲基化DNA与甲基化DNA结合蛋白结合或DNA甲基化改变染色质结构,这2种情况都间接阻碍TF与DNA结合从而抑制转录m1。DNA甲基化一般是通过转录抑制机制来调节特定基因的,具体的机制可能有:5一MeC伸入DNA双螺旋大沟,影响转录因子的结合;序列特异的甲基化DNA结合蛋白(MDBP一1,MDBP一2)与甲基化的启动子序列特异性结合而抑制转录因子与靶序列的结合;甲基化CpG结合蛋白(MeCPl,MeCP2)与甲基化的二核苷酸CpG结合,发挥类似转录抑制蛋白的作用H“。一般DNA甲基化会通过干扰转录因子与识别位点结合和招募组蛋白乙酰转移酶(histon acefltransfeI"SeS,HATs)、组蛋白去乙酰化酶(histone deacetylases,HDACs)形成辅助阻遏复合体,使基因沉默而抑制其表达,而去甲基化则使沉默的基因重新激活Ⅲ卜 DNA甲基化尤其是基因启动子区CpG岛的高甲基化,会导致基因表达的下降或沉默。甲基化抑制基因的表达目前认为要有两个方面,一方面甲基化引起的基因结构改变可直接阻碍一些转录因子与其结合位的结合;另一方面可能与一些甲基化

DNA甲基化研究综述

DNA甲基化研究综述 The summarize of the research on DNA methylation 郭文媛 (生物技术 1353227) 摘要:DNA 甲基化是真核生物表观遗传学中一种重要的基因表达调控方式,是一种酶催化的修饰过程。其是在DNA 甲基转移酶催化下,将甲基基团转移到胞嘧啶的5 位碳原子上,使之转变成5-甲基胞嘧啶的化学修饰过程。在人类和其他哺乳动物中,此修饰过程通常发生在5'-CpG-'二核苷酸的胞嘧啶上。大量相关研究表明,DNA 甲基化与人类疾病密切相关。 Abstract:DNA methylation is an important epigenetic regulation of gene expression in eukaryotes.It is a kind of enzyme catalysis modification process: refers to the chemical modification process of DNA methyltransferase catalysis,the transfer of methyl groups onto cytosine carbon atom 5,making them into 5-methyl cytosine.In humans and other mammals,the modification process usually occurs in 5'CpG -'dinucleotide cytosine.A large number of relevant studies have shown that DNA methylation is closely related to human diseases. 关键词: DNA 甲基化; 甲基转移酶;表观遗传学; CpG 岛; Dnmt1; Dnmt3a; Dnmt3b; 基因沉默; DNA甲基化结合蛋白; 人类表观基因组计划 Key words:DNA methylation; Methyltransferase; Epigenetics; CpG island; Dnmt1; Dnmt3a; Dnmt3b ; Gene Silencing ;MBD; human epigenomeproject 表观遗传学研究的是不改变DNA 的一级结构而改变表型的一种基因表达调控机制,主要包括DNA 甲基化、组蛋白修饰、染色体重构、RNA 干扰等。 DNA甲基化是重要的表观遗传修饰之一,在大多数真核生物中广泛存在。DNA 甲基化水平受到环境、疾病、年龄和性别等因素的影响,处于动态的变化过程中。不同的细胞、组织或个体之间,甚至同一细胞或个体的不同发育时期,其DNA 甲基化状态和程度都可能存有差异。 2003 年10 月,人类表观基因组计划委员会正式宣布投资和启动人类表观基因组计划( human epigenomeproject,HEP) 。HEP 的主要目标是研究人类所有基因在主要组织以及200 多种细胞中正常和疾病状态下的甲基化模式,并在基因组水平绘制不同组织正常和疾病状态时的甲基化变异位点图谱[4],本文结合2013年至今DNA甲基化研究文献,综述了DNA甲基化分布特点和与疾病关系等方面的研究情况。 1.DNA甲基化 1.1DNA甲基化与DNA去甲基化 DNA 甲基化是表观遗传( Epigenetic) 的一种重要表现方式,指在DNA 甲基转移酶( DNA methyltransferase,DMT) 的催化下,以s -腺苷甲硫氨酸( SAM) 为甲基供体,将甲基转移到特定碱基上的过程。 DNA 去甲基化也被称为DNA 甲基化丢失(lossof DNA methylation), 即甲基基团从胞嘧 啶上消失的过程。包含主动去甲基化与被动去甲基化2 种模式。 1.2DNA甲基化分布 DNA 甲基化在生物体内的分布并不是随机的,而是呈现一定的规律性。

DNA甲基化详解

提到遗传,我们都已经习惯于这样的概念,即基因组的编码信息存在于ACGT 这四种碱基的排列顺序中。然而,诸如胞嘧啶的甲基化修饰及其分布,组蛋白的乙酰化等,同样影响着表型。这就构成了表观遗传学(epigenetics)的主要研究内容。其实,早在1942年,C.H.Waddinton就提出了表观遗传学的概念,他指出,表观遗传与遗传相对,主要研究基因型和表型的关系。而现在,对于表观遗传学,比较统一的认识是,其研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的可遗传的改变。也就是说,在不改变基因组序列的前提下,通过DNA 和组蛋白的修饰等来调控基因表达,其中又以DNA甲基化(DNA methylation)最为常见,成为表观遗传学的重要组成部分。随着人类基因组计划的开展,科学家们开始在基因组水平来研究表观遗传学,逐步形成表观基因组学(epigenomics)。表观基因组学就是要在整个基因组水平来研究表观遗传过程以及与这些过程密切相关的特定基因组区域的识别与鉴定。2000年10月,人类表观基因组协会(Human Epigenome Consortium)由欧盟赞助,启动了旨在于人类6号染色体MHC 区域首先做出DNA的甲基化图谱的先导计划(Pilot Project)。该计划顺利完成,引导启动了2003年的人类表观基因组计划(Human Epigenome Project,HEP)。2005年,美国国家卫生院(NIH)下属的国立癌症研究所启动了癌症基因组先导计划。2006年,该所与国立人类基因组研究所一起共同启动癌症基因组计划(Cancer Genome Project)。表观基因组学和DNA甲基化与癌症的研究成为新的热点。本文将简要介绍DNA甲基化与CpG岛,癌症与DNA甲基化,和DNA甲基化的重要检测方法。DNA甲基化与CpG岛:在人类表观遗传学研究中,最常见的就是CpG二核苷酸中胞嘧啶的甲基化修饰。其主要过程是,在CpG甲基化结合蛋白(Methyl-CpG Binding Proteins,MBDs) 和DNA甲基化转移酶(DNA methyltransferases, DNMTs)的作用下,使CpG二核苷酸5’端的胞嘧啶转变成为5’甲基胞嘧啶。在正常人类的DNA中,约有3-6%的胞嘧啶被甲基化。在哺乳动物中,约有50,000,000个CpG二核苷酸,其中70%的被甲基化。而那些可被甲基化的CpG 二核苷酸并非随机的分布于基因组序列中,相反,在基因组的某些区域中,通常是基因的启动子区域,5’端非翻译区和第一个外显子区,CpG 序列密度非常高,超过均值5倍以上,成为鸟嘌呤和胞嘧啶的富集区,称之为CpG岛(CpG Islands, CGIs)。CpG岛的概念最早由Adrian Bird提出,他称之为

DNA甲基化原理

DNA甲基化 甲基化检测服务-亚硫酸氢钠处理后测序法(bisulfite genomic sequencing PCR, BSP)是利用未甲基化的胞嘧啶可以被亚硫酸氢钠发生脱氨基变为尿嘧啶的原理,用两一特异性引物扩增后测序。测序法克服了只能针对单个位点检测,并且这些位点必须是限制性内切酶识别位点的缺点,可以对任何基因序列的甲基化状态进行检测。 甲基特异性的PCR扩增(MS-PCR)示意图 DNA甲基化(英语:DNA methylation) DNA甲基化是一种表观遗传修饰,它是由DNA甲基转移酶(DNA methyl-transferase, DNMT)催化S-腺苷甲硫氨酸(S-adenosylmethionine, SAM)作为甲基供体,将胞嘧啶转变为5-甲基胞嘧啶(mC)的一种反应,在真核生物DNA中,5-甲基胞嘧啶是唯一存在的化学性修饰碱基。CG二核苷酸是最主要的甲基化位点,它在基因组中呈不均匀分布,存在高甲基化、低甲基化和非甲基化的区域,在哺乳动物中mC约占C总量的2-7%。DNA甲基化是表观遗传修饰的主要方式,能在不改变DNA序列的前提下,改变遗传表现。为外遗传编码(epigenetic code)的一部分,是一种外遗传机制。DNA甲基化过程会使甲基添加到DNA分子上,例如在胞嘧啶环的5'碳上:这种5'方向的DNA甲基化方式可见於所有脊椎动物。在人类细胞内,大约有1%的DNA碱基受到了甲基化。在成熟体细胞组织中,DNA甲基化一般发生於CpG双核苷酸(CpG dinucleotide)部位;而非CpG甲基化则於胚胎干细胞中较为常见。植物体内胞嘧啶的甲基化则可分为对称的CpG(或CpNpG),或是不对称的CpNpNp形式(C与G是碱基;p是磷酸根;N指的是任意的核苷酸)。特定胞嘧碇受甲基化的情形,可利用亚硫酸盐定序(bisulfite sequencing)方式测定。DNA甲基化可能使基因沉默化,进而使其失去功能。此外,也有一些生物体内不存在DNA甲基化作用。

表观遗传学 DNA主动去甲基化的Science之路

表观遗传学 DNA主动去甲基化的Science之路 (中国科学院上海生命科学研究院生物化学与细胞生物学研究所,上海 200031) 5-甲基胞嘧啶(5-methylcytosine, 5mC)被认为是哺乳动物基因组中除腺嘌呤(adenine)、胸腺嘧啶(thymine)、胞嘧啶(cytosine)及鸟嘌呤(guanine)之外的第五种碱基。它与染色质的另外一种重要组分组蛋白及其翻译后修饰的组合决定了特定基因组区域染色质的结构及基因转录活性,从而形成了一层叠加于碱基序列上的表观遗传信息。胞嘧啶甲基化,也称为DNA甲基化,参与了诸多生物学过程,包括基因印迹、X染色体的失活、基因组稳定性的维持、转座子及逆转录转座子的沉默及组织特异性基因的沉默等[1-2]。 在哺乳动物的个体发育中,DNA甲基化谱式主要经历了两次大规模的重编程过程,一次发生在从受精至着床的早期胚胎发育时期,另一次发生在配子发生过程中[3-4]。这两次重编程都涉及了基因组范围的主动去甲基化反应(global demethylation)。相对于基因组范围内的大规模主动去甲基化,在体细胞中会发生局部的、高度位点特异性的主动去甲基化[5-6]。DNA的去甲基化与DNA甲基化这两个过程相互平衡,维持了DNA甲基化谱式的稳定。任何一方的失调都会导致DNA甲基化谱式的紊乱,进而引起多种神经退行性疾病、免疫系统疾病以及癌症[7-8]。特别是两次基因组范围的主动去甲基化事件对于生命的起始以及生命的传承具有非常重要的意义。 DNA甲基化是由DNA甲基转移酶(DNA methyl-transferase)催化完成,那DNA去甲基化是如何完成的呢?也存在类似于DNA甲基转移酶的DNA去甲基化酶(DNA demethylase),抑或是其他的机制呢?就此,著名的华人生物学家、美国科学院院士朱健康教授在一篇综述中提出以下几种DNA去甲基化的可能方式(图1) [5]。(1)存在特异性识别并切除5mC的糖苷酶(glycosylase),切除5mC产生AP 位点(apurinic/apyrimidinic site),进而启动碱基切除修复途径(base excision repair, BER),用没有修饰的胞嘧啶取代原有的甲基胞嘧啶,最终完成DNA的去甲基化。(2)存在特异性识别5mC的脱氨酶(deaminase),通过脱氨作用将5mC转变成胸腺嘧啶,形成G/T错配。进而由识别G/T错配的糖苷酶,如TDG、MBD4等,启动BER途径,完成DNA的去甲基化。(3)通过核苷酸切除修复途径(nucleotide excision repair, NER)切除含有5mC的一段DNA,并用含有未修饰胞嘧啶的同样序列进行替换,进而完成DNA的去甲基化。(4)通过氧化作用将甲基基团氧化成羧基基团,再通过脱羧作用完成DNA去甲基化。 (5)通过水解作用直接将甲基基团去掉。朱健康教授实验室发现在拟南芥中存在着一种由DNA 糖苷酶(DME、DML2、DML3和ROS1等)介导的主动去甲基化机制。ROS1等可以切除5-甲基胞嘧啶,启动碱基切除-修复途径(base excision repair, BER)完成DNA去甲基化[5]。但在哺乳动物中并没有鉴定到这

DNA甲基化和去甲基化的研究现状及思考_邓大君

Hereditas (Beijing) 2014年5月, 36(5): 403―410 https://www.360docs.net/doc/ef7526310.html, 综 述 收稿日期: 2014-01-07; 修回日期: 2014-01-27 基金项目:国家自然科学基金项目(编号:30921140311,31261140372)资助 作者简介:邓大君,教授,研究方向:肿瘤病因学和DNA 甲基化研究。E-mail :dengdajun@https://www.360docs.net/doc/ef7526310.html, DOI: 10.3724/SP.J.1005.2014.0403 网络出版时间: 2014-3-3 12:41:25 URL: https://www.360docs.net/doc/ef7526310.html,/kcms/detail/11.1913.R.20140303.1241.001.html DNA 甲基化和去甲基化的研究现状及思考 邓大君 北京大学肿瘤医院/研究所, 北京 100142 摘要: DNA 甲基化通过调节基因转录、印记、X 染色体灭活和防御外源性遗传物质入侵等, 在细胞分化、胚胎 发育、环境适应和疾病发生发展上发挥重要作用, 是当前表观遗传学研究的热点领域之一。文章介绍了在过去几年中TET 介导的DNA 羟甲基化及其在早期胚胎发育中的作用, DNA 主动去甲基化及其与被动去甲基化的关系, DNA 甲基化建立及其与组蛋白修饰、染色质构象、多梳蛋白和非编码RNA 结合等关系方面的重要研究进展和存在的问题以及DNA 甲基化的转化应用前景。 关键词: DNA 甲基化; 去甲基化; 表观遗传学; 稳态; 转化研究 DNA methylation and demethylation: current status and future per-spective Dajun Deng Peking University Cancer Hospital and Institute , Beijing 100142, China Abstract: DNA methylation plays important roles in cell differentiation, embryonic development, host adaptations to environmental factors, and pathogenesis through regulation of gene transcription and imprinting, X-inactivation, and de-fense of foreign genetic material invasion, is currently one of the hottest research fields on epigenetics. In the past few years, a number of important findings on DNA methylation have been achieved. These findings include discovery of TETs-catalyzed cytosine hydroxymethylation and its functions in the early embryonic development; the relationship be-tween active and passive DNA demethylation; establishment and maintenance of DNA methylation patterns and their asso-ciations with histone modifications, chromatin configuration, polycomb group proteins and non-coding RNA bindings. DNA methylation has become a new potential biomarker and therapy target. Keywords: DNA methylation; demethylation; epigenetics; homeostasis; translational research DNA 甲基化是指DNA 序列中的腺嘌呤(A)或胞嘧啶(C)碱基在甲基化转移酶的催化下与甲基发生共价结合, 可在细胞分裂过程中传递给子细胞的表 观遗传现象。由DNA 腺嘌呤甲基化酶(DNA adenine methylase, DAM)催化形成的O 6-甲基腺嘌呤(6mA)是一种CTAG 序列复制后维持甲基化, 在细菌表观

DNA去甲基化的分子机理及其生物学意义项目简介-生物化学与细胞...

项目名称:DNA去甲基化的分子机理及其生物学意义 项目简介: 本项目属于分子生物学和发育生物学领域。 细胞内DNA甲基化引起染色质的压缩和基因沉默。因此,DNA甲基化的去除对于沉默基因的重新激活起着重要作用。DNA去甲基化如何发生是长期被关注的科学问题。由于几十年探索都未能找到哺乳动物去甲基化酶或任何去甲基化的分子途径,因此学术界对哺乳动物中是否发生去甲基化一直争论不休。本项目首次成功勾画出了DNA去甲基化的分子通路,为研究DNA甲基化谱式的动态变化及其生理功能提供了理论框架;系统揭示了Tet双加氧酶介导的DNA氧化去甲基化在小鼠早期胚胎发生以及成体神经发生与认知方面的功能及作用机制。 主要科学研究内容 1.从分子水平上成功勾画出了一条DNA主动去甲基化的通路(即5mC→5caC →C)。研究发现DNA中的5-甲基胞嘧啶(5mC)可以被干细胞核抽提物转变为5-羧基胞嘧啶(5caC),后者的产生是由双加氧酶TET (Ten-Eleven-Translocation)催化完成的,而TDG(Thymine DNA Glycosylase)糖苷酶能够特异性地识别这一新的修饰碱基,并将其从基因组中切除,随后通过DNA碱基修复途径替换进不含修饰的胞嘧啶完成去甲基化。同期Science杂志发表专评指出,徐等的发现不仅证实哺乳动物基因组DNA中存在氧化修饰,而且解开了长期困扰学术界的关于DNA去甲基化的奥秘。 2.以小鼠为模型,通过基因敲除手段系统阐述了Tet双加氧酶介导的DNA氧 化去甲基化的生物学意义。来自卵子的Tet3双加氧酶在合子中负责父本基因组DNA中5mC的氧化,这一改变启动DNA去甲基化,以激活早先在精子中被甲基化的Oct4和Nanog等全能性基因的表达。受精卵中Tet3的缺失会导致半数以上的胚胎在着床后发生退化,而全身性敲除小鼠出生后全部死亡。 Tet1双加氧酶则高表达于神经系统,能够调控成年小鼠大脑海马内神经前体细胞的增殖。Tet1的敲除致神经发生相关的基因发生异常的高甲基化与神经前体细胞增殖受阻,导致了成体神经发生过程的缺陷,使小鼠空间学习和记忆能力下降。

遗传学DNA甲基化综述

分子生物学综述 题目:DNA甲基化的研究方法与技术姓名:常一鸣 班级:15级检验一班 学号:2015222672

摘要:DNA 甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。这些方法概括起来可分为三类:基因组整体水平的甲基化检测、基因特异位点甲基化的检测和新甲基化位点的寻找。 关键字:表观遗传学;DNA甲基化;甲基化研究方法 1 导言 早在1942年,C.H.Waddington首次提出表观遗传学(epigenetics)的概念,并指出表观遗传与遗传是相对的,它主要研究基因型和表型的关系。几十年后,霍利迪(R. Holiday)针对表观遗传学提出了更新的系统性论断,也就是人们现在比较统一的认识[1],即在不改变基因组序列的前提下,通过DNA和组蛋白的修饰来调控基因表达,这种修饰以DNA甲基化最为常见。其主要任务是绘制出人类基因组中甲基化可变位点图谱,即不同组织与疾病状态下,5-甲基胞嘧啶出现及其分布频率的图谱,以指导和系统地研究DNA甲基化在人类表观遗传、胚胎发育、基因印记、等位基因失活及肿瘤发生中的重要作用[2]。DNA甲基化的研究,逐渐成为新的研究热点。随着对甲基化研究的不断深入,各种各样甲基化检测方法被开发出来以满足不同类型研究的要求。让我一一介绍现有的大部分DNA甲基化研究方法,并对其相关特性进行简要分析与总结。

DNA甲基化是最早发现的基因表观修饰方式之一,可能存在于所有高等生物中。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。甲基化的主要形式有5-甲基胞嘧啶,N6-甲基腺嘌呤和7-甲基鸟嘌呤。原核生物中CCA/TGG和GATC常被甲基化,而真核生物中甲基化仅发生于胞嘧啶。DNA的甲基化是在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5'端的胞嘧啶转变为5'甲基胞嘧啶。这种DNA修饰方式并没有改变基因序列,但是它调控了基因的 表达[3]。脊椎动物基因的甲基化状态有三种:持续的低甲基化状态,如管家基因;去甲基化状态,如发育阶段中的一些基因;高度甲基化状态,如女性的一条失活的X染色体[4]。 1.2 DNA 甲基化的生物学作用 1.2.1 DNA 甲基化与遗传印记、胚胎发育 DNA甲基化在维持正常细胞功能、遗传印记、胚胎发育过程中起着极其重要的作用。研究表明胚胎的正常发育得益于基因组DNA适当的甲基化。例如:缺少任何一种甲基转移酶对小鼠胚胎的发育都是致死性的(Li 等1992年和Okano等1999年)[3]。此外,等位基因的抑制(allelic repression)被印记控制区(imprinting control regions,ICRs)所调控,该区域在双亲中的一个等位基因是甲基化的[4]。印记基因的异常表达可以引发伴有突变和表型缺陷的多种人类疾病。如:脐疝-巨舌-巨大发育综合征(Beckwith-Wiedemann Syndrome, BWS)和Prader-Willi/Angelman综合征等[5]。

相关文档
最新文档