EI型变压器设计与功率计算

EI型变压器设计与功率计算
EI型变压器设计与功率计算

2.1功放(50W*2+100W),請為它設計一個120V及230V的EI形變壓器(雙繞組,雙電源)。請劃出原理圖及標識參數。(開發)

根据以下公式.

整流管压降VDC=2V

等效功放管压降VDC=8V

负载压降VDC=(功放输出功率*负载阻抗)的开平方*1.4

负载电流IDC=负载压降VDC/负载阻抗

内阻压降VDC=负载电流IDC*0.5

变压器次级电压VDC=整流管压降VDC+等效功放管压降VDC+内阻压降VDC+负载压降VDC

变压器次级电压V AC=变压器次级电压VDC/1.4

第一绕组次级电压计算如下:(供SUB通路)

整流管压降VDC=2V

等效功放管压降VDC=8V

负载压降VDC=(100*4)的开平方*1.4=28V

负载电流IDC=28/4=7A

内阻压降VDC=7*0.5=3.5V

第一绕变压器次级电压VDC=2+8+28+3.5=41.5VDC

得第一绕变压器次级电压V AC=41.5/1.4=29.6V AC

第二绕组次级电压计算如下:(供L R通路)

整流管压降VDC=2V

等效功放管压降VDC=8V

负载压降VDC=(50*4)的开平方*1.4=19.6V

负载电流IDC=19.6/4=4.9A

内阻压降VDC=4.9*0.5=2.5V

第二绕变压器次级电压VDC=2+8+19.6+2.5=32VDC

得第二绕变压器次级电压V AC=32/1.4=22.8V AC

根据以下公式

效率=功放输出功率/变压器的绕组输出的总功率=65% (效率可根据实际情况可定一般为65-70)

变压器的绕组输出的总功率=变压器次级电压V AC*变压器次级电流IAC*2(双电源方式)

第一绕组次级电流计算如下:(供SUB通路)

第一绕变压器次级电流IAC=变压器的绕组输出的总功率/变压器次级电压V AC*2

=100W/0.65/(29.6*2)=2.58A

第二绕组次级电流计算如下:(供L R通路)

变压器次级电流IAC=变压器的绕组输出的总功率/变压器次级电压V AC*2

=50W/0.65/(22.8*2)=1.69A

由于第二绕组共有2个通路

固第二绕变压器次级电流IAC=1.69*2*0.8=2.74A (其中系数0.8) 最终可得变压器参数如图

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

三相变压器的有关计算

三相变压器的有关计算 一变压器变压比的计算 1. 基本概念 三相变压器变比:三相变压器原、副绕组产生的感应电动势之比,近似等于原、副绕组上的电压之比,也等于原、副绕组的匝数N、N2 之比。即 U/U2?E I/E2= N1/N2二K U 式中,K U为变压器的变压比,简称变比 当K U> 1时,变压器降低电源电压。称为降压变压器。 当K U v 1时,变压器升高电源电压。称为升压变压器。 注意:求变比时,变压器的一次侧和二次侧的联接组别要一致。若不一致,一个是丫接法,一个是△接法,则应把丫接法的相电压与△接法的线电压。 2. 应用举例 已知一台三相变压器的额定容量S N=100KVA U/U2=10/0.4KV ,求变压 器的变比。 解K U二U I/U2=10/0.4=25 已知一台三相变压器的额定容量S N=100KVA U/U2=10/0.4KV,采用 Y/ △接法,求变压器的变比 解K U =U I/U2=10/ (」X 0.4 )=14.43 二变压器一、二次侧电压、电流的计算

1. 基本概念 变流:三相变压器的变流公式与单相变压器的变流公式一样,即 l i/l 2= U2/ U 1=1/ K U = K I 式中,K为三相变压器的变流比,与变压比成反比。 2. 应用举例 已知一台三相变压器的额定容量S N=100KVAU N/U2N=10/0.4KV ,11N=1OA, 求变压器的比及二次侧的电流。 解K U =U I/U2=10/0.4=25 I IN = K U X I IN =25 X 10=250A 三变压器功率的计算 1. 基本概念 (1) 额定容量:表示在额定工作条件下变压器的最大输出功率,也称 视在功率S V,单位是KVA (2) 额定功率:满负荷时的实际输出功率,也称有功功率P N,单位是KW 2. 计算公式 (1)额定容量 S= U2N I 2N = ' ■ U1N I 1N (2)额定功率 P N = S V cos ①二;;U2N I 2N cos ① 式中,cos①为负载的功率因数

计算变压器的功率

计算变压器的功率 变压器功率= 输出电压X 输出电流 根据电路要求需要输出电压36V、电流2A的变压器, 36V X 2A = 72W(变压器功率) 2 计算变压器的铁芯截面积 变压器功率X 1.44 = Y ,Y开根X 1.06 = 铁芯截面积 变压器功率72W X 1.44 = 103.68,103.68开根X 1.06 = 10.79平方厘米(铁芯截面积)10.79平方厘米= 1079平方毫米(铁芯截面积) 3 计算变压器铁芯叠厚 铁芯截面积(平方毫米)/ 矽钢片舌宽(毫米)= 铁芯叠厚 1079平方毫米/ 40毫米=26毫米(叠厚),铁芯规格采用舌宽40的矽钢片,叠厚为26毫米。 4 骨架的选用 铁芯截面积为E40 X 26,那么骨架就用E40 X 26的,对照变压器骨架规格表刚好有这种规格的骨架,如果实在没有,选叠厚大一规格的也行。5 计算线圈输入初级匝数 45 / 铁芯截面积(平方厘米)X 220V = 输入初级匝数, (45/10.79平方厘米)X 220 = 匝(输入初级匝数) 6 计算线圈输出次级匝数 (输入初级匝数/220)X 输出电压= 输出次级匝数 ( /220)X 36V = (取整数匝) 7 计算绕制的漆包线线径 电流(开根)X 0.7 = 线径 输出电流10A(开根)X 0.7 = 2.21(输出30V线径), 输入电流=(300W变压器功率/220V输入电压)开根X 0.7=0.81(输入220V线径) 8 计算结果 矽钢片规格E40mm、叠厚26mm;变压器骨架规格E40 X 26;输入线圈匝数匝、线径0.81铜漆包线;输出线圈匝数匝、线径2.21铜漆包线。

反激电源高频变压器参数计算方法

四、设计开关电源主要在变压器计算与画板 高频变压器参数计算方法 1﹚、磁通量与磁通密度相关公式: Ф = B * S⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳)

I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数 比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D))⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: 输入直流电压:200--- 340 V 输出直流电压:23.5V 输出电流: 2.5A * 2 输出总功率:117.5W 2.确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高;匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.6 3.计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿ Vin(max) ----- 输入电压最大值Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌525.36(V) 4.计算PWM占空比: 由⑽式变形可得: D = (N1/N2)*E2/(E1+(N1 /N2*E2) D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀ D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89) 由些可计算得到占空比D≌0.481 5.算变压器初级电感量: 为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推 导过程:

设备功率计算变压器容量

根据设备功率计算变压器容量(一) 一)根据你提供的设备清单如下: 电焊机25 台,功率分别为: 3.0KVA*8 ;8KVA*6 ;16KVA*5 ;30KVA*2 ;180KVA*2 ; 200KVA*2 ; & =50% 电焊机,Kx=0.35, 二)你厂所需500KVA 的变压器理由计算如下: KVA 即千伏安,表示电焊机的容量, & =50%表示电焊机的额定暂载率是50%,在进行负荷计算的时候,电焊机应该统一换算到 1 00 %来计算。 Kx=0.35, 表示电焊机的需用系数是0.35。需用系数是综合了同时系数、负荷系数、设备效率、线路效率之后得到的一个系数。各种设备不尽相同。 P js表示计算负荷的有功功率。是综合了各类因素后,得到的设备计算功率。 Q js 表示计算负荷的无功功率。有功功率乘以功率因数角度的正切值,等于无功 功率。也就是你上面的Q js=P js*tg① cos①表示功率因数。功率因数越高,系统的无功功率越低。不同的设备,功率因数也不尽相同。在你的计算式中,取了电焊机的功率因数为0.7。如果是我计算的话,我就取0.4?0.45,呵呵!因为我觉得电焊机的功率因数是没有0.7的。 另外,在你的计算中,没有对焊接设备进行容量转换。我上面说了,电焊机应该统一将暂载率换算到100 %来计算。换算公式为:P e=P N* ((额定暂载率除以100%暂载率)开根号) P e是换算后的功率,P N是额定功率 额定功率二额定容量*功率因数 因此,你的共计25 台焊机的额定容量应该是S二 3.0KVA*8+8KVA*6+16KVA*5+30KVA*2+180KVA*2+200KVA*2 = 972KVA 则额定功率为972KVA*0.4 = 388.8KW (我这里计算是取的功率因数为0.4,没有按你的0.7 计算) 那么换算功率为388.8KW* (50% /100 %)开根号= 388.8KW*根号0.5 = 388.8*0.707 = 274.9KW 然后将需用系数Kx=0.35代入,则计算负荷P js=K x*P e = 274.9KW*0.35 = 96.2KW 到这里,又出现了一个问题。因为大家都知道,电焊机属于单相负载(不论接一零一火220V或者接两根火线380V,都成为单相负载),因此计算负荷有个单相到三相转换的过程。转换方法就是,如果接的是220V,也就是接入相电压时,等效功率要乘以3,如果接的是380V,也就是接入线电压时,等效功率要乘以根号3。因为

开关电源高频变压器AP法计算方法

AP表示磁心有效截面积与窗口面积的乘积。 计算公式为 AP=AwAe 式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。根据计算出的AP值,即可查表找出所需磁心型号。下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。 1 高频变压器电路的波形参数分析 开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。 1)波形系数Kf 为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。正弦波的电压有效值为

在开关电源中定义正弦波的波形系数Kf=√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。 2)波形因数kf 为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压 压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式 以正弦波为例, 这表明,Kf=4kf,二者相差4倍。 开关电源6种常见波形的参数见表1。因方波和梯形波的平均值为零,故改用电压均绝值来代替。对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。

变压器计算公式

变压器计算公式已知容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数是考虑电动机功率因数和效率等计算而得的综合值。功率因数为,效率不,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电压数去除、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW 数又恰是6kV数的倍数,则容量除以千伏数,商数乘以系数。 (5)误差。由口诀c 中系数是取电动机功率因数为、效率为而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

变压器的平均负荷功率的计算

变压器的平均负荷功率如何计算 [ 标签:变压器负荷,变压器,平均 ] (、荌靜-.. 回答:1 人气:16 解决时间:2009-08-23 16:45 满意答案好评率:0% 简介:负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器。将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比。 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0 PC 变压器的损耗比=PC/P0 变压器的效率=PZ/(PZ ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

环形变压器额定功率计算公式

深入了解环形变压器额定功率计算公式 2009-08-10 07:41:00 作者:佚名来源:网络文字大小:【大】【中】【小】 发烧友都习惯称环型变压器为“环牛”,由于电源变压器在音响系统中的重要性,所以衡量其性能的优劣也显得非常重要... 发烧友都习惯称环型变压器为“环牛”,由于电源变压器在音响系统中的重要性,所以衡量其性能的优劣也显得非常重要,以下为小编在网上找到的一套计算公式,能在没有环牛具体参数的情况下估算其额定功率。

以下是三诺N-45G环型电源变压器的一些参数: 环型变压器及其应用

环形变压器是电子变压器的一大类型,已广泛应用于家电设备和其它技术要求较高的电子设备中,它的主要用途是作为电源变压器和隔离变压器。环形变压器在国外已有完整的系列,广泛应用于计算机、医疗设备、电讯、仪器和灯光照明等方面。 我国近十年来环形变压器从无到有,迄今为止已形成相当大的生产规模,除满足国内需求外,还大量出口。国内主要用于家电的音响设备和自控设备以及石英灯照明等方面。 环形变压器由于有优良的性能价格比,有良好的输出特性和抗干扰能力,因而它是一种有竞争力的电子变压器,本文拟就它的特点作一介绍。 2环形变压器的特点 环形变压器的铁心是用优质冷轧硅钢片(片厚一般为0.35mm以下),无缝地卷制而成,这就使得它的铁心性能优于传统的叠片式铁心。环形变压器的线圈均匀地绕在铁心上,线圈产生的磁力线方向与铁心磁路几乎完全重合,与叠片式相比激磁能量和铁心损耗将减小25%,由此带来了下述一系列的优点。1)电效率高铁心无气隙,叠装系数可高达95%以上,铁心磁导率可取1.5~1.8T(叠片式铁心只能取1.2~1.4T),电效率高达95%以上,空载电流只有叠片式的10%。2)外形尺寸小,重量轻环形变压器比叠片式变压器重量可以减轻一半,只要保持铁心截面积相等,环形变压器容易改变铁心的长、宽、高比例,可以设计出符合要求的外形尺寸。 3)磁干扰较小环形变压器铁心没有气隙,绕组均匀地绕在环形的铁心上,这种结构导致了漏磁小,电磁辐射也小,无需另加屏蔽都可以用到高灵敏度的电子设备上,例如应用在低电平放大器和医疗设备上。 4)振动噪声较小铁心没有气隙能减少铁心 表1加拿大PLITRON环形变压器外形尺寸及重量输出功率P2/VA变压器外径Dw/mm变压器高度h1/mm装配后高度h2/mm重量m/kg 85525300.25 156333370.35 307033380.45 508038450.9 809735391.00 1209543471.2 16011045501.8 22511050552.2 30011057622.6 50013563674.0 62514578835.0 75015080855.5 100016080856.3 1500200758011.7 环形变压器及其应用: 图1环形变压器外形图 感应振动的噪音,绕组均匀紧紧包住环形铁心,有效地减小磁致伸缩引起的“嗡嗡”声。

变压器功率计算方法

变压器功率计算方法 0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明:

(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV 电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,

高频变压器参数计算方法

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)

变压器计算公式

变压器计算公式 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。 这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化, 省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。

高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV 电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。(5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。

高频变压器设计时选择磁芯的两种方法

高频变压器设计时选择磁芯的两种方法 https://www.360docs.net/doc/f013746264.html, 2003年04月28日 03:32 高频变压器设计时选择磁芯的两种方法 Two Method for Select Core in Design of High Freguency Transformers 在高频变压器设计时,首先遇到的问题,便是选择能够满足设计要求和使用要求的磁芯。 通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。 1 面积乘积法 这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。 表示形式为WaAe,有些讲义和书本上简写为Ap,单位为 。 根据法拉第定律,我们有: 窗口面积利用情况有: KWα=NAw 变压器有初级、次级两个绕组。因此有: KWα=2NAw 或 0.5KWα=NAw 我们知道: Aw= 而电流有效值 I=Ip

得到以下关系式: 0.5KWα= 即: 于是就有如下式: 由于:EδIp=Pi 又有: Pi= 最后得到如下公式: 这个公式适用于单端变压器,如正激式和反激式。 δ<0.5,Bm-T,K-0.3~0.4,η-0.8~0.9,J-A/。推挽式的公式则为: 半桥式的公式则为: 这里的δ>0.5,例如0.8~0.9。 单端变压器如正激式和反激式:Bm=△B=Bs-Br。 双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。 全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。 在J=400A/,K=0.4,η=0.8,δ=0.4(单端变压器),δ=0.8(双端变压器)。公

高频变压器设计的五个步骤

变压器的设计过程包括五个步骤: ①确定原副边匝数比; 为了提高高频变压器的利用率,减小开关管的电流,降低输出整流二极管的反向电压,减小损耗和降低成本,高频变压器的原副边变比应尽量大一些. 为了在任意输入电压时能够得到所要求的电压,变压器的变比应按最低输入电压选择.选择副边的最大占空比为 ,则可计算出副边电压最小值为: ,式中, 为输出电压最大值, 为输出整流二极管的通态压降, 为滤波电感上的直流压降.原副边的变比为: ②确定原边和副边的匝数; 首先选择磁芯.为了减小铁损,根据开关频率 ,参考磁芯材料手册,可确定最高工作磁密、磁芯的有效导磁截面积、窗口面积 .则变压器副边匝数为: .根据副边匝数和变比,可计算原边匝数为 ③确定绕组的导线线径; 在选用导线线径时,要考虑导线的集肤效应.所谓集肤效应,是指当导线中流过交流电流时,导线横截面上的电流分布不均匀,中间部分电流密度小,边缘部分电流密度大,使导线的有效导电面积减小,电阻增加.在工频条件下,集肤效应影响较小,而在高频时影响较大.导线有效导电面积的减小一般采用穿透深度来表示.所谓穿透深度,是指电流密度下降到导线表面电流密度的0.368(即: )时的径向深度. ,式中, , 为导线的磁导率,铜的相对磁导率为 ,即:铜的磁导率为真空中的磁导率 , 为导线的电导率,铜的电导率为 . 为了有效地利用导线,减小集肤效应的影响,一般要求导线的线径小于两倍的穿透深度,即 .如果要求绕组的线径大于由穿透深度所决定的最大线径时,可采用小线径的导线多股并绕或采用扁而宽的铜皮来绕制,铜皮的厚度要小于两倍的穿透深度 (4)确定绕组的导线股数 绕组的导线股数决定于绕组中流过的最大有效值电流和导线线径.在考虑集肤效应确定导线的线径后,我们来计算绕组中流过的最大有效值电流. 原边绕组的导线股数:变压器原边电流有效值最大值 ,那么原边绕组的导线股数 (式中,J 为导线的电流密度,一般取J=3~5 , 为每根导线的导电面积.). 副边绕组的导电股数:①全桥方式:变压器只有一个副边绕组,根据变压器原副边电流关系,副边的电流有效值最大值为: ;②半波方式:变压器有两个副边绕组,每个负载绕组分别提供半个周期的负载电流,因此其有效值为 ( 为输出电流最大值).因此副边绕组的导线股数为(5)核算窗口面积 在计算出变压器的原副边匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下或是否窗口过大.如果窗口面积太小,说明磁芯太小,要选择大一点的磁芯;如果窗口面积

变压器容量选择算步骤

变压器容量选择计算步骤 当我们提到变压器容量的时候,很多人不知道变压器容量计算公式是什么。那么变压器容量怎么计算呢?下面就跟电工学习网一起来看看吧。 一、变压器容量计算公式 1、计算负载的每相最大功率 将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。) 例如:C相负载总功率=(电脑300WX10台)+(空调2KWX4台)=11KW

2、计算三相总功率 11KWX3相=33KW(变压器三相总功率) 三相总功率/0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW/0.8=41.25KW(变压器总功率) 变压器总功率/0.85,根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。 41.25KW/0.85=48.529KW(需要购买的变压器功率),那么在购买时选择50KVA的变压器就可以了。

二、关于变压器容量计算的一些问题 1、变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率; 2、这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 3、变压器额定运行时,变压器的输出视在功率等于额定容量; 4、变压器额定运行时,变压器的输入视在功率大于额定容量;

5、由于变压器的效率很高,一般认为变压器额定运行时,变压器的输入视在功率等于额定容量,由此进行的运算及结果也是基本准确的; 6、所以在使用变压器时,你只要观察变压器输出的电流、电压、功率因数及其视在功率等于或小于额定容量就是安全的(使用条件满足时); 7、有人认为变压器有损耗,必须在额定容量90%以下运行是错误的! 8、变压器在设计选用容量时,根据计算负荷要乘以安全系数是对的。

如何选择变压器:容量计算方法

电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 如何选择变压器? 选用配电变压器时,如果把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。 如果变压器容量选择过小,将会使变压器长期处与过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。 配电变压器的负载率在0.5~0.6之间效率最高,此时变压器的容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。 对于仅向排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的1.2倍选用变压器的容量。 一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击,直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30%左右。 应当指出的是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。 对于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实际可能出现的最大负荷的1.25倍选用变压器的容量。 根据农村电网用户分散、负荷密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。 对于变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。 针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。 变压器的容量是个功率单位(视在功率),用A V(伏安)或KV A(千伏安)表示。 它是交流电压和交流电流有效值的乘积,计算公式S=UI。变压器额定容量的大小会在其的铭牌上标明。

相关文档
最新文档