汽轮机转子及构成

汽轮机转子及构成
汽轮机转子及构成

汽轮机转子及构成

1转子定义

汽轮机所有转动部件的组合体称为转子(图13)。它主要包括:主轴、叶轮(转鼓)、叶片、联轴器等部件。

图13 转子

转子的作用:汇集各级动叶栅所得到的机械能,并传给发电机。

转子受力分析:传递扭矩、离心力引起的应力、温度不均匀引起的热应力、轴系振动所产生的振动应力。

汽轮机转子在高温蒸汽中高速旋转,不仅要承受汽流的作用力和由叶片、叶轮本身离心力所引起的应力,而且还承受着由温度差所引起的热应力。

此外,当转子不平衡质量过大时,将引起汽轮机的振动,转子要承受轴系振动所产生的振动应力。因此,转子的工作状况对汽轮机的安全、经济运行有着很大的影响。

2转子的分类

根据汽轮机的分类,转子分为两种:轮式转子、鼓式转子。前者用于冲动式汽轮机,后者用于反动式汽轮机,鼓式转子上的动叶直接安装在转鼓上。

按临界转速是否在运行转速范围内,分为刚性转子和柔性转子。在启动过程中,刚性转子启动就很方便,不存在跨临界区域,而柔性转子因需要快速的跨临界,故要求用户在实际启动过程中,要充分暖机,为快速跨临界作好准备。

1、轮式转子

轮式转子根据转子结构和制造工艺的不同,可分为:套装转子、整段转子、焊接转子以及组合转子。

1-油封环2-轴封套3-轴4-动叶栅5-叶轮6-平衡槽

图14 套装转子示意图

(1)套装转子

套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套在主轴上,各部件与主轴之间采用过盈配合,并用键传递力矩。主轴加工成阶梯形,中间直径大。

适用性:只适用于中、低参数的汽轮机和高参数汽轮机的中、低压部分,其工作温度一般在400℃以下。不宜用于高温高压汽轮机的高、中压转子。

①优点:加工方便,材料利用合理,质量容易得到保证。

②缺点:轮孔处应力较大,转子刚性差,高温下套装处易松动。

(2)整锻转子

叶轮和主轴及其他主要零部件由整体毛坯加工制成,没有热套部件。主轴的中心通常钻有中心孔,其作用是:

①去掉锻件中残留的杂质及疏松部分;

②用来检查锻件的质量;

③减轻转子的重量。

其缺陷在于:

①使转子工作应力增大,制造成本增加;

②运行中易出现中心孔进油、进水、腐蚀,引起转子不明的振动;

③检修、动平衡复杂。

随着锻造、热处理及探伤技术水平的提高,无中心孔的转子结构应运而生。

①优点:不会出现零件松动问题,结构紧凑,强度、刚度高,适合高温、高应力环境下工作;

②缺点:贵重材料消耗大,对加工工艺要求高。

适用性:中小型汽轮机的高压转子、大型汽轮机的任何转子(高参数或超高参数机组的高压转子)。

图15 整锻转子毛坯

(3)焊接转子

若干实心轮盘、端轴单独铸造,然后焊接加工。焊接转子的主要优点是:不存在松动问题;采用实心的轮盘,强度高,不需要叶轮轮壳,结构紧凑;轮盘和转子可以单独制造,材料利用合理,加工方便且易于保证质量;焊成整体后转子刚性较大等。但是焊接转子要求材料的可焊性好,焊接工艺及检验技术要求高且比较复杂,这一切在一定程度下妨碍了焊接转子的应用。

图16 整锻转子示意图

1-叶轮2-焊缝3-动叶栅4-平衡槽5-联轴器的连接轮

图17 焊接转子示意图

(4)组合转子

根据各段的工作条件不同,在同一转子上,高压部分采用整锻结构,中、低压部分采用套装结构,从而兼得整锻转子和套装转子的优点。

适用性:广泛用于高参数、中等功率的汽轮机上。

图18 组合转子示意图

2、鼓式转子

反动式汽轮机采用,无叶轮,动叶片直接装在转鼓的凸环上(反动式汽轮机级数较多,动叶栅的反动度大,采用转鼓式转子可缩短轴向长度,避免轴向推力过大)

图19鼓式整锻转子

附表不同转子结构的比较

转子材料选择要素:转子工作温度、结构特点、应力状态、工作条件以及材料使用的经济性;叶轮、转子的材料应具有足够的机械强度和韧性,性能稳定,金项组织均匀、无损探伤合格、热处理和冷热工艺性良好。高温下工作的部件,不仅要考虑工作温度下的屈服极限,还要考虑工作温度下的持久强度和蠕变强度。

对于套装转子,叶轮的材料通常采用34CrMo1A和35CrMoV,载荷较大的低压叶轮可用34CrNi3Mo;套装转子的主轴,根据工作温度和应力状态分别选用45或34CrMo1A。

对于整锻转子,可根据工作温度分档选取,工作温度低于480℃,可选用34CrMo1A,工作温度低于540℃时,可选用34Cr2MoV或30Cr1Mo1V;低压整锻转子工作温度较低,要求材料在常温下有较高的机械强度和低的脆性转变温度,

常采用30Cr2Ni4MoV 。工作温度达到600℃时,可选用X12CrMoWVNbN10-1-1

对于焊接转子,材料要有良好的焊接性能,可选用25Cr2NiMoV 。

3动叶片

在汽轮机工作过程中随汽轮机转子一起转动的叶片称工作叶片,动叶片安装在转子叶轮(冲动式汽轮机)或转鼓(反动式汽轮机)上,接受喷管叶栅射出的高速汽流,把蒸汽的动能转换成机械能,带动转子旋转。

动叶由叶型、叶根、叶顶三部分组成。 1、叶型

(1)按照蒸汽经过叶片时的膨胀程度来分为冲动式叶片和反动式叶片; (2)按照截面积变化来分为等截面叶片和变截面叶片。等截面叶片的截面积沿叶高是不变的,变截面叶片的截面积沿叶高按照一定的规律减小,即叶片绕各截面形心连续发生扭转,通常又称为扭曲叶片。

叶身是动叶片的主要部分,它构成汽流通道。它的横截面形状称作叶型,叶型的周线称为型线。

图20 动叶片的组成

叶根

叶型

叶顶

a 冲动式叶片

b 反动式叶片

图21 冲动式叶片、反动式叶片示意图

2、叶根

将动叶片固定在叶轮或转鼓上的连接部分,使其在经受汽流的推力和旋转离心力作用下,不致于从轮缘沟槽里拔出来。它的结构应保证在任何运行条件下都能牢固地固定

常用的叶根结构型式有:T型、叉型和枞树型。

(1)T型叶根结构简单、加工方便、工作可靠为短叶片普遍采用。它的缺点是叶片的离心力对轮缘两侧截面产生弯矩,使轮缘有张开的趋势。故将叶根和轮缘上做成凸肩形。

T型和菌型叶根属于周向装配式叶根。这类叶根的轮缘槽上开有一个或两个缺口,叶片就从这些缺口一片片依次装入轮缘槽中。最后装在缺口处的叶片叫做封口叶片,研配装入后用两个铆钉固定在轮缘上。

周向装配式叶根的缺点是当个别叶片损坏时,不能单独拆换,而必须将部分或全部叶片拆下重装。

(a)等截面直叶片(b)变截面扭曲叶片

1-叶顶2-叶型3-叶根

图22 等截面直叶片、变截面扭曲叶片示意图

(2)叉型叶根的叉尾直接插入轮缘槽内,并用两排铆钉固定叉尾,叉尾数可根据叶片离心力大小选择。叉型叶根强度高、适应性好。检修时可以单独拆换个别叶片,所以被大功率汽轮机末几级广泛采用。但装配时比较费工,且轮缘较

厚,钻铆钉孔不便由于整锻转子和焊接转子的工作空间小,给钻铆钉孔带来了困难,所以这两种转子一般不用叉型叶根。

(3)枞树型叶根沿轴向直接装入轮缘相应的枞树槽中。这种叶根承载能力强,叶根齿数可根据离心力大小决定,同时拆装容易,故被大功率的调节级和末几级采用。但由于其加工面多,精度要求高,所以受到限制。

a-T型叶根b-外包T型叶根c-双T型叶根d-转入T型叶根的切口

图23 T型叶根

图24 叉形叶根

图25 枞树型叶根

3、叶顶

汽轮机的短叶片和中长叶片通常在叶顶用围带连在一起,构成叶片组。长叶片在叶型部分用拉金连接成组,或者围带和拉金都不用,成为自由叶片。

(1)高、中压转子使用的短叶片,由围带连成叶片组,围带的作用:

①减小叶片工作的弯应力;

②增加叶片刚性,调整叶片的自振频率,避开共振;

③使叶片顶部封闭,避免蒸汽从汽道顶部泄漏,减少叶顶漏汽,降低漏汽损失。

(2)低压转子使用的长叶片,由拉金连成叶片组,拉金的作用:增加叶片刚性;调整叶片的自振频率,避开共振,改善振动性能;但增加了蒸汽流动阻力,且会削弱叶片强度,所以在满足叶片振动和刚度要求下,尽量避免采用拉金。

拉金一般是以6~12mm的金属丝或金属管,穿在叶身的拉金孔中。拉金与叶片之间可以是焊接的(焊接拉金),也可以是不焊接的(松拉金)。在一级叶片中,一般有1~2圈拉金,最多不超过3圈拉金。

拉金处在汽流通道中间,将影响级内汽流流动,同时,拉金孔削弱了叶片的强度,所以在满足振动和强度要求的情况下,有的长叶片可设计成自由叶片。

有的低压叶片,不用拉金,呈自由叶片。一般,自由叶片和仅用拉金固定成组的叶片都将顶部削薄,可起到汽封齿的作用;且一旦发生动、静部分摩擦,可减轻事故程度,保护汽轮机。

图26 拉金与围带

4、叶片结构

(1)成组叶片(叶片组):用围带、拉金连在一起的数个叶片

(2)整圈连接叶片:用围带、拉金将全部叶片连结在一起

(3)单个叶片(自由叶片):不用围带、拉金连结的叶片

附图:

a-实心焊接拉金b-实心松装拉金c-空心松装拉金d-剖分松装拉金e-z装拉金

图27 拉金的形式

a-成组连接b-网状连接c-整圈连接d-z形连接

图28 拉金的连接方式

a、b -整体围带c-铆接围带d-弹性拱形围带

图29 围带的形式

3叶轮

1、叶轮及其组成

(1)概念:用来安装动叶片并将汽流对动叶栅的作用力所产生的扭矩传递给转子。

(2)位置:装于主轴或与主轴联成一体,装上动叶片后置于汽缸内。

(3)结构组成:轮缘、轮面、轮毂(套装转子才有)。套装转子上的叶轮有轮缘、轮面和轮毂三部分组成。整锻转子和焊接转子上的叶轮只有轮缘和轮体两部分。

轮缘:轮缘上开有安装动叶片的叶根槽,大多数轮缘具有比轮体大的截面。

轮面:将轮缘和轮毂或主轴连成一体。轮面上通常开有平衡孔(奇数、均匀分布)。

轮毂:将叶轮套在主轴上的配合部分,减小叶轮内孔应力的加厚部分。

2、叶轮分类

按叶轮断面的型线分类

(1)等厚度叶轮:加工方便,轴向尺寸小,但强度低,通常用于叶轮直径较小的高压部分;

(2)锥形叶轮:加工方便,强度高,得到广泛应用;

(3)等强度叶轮:无中心孔,强度最高,但加工要求高,多用于轮盘式焊接转子。

1-轮缘2-轮体3-轮毂4-主轴5-平衡孔

a、b、c -等厚度叶轮d-锥形叶轮e-等强度叶轮

图30 叶轮结构示意图(左图)及叶轮分类(右图)

4联轴器

1、定义:联轴器是用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。又称靠背轮、对轮或联轴节。

在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。联轴器由两半部分组成,分别与主动轴和从动轴联接。一般动力机大都借助于联轴器与工作机相联接。

在汽轮机设备中,联轴器的作用是连接汽轮机各转子以及汽轮机转子与发电机转子,借以将蒸汽作用在汽轮机转子上的扭矩传递给发电机转子,使发电机转子旋转,从而产生电能。

2、联轴器的分类:刚性、半挠性和挠性联轴器。

(1)刚性联轴器

优点:结构简单、连接刚性强、传递功率大,轴向尺寸短、工作可靠、不需要润滑、没有噪声,可传递轴向力和径向力,多段转子可只用一个联轴器,可在刚性联轴器处省去一个支持轴承。

缺点:对中要求严格,不能吸收振动。

应用:大功率汽轮机各转子的连接普遍采用刚性联轴器

①装配式刚性联轴器:联轴器用热套加双键分别装在相对的轴端上,对准中心后再一起铰孔,并用配合螺栓紧固,以保证两个转子同心,螺栓、螺孔分别打有相应编号,不能互换。

②整锻式刚性联轴器:它的联轴器与主轴成一整体。这种联轴器的强度和刚度均较装配式高,也无松动危险。

1、2-对轮3-螺栓4-垫圈5-键6、7-转子

(a) 装配式(套装)刚性联轴器(b) 整锻式刚性联轴器

图31 刚性联轴器

(2)、半挠性联轴器

优点:两半联轴器之间加了一段波形圆筒。他在传递扭矩时是呈刚性的,在弯曲方向是挠性的。因波形套筒具有一定的弹性,可吸收部分转子之间传递的振动,允许相邻两轴端之间有少许的不同心度和端面瓢偏度。

缺点:传递功率较小,传递轴向推力能力差,结构较复杂,需专门的润滑装置。

应用:中、小容量机组或机组主轴与主油泵的连接。

1、2-对轮3-波形套筒4、5-螺栓6-齿轮(盘车用)

图32 半挠性联轴器

(3)挠性联轴器

优点:一般有齿轮式和弹簧式两种。这类联轴器不传递轴向推力,基本不传递振动,对中要求低。挠性联轴器分为齿轮式联轴器和蛇形弹簧式联轴器。

缺点:易磨损,需要润滑,造价高。

应用:多用于小型汽轮机与给水泵的连接上。

(a)齿轮式联轴器(b)蛇形弹簧式联轴器

1、2-齿轮3、4-螺帽5-套筒6、7-挡环8-螺钉

图33 挠性联轴器

汽轮机原理(附课后题答案)

汽轮机原理 第一章汽轮机的热力特性思考题答案 1.什么是汽轮机的级?汽轮机的级可分为哪几类?各有何特点? 解答:一列喷嘴叶栅和其后面相邻的一列动叶栅构成的基本作功单元称为汽轮机的级,它是蒸汽进行能量转换的基本单元。 根据蒸汽在汽轮机内能量转换的特点,可将汽轮机的级分为纯冲动级、反动级、带反动度的冲动级和复速级等几种。 各类级的特点: (1)纯冲动级:蒸汽只在喷嘴叶栅中进行膨胀,而在动叶栅中蒸汽不膨胀。它仅利用冲击力来作功。在这种级中:p1 = p2;Dhb =0;Ωm=0。 (2)反动级:蒸汽的膨胀一半在喷嘴中进行,一半在动叶中进行。它的动叶栅中不仅存在冲击力,蒸汽在动叶中进行膨胀还产生较大的反击力作功。反动级的流动效率高于纯冲动级,但作功能力较小。在这种级中:p1 > p2;Dhn≈Dhb≈0.5Dht;Ωm=0.5。 (3)带反动度的冲动级:蒸汽的膨胀大部分在喷嘴叶栅中进行,只有一小部分在动叶栅中进行。这种级兼有冲动级和反动级的特征,它的流动效率高于纯冲动级,作功能力高于反动级。在这种级中:p1 > p2;Dhn >Dhb >0;Ωm=0.05~0.35。 (4)复速级:复速级有两列动叶,现代的复速级都带有一定的反动度,即蒸汽除了在喷嘴中进行膨胀外,在两列动叶和导叶中也进行适当的膨胀。由于复速级采用了两列动叶栅,其作功能力要比单列冲动级大。 2.什么是冲击原理和反击原理?在什么情况下,动叶栅受反击力作用? 解答:冲击原理:指当运动的流体受到物体阻碍时,对物体产生的冲击力,推动物体运动的作功原理。流体质量越大、受阻前后的速度矢量变化越大,则冲击力越大,所作的机械功愈大。反击原理:指当原来静止的或运动速度较小的气体,在膨胀加速时所产生的一个与流动方向相反的作用力,称为反击力,推动物体运动的作功原理。流道前后压差越大,膨胀加速越明显,则反击力越大,它所作的机械功愈大。 当动叶流道为渐缩形,且动叶流道前后存在一定的压差时,动叶栅受反击力作用。 3.说明冲击式汽轮机级的工作原理和级内能量转换过程及特点。 解答:蒸汽在汽轮机级内的能量转换过程,是先将蒸汽的热能在其喷嘴叶栅中转换为蒸汽所具有的动能,然后再将蒸汽的动能在动叶栅中转换为轴所输出的机械功。具有一定温度和压力的蒸汽先在固定

汽轮机本体结构(低压缸及发电机)

第一章600WM汽轮机低压缸及发电机结构简介 一、汽轮机热力系统得工作原理 1、汽水流程: 再热后得蒸汽从机组两侧得两个中压再热主汽调节联合阀及四根中压导汽管从中部进入分流得中压缸,经过正反各9 级反动式压力级后,从中压缸上部四角得4 个排汽口排出,合并成两根连通管,分别进入Ⅰ号、Ⅱ号2个低压缸。低压缸为双分流结构,蒸汽从中部流入,经过正反向各7 级反动式压力级后,从2个排汽口向下排入凝汽器。排入凝汽器得乏汽在凝汽器内凝结成凝结水,由凝结水泵升压后经化学精处理装置、汽封冷却器、四台低压加热器,最后进入除氧器,除氧水由给水泵升压后经三台高压加热器进入锅炉省煤器,构成热力循环。 二、汽轮机本体缸体得常规设计 低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,,提高了转子得寿命及启动速度。#1 低压转子得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 三、岱海电厂得设备配置及选型 汽轮机有两个双流得低压缸;通流级数为28级。低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。汽机各转子均为无中心孔转子,采用刚性联接,提高了转子得寿命及启动速度。低压缸设有四个径向支持轴承。#1 低压缸得前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好得自位性能,而且能承受较大得载荷,运行稳定。低压转子得另外三个轴承为圆筒轴承,能承受更大得负荷。 汽轮机低压缸有4级抽汽,分别用于向4 台低压加热器提供加热汽源。N600-16、7/538/538汽轮机采用一次中间再热,其优点就是提

转子动力学知识

2转子动力学主要研究那些问题 答:转子动力学是研究所有不旋转机械转子及其部件和结构有关的动力学特性,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断和控制的学科。这门学科研究的主要范围包括:转子系统的动力学建模与分析计算方法;转子系统的临界转速、振型不平衡响应;支承转子的各类轴承的动力学特性;转子系统的稳定性分析;转子平衡技术;转子系统的故障机理、动态特性、监测方法和诊断技术;密封动力学;转子系统的非线性振动、分叉与混沌;转子系统的电磁激励与机电耦联振动;转子系统动态响应测试与分析技术;转子系统振动与稳定性控制技术;转子系统的线性与非线性设计技术与方法。 3转子动力学发展过程中的主要转折是什么 答:第一篇有记载的有关转子动力学的文章是1869年Rankine发表的题为“论旋转轴的离心力”一文,这篇文章得出的“转轴只能在一阶临界转速以下稳定运转”的结论使转子的转速一直限制在一阶临界以下。最简单的转子模型是由一根两端刚支的无质量的轴和在其中部的圆盘组成的,这一今天仍在使用的被称作Jeffcott转子的模型最早是由Foppl在1895年提出的,之所以被称作“Jeffcott”转子是由于Jeffcott教授在1919年首先解释了这一模型的转子动力学特性。他指出在超临界运行时,转子会产生自动定心现象,因而可以稳定工作。这一结论使得旋转机械的功率和使用范围大大提高了,许多工作转速超过临界的涡轮机、压缩机和泵等对工业革命起了很大的作用。但是随之而来的一系列事故使人们发现转子在超临界运行达到某一转速时会出现强烈的自激振动并造成失稳。这种不稳定现象首先被Newkirk发现是油膜轴承造成的,仍而确定了稳定性在转子动力学分析中的重要地位。有关油膜轴承稳定性的两篇重要的总结是由Newkirk和Lund写出的,他们两人也是转子动力学研究的里程碑人物。 4石化企业主要有哪些旋转机械,其基本工作原理是什么 汽轮机:将蒸汽的热能转换成机械能的涡轮式机械。工作原理:在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。作用与功能:主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活的供热需要。 燃气轮机:是一种以空气及燃气为介质,靠连续燃烧做功的旋转式热力发动机。主要结构由三部分:压气机,燃烧室,透平(动力涡轮)。作用与功能:以

2018年《汽轮机设备》考试试题及答案

2018年《汽轮机设备》考试试题及答案【完整版】 一、填空题 1、汽轮机转动部分包括(主轴)、(叶轮)、(动叶栅)、(联轴器)及其紧固件等。 2、转子的作用是汇集各级动叶片上的(旋转机械能),并将其传递给(发电机)。 3、汽缸内装有(隔板)、(隔板套)、(喷嘴室)等静止部件,汽缸外连接着(进汽)、(排汽)、(抽汽)等管道以及支承座架等。 4、进汽部分是指(调节阀)后蒸汽进入汽缸(第一级喷嘴)之前的这段区域,它是汽缸中承受蒸汽压力和温度(最高)的部分。 5、汽缸的支承方法有两种:一是通过(猫爪)支承在台板上的(轴承座上);另一种是用外伸的撑角螺栓直接固定在(台板上)。 6、汽轮机滑销可分为(横销)、(纵销)、(立销)、(角销)、(斜销)、(猫爪横销)等。 7、汽封按其安装的位置不同可分为(轴端汽封)(隔板汽封)(通流部分汽封) 8、汽轮机的短叶片和中长叶片常用(围带)连接成组,长叶片则在叶身中部用(拉筋)连接成组。 9、叶根是(叶片)与(轮缘)相连接的部分,其作用是(紧固动叶)。

10、汽轮机中心孔的作用是为了去除转子段压时集中在轴心处的(夹杂物)和(疏松部分),以保证转子强度。同时,也有利于对转子进行(探伤)检查 二、选择题 1、在汽轮机停机过程中,汽缸外壁及转子中心孔所受应力(B) A、拉应力; B、压应力; C、机械应力 2、汽轮机冷态时将推力盘向非工作轴承推足定轴向位移零位,则在汽轮机冷态启动前轴向位移只能是(B) A 、零值;B、零或正值;C、零或负值 3、用来承担转子的重量和旋转的不平衡力的轴承是(B) A、推力轴承; B、径向轴承; C、滑动轴承 4、汽轮机高压前轴封的作用(A) A、防止高压蒸汽漏入; B、回收蒸汽热量; C、防止高压蒸汽漏出 5、大容量汽轮机高中压缸采用双层缸结构是因为(A) A、变工况能力强; B、能承受较高的压力; C、能承受较高的温度 6、用以固定汽轮机各级的静叶片和阻止级间漏汽的设备是(B) A、轴封套; B、隔板; C、静叶持环 7、梳齿型、J型和纵树型汽封属于(B) A、炭精式汽封; B、曲径式汽封; C、水封式汽封 8、汽轮机安装叶片的部位是(B)

汽轮机介绍

1.600MW-1000MW超临界及超超临界汽轮机研制 汽轮机研究和实际运行表明:24.1MPa/538℃/566℃超临界机组热效率可比同量级亚临界机组提高约2~2.5%。而31MPa/566℃/566℃/566℃的超超临界机组热效率比同量级亚临界提高4~6%。国外各大公司更趋向于采用超临界参数来提高机组效率。就600MW~1000MW 等级超临界汽轮机而言,可以说已经发展到成熟阶段,而且其蒸汽参数还在不断提高,以期获得更好的经济性,如采用超超临界参数。 目前哈汽公司与日本三菱公司联合设计了型号为CLN600-24.2/566/566型超临界参数、一次中间再热、单轴、三缸、四排汽反动式汽轮机。高中压部分采三菱公司的技术,低压缸采用哈汽厂自主开发的新一代亚临界600MW汽轮机技术,哈汽厂与日本三菱公司联合设计,合作制造。 为进一步提高机组效率,哈汽公司已开展超超临界汽轮机前期科研开发工作。 2.600MW-1000MW核电汽轮机研制 我国通过秦山核电站(一、二、三期)和广东大亚湾、岭澳等核电站的建设,已经在核电站建设上迈出了坚实的第一步。哈汽公司成功地为秦山核电站研制了两台650MW核电汽轮机,积累了丰富的设计制造经验,为进一步发展百万等级核电准备了必要的条件。 目前哈汽公司已完成百万千瓦半转速核电汽轮机制造能力分析,并开展了前期科研开发工作。 3.大型燃气-蒸汽联合循环发电机组 联合循环由于做到了能量的梯级利用从而得到了更高的能源利用率,已以无可怀疑的优势在世界上快速发展。目前发达国家每年新增的联合循环总装机容量约占火电新增容量的 40%~50%,所有世界生产发电设备的大公司至今(如美国的GE公司87年开始、ABB90年开始)年生产的发电设备总容量中联合循环都占50%以上。最高的联合循环电站效率(烧天然气)已达55.4%,远远高于常规电站,一些国家(如日本等)已明确规定新建发电厂必须使用联合循环。 由于整体煤气化联合循环发电机组 (IGCC) 是燃煤发电技术中效率最高最洁净的技术 , 工业发达国家都十分重视,现在世界上已建成或在建拟建IGCC电站近20座,一些已进入商业运行阶段。 燃气轮发电机组在我国近几年才有较大发展,目前装机占火电总容量的3.5%,大部分由国外购进,国产机组只占9.4%,且机组容量小、初温低,机组水平只处于国外80年代水平,且关键部件仍有外商提供远不能满足大容量、高效率的联和循环机组的需要。 目前,哈汽公司与美国通用电气公司联合生产制造9F级重型燃气轮机及联合循环汽轮机。 4.300MW-600MW空冷汽轮机研制 大型空冷机组的研制与开发,不仅是国家重点扶持的攻关项目,对一个地区而言也是一个新的增长点,因为它可以带动一大批相关产业的发展。哈汽公司早期就已开展了空冷系统的研究,八.五期间,为内蒙丰镇电厂设计制造了200MW空冷汽轮机组,该机组启停灵活,安全满发,而且振动小、轴系十分稳定。为本项目创造了开发设计制造等有利的依托条件。 空冷系统与常规湿冷系统相比,电厂循环水补充量减少95%以上,空冷机组在缺水地区广泛采用,发展空冷技术是公司产品发展方向。 哈汽公司在发展空冷技术方面占有一定优势,成功地设计、制造了内蒙丰镇电厂4台200MW间接海勒系统空冷机组,目前机组运行良好,在高背压-0.1MPa下,机组安全满发,启停灵活,轴系稳定,同时在丰镇空冷机组上,做了大量试验研究: ①海勒间冷系统中混合式喷淋冷凝器试验。 ② 710mm动叶片的频率和动应力试验。 ③末级流场及湿度的测量 公司有进一步发展空冷奠定基础。曾为叙利亚阿尔电站设计了二台200MW直接空冷机组,针对直接空冷机组运行特点:高背压、背压变化范围 宽的特点,设计了落地轴承,低压缸和带冠520末级叶片。在300MW间接与直接空冷机组的设计和运行基础上进行了空冷300MW汽轮机初步设计,并针对大同二电厂,设计了二个600MW空冷机组方案。 ①哈蒙间接空冷600MW机组

核电汽轮机介绍-考试答案-82分

核电汽轮机介绍 1. 由上海电气供货的我国首台出口325MW 核电汽轮机用于哪个哪个国家? ( 3.0 分) A. 印度 B. 土耳其 C. 巴基斯坦 2. 上海电气百万等级核电机组26 平米的低压缸模块末级叶片长度为?( 3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: B √答对 3. 上海电气百万等级核电机组适用于AP1000 的高压缸模块型号为?( 3.0 分) A. IDN70 B. IDN80 C.IDN90 我的答 B √答对 4. 上海电气百万等级核电汽轮机组转速?( 3.0 分)

A. 1500RPM B. 3000RPM C.3600RPM 我的答 A √答对 5. 上海电气百万等级核电机组20 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: A √答对 6. 上海电气的山东石岛湾200MW 项目是什么堆型?(3.0 分) A. M310 B. 华龙一号 C. 高温气冷堆 我的答案: C √答对 7. 上海电气出口巴基斯坦的300MW 等级核电汽轮机共有几台?( 3.0 分) A. 2 台 B. 3 台 C. 4 台 我的答案: C √答对 8. 至2018 年 6 月,上海电气已投运核电汽轮机多少台?( 3.0 分)

A. 10 台 B. 11 台 C. 12 台我的答案: C √答对 9. 上海电气百万等级核电机组30 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: C √答对 10. 上海电气百万等级核电汽轮机高压缸模块运输方式为?(3.0 分) A. 整缸发运 B. 散件发运 C. 其他 我的答案: A √答对 1. 以下哪些为高温气冷堆堆核电汽轮机特点?( 4.0 分)) A. 进汽参数高 B. 无MSR C.低压缸加强除湿 我的答ABC √答对 2. 以下哪项说法是错误的?( 4.0 分)) A. 2008 年上海电气获得阳江和防城港CPR1000 核电汽轮机订单 6 台

转子动力学知识

转子动力学知识 2转子动力学主要研究那些问题? 答:转子动力学是研究所有不旋转机械转子及其部件和结构有关的动力学特性,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断和控制的学科。这门学科研究的主要范围包括:转子系统的动力学建模与分析计算方法;转子系统的临界转速、振型不平衡响应;支承转子的各类轴承的动力学特性;转子系统的稳定性分析;转子平衡技术;转子系统的故障机理、动态特性、监测方法和诊断技术;密封动力学;转子系统的非线性振动、分叉与混沌;转子系统的电磁激励与机电耦联振动;转子系统动态响应测试与分析技术;转子系统振动与稳定性控制技术;转子系统的线性与非线性设计技术与方法。 3转子动力学发展过程中的主要转折是什么? 答:第一篇有记载的有关转子动力学的文章是1869年Rankine发表的题为“论旋转轴的离心力”一文,这篇文章得出的“转轴只能在一阶临界转速以下稳定运转”的结论使转子的转速一直限制在一阶临界以下。最简单的转子模型是由一根两端刚支的无质量的轴和在其中部的圆盘组成的,这一今天仍在使用的被称作Jeffcott转子的模型最早是由Foppl在1895年提出的,之所以被称作“Jeffcott”转子是由于Jeffcott教授在1919年首先解释了这一模型的转子动力学特性。他指出在超临界运行时,转子会产生自动定心现象,因而可以稳定工作。这一结论使得旋转机械的功率和使用范围大大提高了,许多工作转速超过临界的涡轮机、压缩机和泵等对工业革命起了很大的作用。但是随之而来的一系列事故使人们发现转子在超临界运行达到某一转速时会出现强烈的自激振动并造成失稳。这种不稳定现象首先被Newkirk发现是油膜轴承造成的,仍而确定了稳定性在转子动力学分析中的重要地位。有关油膜轴承稳定性的两篇重要的总结是由Newkirk和Lund写出的,他们两人也是转子动力学研究的里程碑人物。 4石化企业主要有哪些旋转机械,其基本工作原理是什么? 汽轮机:将蒸汽的热能转换成机械能的涡轮式机械。工作原理:在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。作用与功能:主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活的供热需要。

汽轮机设备及系统安全运行常识参考文本

汽轮机设备及系统安全运行常识参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

汽轮机设备及系统安全运行常识参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 对于汽轮机组除机组本身外,大部分转动机械是离心 式水泵,如锅炉给水泵、凝结水泵、循环水泵、工业水 泵、热网泵、疏水泵和油泵等。离心式水泵是电厂不可缺 少的重要辅助设备,它的安全经济运行将直接影响发电供 热的安全和经济效益。转动机械运行中应注意以下几点事 项: (I)泵体、电机及周围地面清洁,电机出入口风道无杂 物。 (2)轴承内润滑油合格,油温、油压、油位在规定值范 围内。 (3)搬动对轮轻快,对轮罩完好,牢固无刮碰。水泵盘

根压盖不斜,冷却水畅通,水量合适。 (4)转动机械运行值班人员上岗前,必须经过专业培训,并经上岗考试合格后方可上岗。 (5)转动机械的运行值班人员必须熟悉所管辖的设备的工作原理、设备结构、性能和各种运行参数指标。 (6)值班时工作服要符合要求,不应当有可能被转动机器绞住的部分,穿好绝缘鞋,戴好安全帽。 (7)检查或擦拭设备时,手脚或身体任何部位不能接触设备的转动部分,防止发生机械伤害事件。不允许运行中清扫转动部位的脏物和污垢。 (8)检查水泵盘根时,要侧对着盘根压盖部位,防止介质喷出造成人员伤害。监督无关人员禁止靠近转动的机械。 (9)运行中要把各冷却水管接头进行重点检查,防止松动冷却水喷出进入电动机内,造成电动机短路烧损。

汽轮机原理及系统考试重点

喷管实际流量大于理想流量的情况:在湿蒸汽区工作时,由于蒸汽通过喷管的时间很短,有一部分应凝结成水珠的饱和蒸汽来不及凝结,未能放出汽化潜热,产生了“过冷”现象,即蒸汽没有获得这部分蒸汽凝结时所应放出的汽化潜热,而使蒸汽温度较低,蒸汽实际密度大于理想密度,从而导致···。 蒸汽在斜切喷管中的膨胀条件:①当喷管出口截面上的压力比大于或等于临界压力比时,喷管喉部截面AB 上的流速 小于或等于声速,喉部截面上的压力与喷管的背压相等,蒸汽仅在喷管收缩部分中膨胀,而在其斜切部分中不膨胀,只起导向作用。②当喷管出口截面上的压力比小于临界压比时,喉部截面上的流速等于临界速度,压力为临界压力,在喉部截面以后的斜切部分,汽流从喉部截面上的临界压力膨胀到喷管出口压力。 分析轮周效率:高 越大,轮周效率也就越和速度系数ψ? 纯冲动: 反动级: 第二章: 为什么汽轮机要采用多级:为满足社会对更高效率的要求,提高汽轮机的效率,除应努力减小汽轮机内的各种损失外,还应努力提高蒸汽的初参数和降低背压,以提高循环热效率;为提高汽轮机的单机功率,除应增大进入汽轮进蒸汽量外,还应增大蒸汽在汽轮机内的比焓降。如果仍然制成单级汽轮机,那么比焓降增大后,喷管出口气流速度必将增大,为使汽轮机级在最佳速比附近工作,以获得较高的级效率,圆周速度和级的直径也必须相应增大,但是级的直径和圆周速度的增大是有限度的,他受到叶轮和叶片材料强度的限制,因为级的直径和圆周速度增大后,转动着的叶轮和叶片的离心力将增大,因此为保证汽轮机有较高的效率和较大的单机功率,就必须把汽轮机设计成多级的。 多级汽轮机各级段的工作特点:1.高压段:蒸汽的压力,温度很高,比容较小,因此通过该级段的蒸汽容积流量较小,所需的通流面积也较小,级的反动度一般不大,各级的比焓降不大,比焓降的变化也不大。漏气量相对较大,漏气损失较多,叶轮摩擦损失较大,叶高损失较大,高压段各级效率相对较低。2.低压段:蒸汽的容积流量很大,要求低压各级具有很大的通流面积,因而叶片高度势必很大,余速损失大,漏气损失很小,叶轮摩擦损失很小,没有部分进气损失。3中压段:蒸汽比容既不像高压段那样很小,也不像低压段那样很大,因此中压段也足够的叶片高度,叶高损失较小,各级的级内损失较小,效率要比高压段和低压段都高。 也可以提高轮周效率和适当减小21βα的变化而变化周效率只随速比的数值也基本确定,轮 和,和叶型一经选定,121x βαψ?变化不随级的喷管损失系数1x n ξ变化最大余速损失系数2c ξ增大而减小随级的动叶损失系数1x b ξm m t m m t a a x c u h u h u c u x Ω-=Ω-=?Ω-Ω-=?==**11211211????2cos 11α=)(op x 2cos 11α??=)()(op op a x x =11cos α=)(op x 2 cos 1α?==)(op a x

JB1265-85汽轮机转子和主轴真空处理的碳钢和合金钢锻件技术条件

JB 1265-85汽轮机转子和主轴真空处理的碳钢和合 金钢锻件技术条件 本标准适用于蒸汽参数不超过565C,用经真空处理的钢锻制的电站汽轮机主轴和整体转子锻件。 1订货条件 1. 1需方应在订货合同中规定锻件的级别、要求的试验项目、补充要求(附录A)和任选项目。 1. 2需方应提供标明机械性能试验试样位置、锻件和中心孔尺寸的粗加工图、和最终的精加工图。 2制造 2. 1冶炼和浇注 2. 1. 1锻件用钢应在碱性电弧炉中冶炼,并需真空处理。 2. 1. 2经需方同意,也承诺采纳其它冶炼工艺。 2. 1. 3钢水应在浇注前或浇注中进行真空处理,以去除有害气体,专门是氢。在真空处理过程中真空系 统的能力,必须大到足以便开浇时的两分钟内就能将初始增高的压强降至低值。 2. 2切头切尾 每个钢锭应有足够的切除量,以确保成品锻件无缩孔,无严峻的偏析及有害的缺陷。 2. 3锻造 必须尽可能使整个锻件得到平均的组织。锻件在锻压时应使整个截面金属充分锻透,专门是保持锻 件与钢锭的轴线大致重合。钢锭较好的一端应为联轴器端。 2. 4热处理 2. 4. 1锻件锻后热处理,必须至少进行一次相当高于相变温度的正火处

理。随后,锻件应进行回火处 理。 2. 4. 2性能热处理,应在锻件第一次粗加工后进行。关于1、2、3、 4、9和10级钢应为正大和回火。关于 5、6、7和8级钢应为淬火和回火。正火处理时,供方可选择使锻件在静止空气或鼓风中冷却,征得需方 同意,1、2、3、4、9和10级钢可采纳较快的冷却速度。可采纳液体淬火、喷水或喷雾冷却得到较快的冷却 速度。 2. 4. 2. 1正火或淬火处理应高于相变温度,但要低于锻后热处理的正火温度。 2 ? 4. 2. 2回火温度尽量高些,以满足机械性能要求。1?7和10级钢回火温度不得低于580 °C ,8级钢 不得低于565C, 9级钢不得低于650C。 2. 4. 3在性能热处理,及随后的粗加工和打中心孔后,锻件应在最终回火温度以下不低于55C的温度 范畴内排除应力,但不得低于550 C o 2 ? 4. 3. 1征得需方预先同意,排除应力温度能够是接近、等于或稍超过最终回火温度,以便调整最终强 度或韧性,如排除应力温度在最终回火温度的15C范畴内或稍高一些, 则必须作附加抗拉试验。 2. 5机械加工 2. 5. 1锻件性能热处理前,所有表面应进行第一次粗加工。 2. 5. 2锻件在性能热处理后,排除应力和热稳固性试验之前,应进行第二次粗加工。 2. 5. 3供方可在排除应力处理往常对锻件打中心孔。需方另有要求时按附录A.A.2执行 2 ? 5 ? 3. 1按需方订货图规定的尺寸和公差打中心孔。为了去除由超声波检测出来的不承诺的中心缺

汽轮机设备及系统节能措施分析标准范本

解决方案编号:LX-FS-A77751 汽轮机设备及系统节能措施分析标 准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

汽轮机设备及系统节能措施分析标 准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 本书以火力发电厂汽轮机设备及系统为对象,论述其工作过程中可能存在 的能量损失及以节能为目标的运行优化技术和改造措施,并给出了参考案例和 经济性分析方法。全书共分九章,包括汽轮机通流部分改造,汽封及系统改 造,进、排气结构优化与改造,凝汽系统改造,汽轮机调峰运行节能,多机组 负荷优化分配,供热汽轮机运行节能与改造和大型汽轮机快速冷却问题等。

90万千瓦核电站汽轮机简介

90万千瓦核电站汽轮机简介: 1、由热能变为机械能的原动机:蒸汽机、内燃机、涡轮机——又分为汽轮机和燃气轮机。汽轮机的特点:高温高压高转速,功率大体积小。 2、汽轮机分冲动式、反动式、轴流式、幅流式。我们现在用的是轴流式——冲动式汽轮机。这种汽轮机效率η高,功率N大,体积V小。 3、汽轮机的基本原理: 汽体膨胀,产生速度,冲击推动叶片作功,带动转子旋转产生扭矩。○1汽轮机作功需要一个高热源和一个低冷源,在海水温度一定时,初参数(t,p)愈高,可提高可利用焓降h,效率η就能提高。另一方面,尽量利用汽体的汽化潜热r,也是提高效率η的一个办法。 机组的初参数:283℃,6.71Mpa,664.8kcal/kg 排汽参数:40.3℃,7.5kpa,614.9 kcal/kg 再加上高压缸排汽经再热,可利用焓降h仅为104.2 kcal/kg,这个焓降是很低的。 在凝汽器内放出的汽化潜热r=574.9 kcal/kg,大量的热量排到大海里去。对于1kg汽体而言,排到大海里的热量是可利用热量的5.5倍,所以我们要尽量减少汽化潜热r的损失。低真空采暖是一个最好的办法,几乎100%利用汽化潜热。可是一年还有夏天,我们只能利用加热器加热给水减少汽化潜热r的损失,提高机组效率。 低真空的形成:1kg水的容积0.001m3,初蒸汽的容积0.2426 m3/kg,排汽的容积19. 6m3/kg,循环水凝结1kg排汽,可使19. 6 m3的空间形成真空。汽机后面有真空,前面的汽体才能膨胀出现速度,达到汽流作功的目的。 所以,想要提高效率η,就要提高初始参数,提高可利用焓降h,利用汽化潜热r。核电站提高初始参数受到限制,效率低是必然的,但核电站优势是明显的,将来国家发电主要依靠核电站。 机组增大功率主要是增大蒸汽流量。 ○2速度三角形:汽流的相对速度w,轮周速度u,绝对速度c,进口角α,出口角β。 速度三角形是计算效率、功率的依据。 ○3叶片、机翼的升力F: v1>v2,p1<p2,p2- p1=F 若是平板或圆球在气流中就不可能产生升力。 4、制造汽轮机的关键技术: ○1长叶片的设计、加工。1g质量产生的离心力达到几吨的力。 ○2几十吨重的大锻件、大铸件,都是合金钢。 ○3大机床高精度的加工设备。

盘动汽轮机转子的方法

盘动转子的方法 在实际运行及靠背轮检查过程中,转子经常需要盘动,为此,转子必须由轴向推力严格固定,而且轴承必须有止转装置及足够的润滑油。 在找中时如果没有顶轴油系统,可以使用一种有较大粘度的矿物油(汽缸油)来盘动转子(启动室内行车)。这种油注入到转子转入侧的油槽里。裸露的轴颈应当保护起来以防灰尘及污物。可以用适当的可弯曲金属片或纸板来覆盖,但是绝对不可以使用布、箔片、纸或者类似材料,因为这些材料可能会被带了油的转子卷起并卷入到润滑油缝里。 注意:油应当注入转子转入的一侧。确认所用润滑油与透平油相容。 为了确保转子在随后的找中工作中其特定的轴向位置不改变,应当制造一个固定工具并装于轴承下半,与已经装好的止转保护装置相对应。这个固定装置应当用铜或铝来制造以避免转子转动时轴颈损坏,如果使用钢来制造的话,则应当在滑动区域使用一层铜焊料,图1。 1.盖3油 2油槽(在转入的一侧) 4轴承体下半 图1:轴承体的覆盖与润滑 顶轴油泵的操作 如果找中时有顶轴油系统则应注意以下几点: 系统的清洁 使用顶轴油泵时要确保油系统经过油冲洗完全地清洁。 油冷却 油的冷却通过带有冷油器的油循环系统来实现,在转子找中时,如果需要,可以通过使用润滑油回油管端部的迂回冲洗管来保证开启顶轴油泵时油冷却。调节用的润滑油节流阀完全关闭,小的孔则用无头固定螺钉来封闭,使之处于与压力试验时相同的状态。 启停 虽然顶轴油泵需要频繁启动,但是工作是连续的,如果当前工作不需要顶轴油时,不应当关闭油泵,而应该使用X接口让它御荷(回油管处压力10~15 bar)。如果可能,在试车及转子找中过程顶轴油泵启动时,应采用手动减压。用来实现减压的X接口非常灵敏,应当小心操作以避免出现瞬间高压。

汽轮机设备及系统知识题库

汽轮机设备及系统知识题库 一、判断题 1)主蒸汽管道保温后,可以防止热传递过程的发生。(×) 2)热力除氧器、喷水减温器等是混合式换热器。(√) 3)在密闭容器内不准同时进行电焊及气焊工作。(√) 4)采用再热器可降低汽轮机末级叶片的蒸汽湿度,并提高循环热效率。(√) 5)多级汽机的各级叶轮轮面上一般都有5-7个平衡孔,用来平衡两侧压差,以减少轴向推力。(×) 6)发电机护环的组织是马氏体。(×) 7)" 8) 9)汽轮机找中心的目的就是为使汽轮机机组各转子的中心线连成一条线。(×) 10)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 11)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 12)汽缸冷却过快比加热过快更危险。(√) 13)盘车装置的主要作用是减少冲转子时的启动力矩。(×) 14)安装叶片时,对叶片组的轴向偏差要求较高,而对径向偏差可不作要求。(×)15)引起叶片振动的激振力主要是由于汽轮机工作过程中汽流的不均匀造成的。(√) 16): 17)转子叶轮松动的原因之一是汽轮机发生超速,也有可能是原有过盈不够或运行时间过长产生材料疲劳。(√)

18) 19)对于汽轮机叶片应选用振动衰减率低的材料。(×) 20)大螺栓热紧法的顺序和冷紧时相反。(×) 21)末级叶片的高度是限制汽轮机提高单机功率的主要因素。(√) 22)猫爪横销的作用仅是承载缸体重量的。(×) 23)轴向振动是汽轮机叶片振动中最容易发生,同时也是最危险的一种振动。(×)24)发电机转子热不稳定性会造成转子的弹性弯曲,形状改变,这将影响转子的质量平衡,从而也造成机组轴承振动的不稳定变化。(√) 25); 26)蒸汽对动叶片的作用力分解为轴向力和圆周力,这两者都推动叶轮旋转做功。(×)27)为提高动叶片的抗冲蚀能力,可在检修时将因冲蚀而形成的粗糙面打磨光滑。(×) 28) 29)除氧器的水压试验在全部检修工作结束,保温装复后进行。(√) 30)造成火力发电厂效率低的主要原因是汽轮机机械损失。(×) 31)发电机护环发生应力腐蚀开裂一般是从护环外壁开始。(×) 32)每次大修都应当对发电机风冷叶片进行表面检验。(√) 二、选择题 1): 2)火电机组启动有滑参启动和定参数两种方式,对高参数、大容量机组而言,主要是(a)方式。 3) a. 滑参数; b. 定参数; c. 任意; d. 定温。 4)在允许范围内,尽可能保持较高的蒸汽温度和压力,则使(c)。

汽轮机原理名词解释

汽轮机的级: 汽轮机的级是汽轮机中由一列静叶栅和一列动叶栅组成的将蒸汽热能转换成机械能的基本工作单元。 级的余速损失: 汽流离开动叶通道时具有一定的速度,且这个速度对应的动能在该级内不能转换为机械功,称余速损失 滑销系统: 保证汽缸定向自由膨胀,保持汽缸与转子中心位置一致 汽耗微增率: 每增加单位功率需多增加的汽耗量。 迟缓率: 1n 、2n 分别表示在机组同一功率下的最高和最低转速0n 时汽轮机的额定转速 压比: 喷嘴后的压力与喷嘴前的滞止压力之比 速度系数: :在喷嘴出口处蒸汽的实际速度比理论速度 速比: 动叶圆周速度u 与喷嘴出口速度c1之比x1=u/c1。 最佳速比: 轮周效率最大时的速度比称为最佳速度比。 反动度: 动叶的理想比焓降与级的理想比焓降的比值。表示蒸汽在动叶通道内膨胀程度大小的指标。 轮周效率: 1kg 蒸汽在轮周上所作的轮周功Wu 与整个级所消耗的蒸汽理想能量Eo 之比。 轮周功率: 单位时间内蒸汽推动叶轮旋转所作出的机械功。 轮周损失: 喷嘴出口气流的实际比焓值h1与理想比焓值h1t 之差 速度变动率:汽轮机空负荷时对应的最大转速nmax 和额定负荷时所对应的最小转速nmin 之差与与汽轮机额定转速n0之比 凝汽器冷却倍率: 进入凝汽器的冷却水量与进入凝汽器的蒸汽量的比值称为凝汽器的冷却倍率。表明冷却水量是被凝结蒸汽量的多少倍又称循环倍率M=Dw/Dc 级按照不同角度的分类:按能量转换特点分为纯冲动级、冲动级、反动级、复速级等几种 汽轮机的两大作用原理及其特点:冲动作用原理 冲动力推动动叶做功。特点:蒸汽只在喷嘴中膨胀。反动作用原理反动力推动动叶做功。 特点:蒸汽在喷嘴、动叶都膨胀。 1.级的临界状态(蒸汽在膨胀流动过程中,在汽道某一截面上达到当地声速的气流速度称为临界速度。这时汽流所处的状态称为临界状态,汽流的参数称为临界参数。) 2.滞止状态(气体在流动的过程中,因受到某种物体的阻碍,而流速降低为零的过程称为绝热滞止过程,此时气体的状态为滞止状态) 3.切部分的作用及膨胀条件:导向作用和膨胀作用;条件:叶栅后的压力P1小于临界压力P1c 大于极限膨胀压力P1d (P1d< P1

核电厂汽轮机基础知识

核电厂汽轮机基础知识 核电厂大多数都使用饱和汽,为了降低发电成本,单机容量已增加到1000MW级。在总体配置上,饱和汽轮机组总是设计成高压缸和一组低压缸串级式配置,在进入低压缸前设置有汽水分离再热器,有的设计在汽水分离再热器和低压缸之间设置中压缸或中压段。一般情况下,核电厂大功率汽轮机的所有汽缸都设计成双流的,且两个或更多的低压缸是并联设置。还有在高压缸两端对称地每端布置两个低压缸的设计。我国田湾核电厂就采用这种汽轮机配置。大亚湾核电厂的汽轮机为英国公司设计制造的多缸单轴系冲动式汽轮机。汽轮机的转速为3000r/min,额定功率为900MW,新汽参数为6.63MPa,283℃,低压缸排汽压力0.0075MPa,额定负荷下蒸汽流量为5515t/h,汽轮机为4缸、六排汽口型式。一个高压缸和3个低压缸皆为双流对分式。新蒸汽分4路经高压缸汽室后由进汽短管导入高压缸,高压缸的两个排汽口,各通过4根蒸汽管与低压缸两侧的汽水分离再热器相连。高压缸排汽在汽水分离再热器经汽水分离再热后,进入低压缸,每个低压缸的两个排汽口与一台凝汽器相接,整台汽轮机,共有6个抽汽口,供2组高压加热器和4组低压加热器以及给水泵汽轮机用汽。除氧器用汽来自高压缸排汽。高压缸为铬钼材料铸造的单层缸结构,水平对分型式,每一汽流流向各有5级。其中隔板皆采用隔板套结构,高压缸转子由镍铬钼钒钢锻成,每个流向都有锻成一体的5级叶轮,各级叶片的叶根皆为多*型,叶片长度为91mm,叶片的顶部有预加工的铆钉头,用来装置围带,每一级叶片的围带都由数段组成扇形叶片组。高 有基本相同的结构,皆为双层缸,水平对分式。内缸包含环形进汽室和所有的隔板。外缸提供低阻力的蒸汽流道并将内缸的反冲力矩传递给汽轮机基础。低压缸的内、外缸都由碳钢制造,内缸为焊接结构,外缸为焊接组装结构。低压缸隔板由铁素体不锈钢制造,隔板的结构为标准的焊接静片和内外围带结构,嵌在隔板套的槽内。低压转子由镍铬钼钒钢锻成,轴心钻有孔,双流整体式结构,每一流向5级叶片,动叶片由铁素体不锈钢制造,末级叶片的前缘装有一片抗腐蚀的司太立硬质合金复盖层。末级叶片之间装有交错布置的拉金,防止叶片在低负荷下的自激振动。前4级低压动叶片采用销钉固定的多*式叶根,末级叶片采用强度很高的侧向嵌入的枞树型叶根。

转子动力学大作业

转子动力学大作业 学院: 姓名: 班级: 学号:

目录 一、作业题目介绍 二、转子动力学理论简介 三、参数的选择和计算 四、Ansys分析临固有频率和临界转速 五、失稳转速影响因素及计算

一、大作业题目 1、 计算临界转速; 2、 圆轴承,长颈比为0.8,油膜间隙2‰ 3、 计算失稳转速 注:转子两端各一个轴承,支点在左右两端。 二、转子动力学理论知识 由于制造中的误差,转子各微段的质心一般对回转轴线有微小偏离。因此,当转子转动时,会出现横向干扰,在某些转速下还会引起系统强烈振动,出现这种情况时的转速就是临界转速。为保证系统正常工作或避免系统因振动而损坏,转动系统的转子工作转速应尽可能避开临界转速,若无法避开,则应采取特殊防振措施。这也是研究临界转速的意义。临界转速和转子不旋转时横向振动的固有频率相同,也就是说,临界转速与转子的弹性和质量分布当圆盘不装在两支撑的中点而偏于一边时,转轴变形后,圆盘的转轴线与两支点A 和B 的连线有一夹角ψ。设圆盘的自转角速度Ω,极转动惯量为p J ,则圆盘对质心o '的动量矩为p H J =Ω。它与轴线AB 的夹角也应该是ψ,见图1。当转轴有自然振动时,设其频率为n ω,则圆盘中心o '与轴线AB 所构成的平面绕AB 轴有进动角速度n ω。由于进动,圆盘的动量矩H 将不断改变方向。因此有惯性力矩 ()g n n p n M H H J ωωω=-?=?=Ω? 方向与平面o AB '垂直,大小为 sin g p n M J ωψ=Ω 转子结构尺寸示意图

这一惯性力矩称为陀螺力矩或回转力矩。因夹角ψ较小,sin ψψ≈,上式可写作 g p n M J ωψ=Ω。 这一力矩与ψ成正比,相当于弹性力矩。在正进动(0/2ψπ<<)的情况下,它使转轴的变形减小,因而提高了转轴的弹性刚度,即提高了转子的临界角速度。在反进动(/2πψπ<<)的情况下,这力矩使转轴的变形增大,从而降低了转轴的弹性刚度,即降低了转子的临界角速度。通过分析,可知道陀螺力矩对转子临界转速的影响:正进动时,它提高了临界转速;反进动时,它降低了临界转速。 图 1 在大多数情况下,轴承对于转子的动力特性有很明显的影响,轴承往往是阻尼的主要来源,因而控制着转子的响应。同时,轴承的刚度和阻尼又影响着转子的临界转速和稳定性。在深入研究转子动力学问题时,因而必须考虑到轴承的作用。对于一个确定的轴承,当润滑油粘度及进油压已给定时,轴颈中心1o 的静平衡位置e 、?决定于轴颈转速Ω和静载荷W 。当载荷W 的大小或者轴颈转速Ω变化时,1o 位置也相应地变化。当铅垂载荷W 大小变化时,轴颈中心的移动在大多数情况下,并非沿铅垂方向,也即位移并不沿着载荷作用的方向。这正是油膜不同于一般机械元件的一个特点。 记x F 、y F 为油膜力在x 、y 方向的分量。我们定义油膜刚度系数为单位位移所引起的油膜力增量,即 x xx F k x ?=?,0 y xy F k y ?= ?,0 y yx F k x ?= ?,0 y yy F k y ?= ? 定义油膜阻尼系数为单位速度所引起的油膜力增量,即 x xx F c x ?= ? ,0 x xy F c y ?= ? ,0 y yx F c x ?= ? ,0 y yy F c y ?= ? 式中各系数的第一个下标代表力的方向,第二个下标代表位移或速度的方向。油膜刚度系数和阻尼系数统称为油膜动力特性系数。其中xy k ,yx k 和xy c ,yx c 分别称为交叉刚度系数和交叉阻尼系数,它们表示油膜力在两个相互垂直方向的耦合作用,交叉动力系数的大小和正

相关文档
最新文档