求三角函数最小正周期的五种方法1

求三角函数最小正周期的五种方法1
求三角函数最小正周期的五种方法1

求三角函数最小正周期的五种方法

一、定义法

直接利用周期函数的定义求出周期。

例1. 求函数(m≠0)的最小正周期。

解:因为

所以函数(m≠0)的最小正周期

例2. 求函数的最小正周期。

解:因为

所以函数的最小正周期为。

二、公式法

利用下列公式求解三角函数的最小正周期。

1. 或的最小正周期。

2. 的最小正周期。

3. 的最小正周期。

4. 的最小正周期

例3. 求函数的最小正周期。

解:因为

所以函数的最小正周期为。

例4. 求函数的最小正周期。

解:因为,

所以函数的最小正周期为。

三、转化法

对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。

例5. 求函数的最小正周期。

解:因为

所以函数的最小正周期为。

例6. 求函数的最小正周期。

解:因为

其中,

所以函数的最小正周期为。

四、最小公倍数法

由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。

注:

1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。

2. 对于正、余弦函数的差不能用最小公倍数法。

例7. 求函数的最小正周期。

解:因为csc4x的最小正周期,的最小正周期,由于和

的最小公倍数是。

所以函数的最小正周期为。

例8. 求函数的最小正周期。

解:因为的最小正周期,最小正周期,由于和的最小公倍数是,

所以函数的最小正周期为T=。

例9. 求函数的最小正周期。

解:因为sinx的最小正周期,的最小正周期,

sin4x的最小正周期,由于,的最小公倍数是2。

所以函数的最小正周期为T=。

五、图像法

利用函数图像直接求出函数的周期。

例10. 求函数的最小正周期。

解:函数的图像为图1。

图1

由图1可知:函数的最小正周期为。

求三角函数的值域(或最值)的方法

求三角函数的值域(或最值)的方法 三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下. 1 配方分析法 如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法. 例1求函数y=2cos2x+5sinx-4的值域. 解原函数可化为 当sinx=1时,y max=1; 当sinx=-1时,y min=-9, ∴原函数的值域是y∈[-9,1]. 注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意. “cosx”,再求已知函数的最值 例2求下列函数的最值,并求出相应的x值.

y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max= 3 求反函数法 如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.

∴原函数的值域是 4 应用函数的有界性 上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下. 解由原式可得 (3y-1)sinx+(2y-2)cosx=3-y, 则上式即为 利用函数的有界性有 ∴原函数的值域是

特别解析三角函数周期的几种求法

特别解析:三角函数周期的几种求法 1.定义法: 定义:一般地对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,f(x +T )=f(x )都成立,那么就把函数y=f(x)叫做周期函数;不为零的常数叫做这个函数的周期。对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。下面我们谈到三角函数的周期时,一般指的是三角函数折最小正周期。 例1.求函数y=3sin (3 32π+x )的周期 解:∵y=f (x )=3sin (3 32π+x )=3sin (332π+x +2π) =3sin (3232ππ++x )=3sin[3 )3(32ππ++x ] = f (x+3π) 这就是说,当自变量由x 增加到x +3π,且必增加到x +3π时,函数值重复出现。 ∴函数y=3sin ( 332π+x )的周期是T=3π。 例2:求f (x )=sin 6x+cos 6x 的周期 解∵f (x+ 2π)= sin 6(x+2π)+ cos 6(x+2 π)= cos 6x +sin 6x= f (x ) ∴f (x )=sin 6x+cos 6x 的周期为T=2 π 例3:求f (x )=x x x x 3cos cos 3sin sin ++的周期 解:∵f (x+π)=)cos()cos()(3sin )sin(ππππ++++++x x x x =x cox x x 3cos 3sin sin ---- = x x x x 3cos cos 3sin sin ++= f (x ) ∴求f (x )=x x x x 3cos cos 3sin sin ++的周期:T=π

三角函数·函数的周期性

三角函数·函数的周期性 教学目标 1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性. 2.使学生掌握简单三角函数的周期的求法. 3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力. 教学重点与难点 函数周期性的概念. 教学过程设计 师:上节课我们学习了利用单位圆中的正弦线作正弦函数的图象.今天我们将利用正弦函数图象,研究三角函数的一个重要性质.请同学们观察y=sinx,x ∈R的图象: (老师把图画在黑板左上方.) 师:通过观察,同学们有什么发现? 生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现. 师:规律是什么? 生:当自变量每隔2π时,函数值都相等.

师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题) 师:我们先看函数周期性的定义.(老师板书) 定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期. 师:请同学们逐字逐句的阅读定义,找出定义中的要点. 生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f (x+T)=f(x). 师:找得准!那么为什么要这样规定呢? 师:如果T=0,那么f(x+T)=f(x)恒成立,函数值当然不变,没有研究价值;如果T为变数,就失去了“周期”的意义了.“每一个值”的含义是无一例外. 师:除这两条外,定义中还有一个隐含的条件是什么? 生:如果x属于y=f(x)的定义域,则T+x也应属于此定义域. 师:对.否则f(x+T)就没有意义. 师:函数周期性的定义有什么用途? 生:它为我们提供判定函数是否具有周期性的理论依据. 师:下面我们看例题. (老师板书) 例1 证明y=sinx是周期函数. 生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数. 例2

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=mπ, m∈N +,又s in (2co s0)=s in 2≠s in (2co sπ),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

三角函数的周期

三角函数的周期性 一、课题:三角函数的周期性 二、教学目标:1.理解周期函数、最小正周期的定义;会判断一些简单的、常见的函数的周 期性,并会求一些简单三角函数的周期。 2.会求正、余弦函数的最小正周期。 三教学重点:函数周期性的概念. 教学难点:周期函数与最小正周期的意义 四、教学过程: (一)引入: 1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?…… (2)物理中的单摆振动、圆周运动,质点运动的规律如何呢? 2问题三角函数是刻画圆周运动的数学模型,那么“周而复始”的基本特征在函数性质中怎么体现? (二)新授 1周期定义:一般的,对于函数f(x),如果存在一个非零的常数T,使得定义域内的每一个x的值,都满足f(x+T)=f(x), 那么函数f(x)就叫做周期函数,非零的常数T叫做这个函数的周期上述(1)的周期是多少?正弦函数的,周期是多少? 2 最小正周期:对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期 说明:1 “每一个”怎么理解 2f(x+T)=f(x) 周期为T f(2x+T)=f(x) 周期为 3并不是所有的周期函数都有最小正周期,以后未特殊说明周期即指最小正周期 4f(x)=sinx, f(x)=cosx f(x)=tanx的周期是多少 例题讲解 例1 若钟摆的高度h(mm)与时间t(s)之间的函数关系如图 (1)求该函数的周期 (2)求t=10s时钟摆的高度 例2 改1 求函数f(x)=sin4x的周期 2 求函数f(x)=sin3x的周期 3求函数f(x)=2 sin3x+1的周期 4求函数f(x)=2 cos3x+1的周期

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

如何求三角函数的最小正周期

如何用初等方法求三角函数的最小正周期 在三角函数中,求最小正周期是一个重要内容,有关求三角函数最小正周期的问题,供大家参考。 一 公式法 函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω π2;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A ≠0,ω>0)的最小正周期都是ω y=Af(ωx+φ)(A ≠0,ω>0)一类三角函数的最小正周期(这里“f ”表示正弦、余弦、正切或余切函数)。 例1 求下列函数的最小正周期: (1) f(x)=2sin (53πx +1)。 (2) f(x)=1-31cos(4x 3π-)。 (3) f(x)=51tan(31x 3 π-). f(x)=)6 2cot(21π--x 解:用T 表示各函数的最小正周期,则: (1)T=5 32ππ =310 T=42π=2 π T=3 1 π=3π f(x )的最小正周期和y 1=1-2cot(2x -6π)的最小正周期相同,为T=2 π 二 定义法 根据周期函数和最小正周期的定义,确定所给函数的最小正周期。 例2 求函数f(x)=2sin (21x -6 π)的最小正周期。 解:把2 1x -6 π看成是一个新的变量z,那么2sinz 的最小正周期是2π。由于z +2π=21x-6π=(21x +4π)-6π。所以当自变量x 增加到x +4π且必须增加到x +4π时,函数值重复出现。 ∴函数y=2sin(21x-6 π)的最小正周期是4π。 例3 求函数f(x)=|sinx|-|cosx|的最小正周期。

解:根据周期函数的定义,易知2π、π都是这个的周期,下面证明π是这个函数的最小正周期。 设0<T <π是这个函数的周期,则|sin(x +T )|-|cos(x +T )|=|sinx|-|cosx| ① 对于任意x ∈R 都成立,特别的,当x=0时也应成立。 ∴ |sinT|-|cosT|=|sin0|-|cos0|=-1。 但当0<T <π时,0<|sinT|≤1,0<|cosT|<1,故有-1<|sinT|-|cosT|≤1, 矛盾,所以满足①且小于π的正数T 不存在。故函数f(x)=|sinx|-|cosx|的最小正周期是π。 三、最小公倍数法 求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正周期。 例4 求下列函数的最小正周期: (1)f(x)=sin3x+cos5x (2)f(x)=cos 34 x -sin 2 1x. (3)f(x)=sin 53x +tan 7 3x. 解:(1)∵sin3x 的最小正周期为T 1=π32,cos5x 的最小正周期为T 2=π52。而π32和π5 2的最小公倍数是2π. ∴f(x)的最小正周期为T=2π. (2) ∵cos 34x 的最小正周期为T 1=π23,-sin 2 1x 的最小正周期为T 2=4π。而π2 3和4π的最小公倍数是12π。 ∴f(x)=cos 34 x -sin 2 1x 的最小正周期为T=12π. (3)∵sin 53x 的最小正周期为T 1=π310,tan 73x 的最小正周期为T 2=π37。而π310和π3 7的最小公倍数是70π。 ∴f(x)=sin 53x +tan 7 3x 的最小正周期为T=70π. 说明:几个分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。 四 图象法 作出函数的图象,从图象上直观地得出所求的最小正周期。 例5 求下函数的最小正周期。 (1)y=|sin(3x +3 π)|

三角函数的周期性

1.4.1三角函数的周期性 一、导学目标 1.引导学生从单位圆中,得出正弦、余弦函数值呈现周期性变化 2.函数周期性定义 3.能求三角函数的周期 二、知识回归 1.任意角的三角函数 sin y α= cos x α= 2.终边与α角相同 2απ+ 2απ- L L 2()k k Z απ+∈ 三角函数值相同 三、新知导学 由观察可知 1.三角函数值出现周期性变化的特点 sin(2)sin cos(2)cos x k x x k x ππ+=+= (k Z ∈) 2.函数定义 对于函数()f x ,如果存在一个非零常数T ,使定义域内每一个x ,都有()()f x T f x +=,则函数()f x 叫周期函数,非零常数T 叫做这个函数的周期。 3.正弦函数sin y x =,余弦函数cos y x =的周期 2,4,6,2,4,6,ππππππ---L L 2(,0)k k Z k π∈≠ 都是它们的周期 2π是所有周期中最小的正数,是sin ,cos x x 的最小的 正周期 周期函数()f x ,如果它所有的周期中存在一个最小的正数,这个最小正数就是()f x 的最小正周期,一般,函数周期都是指最小正周期 sin ,cos y x y x ==的周期是T=2π 四、例题分析与巩固训练

(1)()sin 3f x x = 1(2)()2cos()23 g x x π=- 分析:由sin ,cos x x 周期都是2π,设周期T 即可 (1) 设()f x 周期为T ,()()f x T f x += ∴sin3()sin3x T x += sin(33)sin 3x T x += 32T π∴= 23 T π= (2) 设()g x 周期为T ()()g x T g x += 2cos()2cos()2323 x T x ππ+-=- 即2cos ()2cos()23223x T x ππ??- +=-???? 22 T π∴= 巩固训练 A 1. 求下列函数的周期 (1)2sin 2y x =- (2)cos 3 x y = 2.判断下列说法是否正确,并说明理由 (1)76x π=时,2sin()sin 3x x π+=,则23 π一定是函数sin y x =的周期 B 思考 sin()cos() y A x y A x ω?ω?=+=+ (其中,,A ω?为常数,0,0A ω≠>) 的周期为2T π ω= 例2 若钟摆高度()h mm 与时间()t s 之间的函数关系如图所示 (1) 求该函数的周期

三角函数研究性学习

研究性学习 班级: 小组: 组长: 组员: 开题报告 三角学的起源与发展 三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具

一、课题提出的背景 运用数学知识解决现实生活中的实际问题是一项很重要的数学能力,也是新课程标准对学生能力的基本要求。九年级下册锐角三角函数内容不仅是初中数学教学的重点,而且是培养学生运用能力的理想材料,锐角三角函数解实际问题渗透了数形结合的数学思想,通过测量,工程技术等问题,转化为解直角三角形的应用题和数学活动,有助于培养学生的空间想象能力和运用数学的能力,更好地培养学生理论和实践相结合的意识。学生在学习本部分内容时,对概念的形成难以理解,更不能把实际问题抽象成数学模型,造成对实际问题的解决无所适从,学生作业练习中更出现严重错误,利用数学知识解决实际问题的能力欠缺,导致学生对数学学习没有乐趣和积极性,因此,本人把锐角三角函数解决实际问题作为课题进行研究,培养学生数学运用能力。 二、所要解决的主要问题 1、通过实际问题培养学生经历概念的形成能力。 2、研究如何培养学生数形结合的数学思想。 3、研究如何培养学生对实际问题的分析和解决能力。 4、培养学生良好的解决问题的数学思想和方法,使学生对实际问题的探索充满乐趣。

如何求三角函数的周期

如何求三角函数的周期 三角函数的的周期是三角函数的重要性质,对于不同的三角函数式,如何求三角函数的周期也是一个难点,下面通过几个例题谈谈三角函数周期的求法. 1、根据周期性函数的定义求三角函数的周期 例1 求下列函数的周期 x y 2sin )1(= , 3 2tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使x T x 2sin )(2sin =+成立,同时考虑到正弦函数x y sin =的周期是π2. 解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin =+π. ∴ 当自变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π. (2) 分析:根据周期函数的定义,问题是要找到一个最小正数T ,对于函数定义域内的每一个x 值都能使 3 2tan )(32tan x T x =+成立,同时考虑到正切函数x y tan =的周期是π. 解:∵ )23(32tan )32tan(32tan ππ+=+=x x x , 即3 2tan )23(32tan x x =+π. ∴ 函数32tan x y =的周期是π2 3. 注意:1、根据周期函数的定义,周期T 是使函数值重复出现的自变量x 的增加值, 如),2()2(x f T x f =+周期不是T ,而是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于自变量x 取定义域内的每个值时,上式都成立. 2、根据公式求周期 对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是| |2ωπ=T , 对于函数B x A y ++=)tan( ?ω或B x y ++=)cot(?ω的周期公式是||ωπ=T . 例3 求函数)623sin( 3π-=x y 的周期 解: 3 42 32ππ==T . 3、把三角函数表达式化为一角一函数的形式,再利用公式求周期 例4 求函数x x x y 2sin 2cos sin 32-=的周期 解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y

求三角函数最小正周期的五种方法

求三角函数最小正周期的五种方法 一、定义法 直接利用周期函数的定义求出周期。 例1. 求函数(m≠0)的最小正周期。 解:因为 所以函数(m≠0)的最小正周期 例2. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 二、公式法 利用下列公式求解三角函数的最小正周期。 1. 或的最小正周期。 2. 的最小正周期。

3. 的最小正周期。 4. 的最小正周期 例3. 求函数的最小正周期。 解:因为 所以函数的最小正周期为。 例4. 求函数的最小正周期。 解:因为, 所以函数的最小正周期为。 三、转化法 对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。 例5. 求函数的最小正周期。 解:因为

所以函数的最小正周期为。 例6. 求函数的最小正周期。 解:因为 其中, 所以函数的最小正周期为。 四、最小公倍数法 由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。 注: 1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。 2. 对于正、余弦函数的差不能用最小公倍数法。 例7. 求函数的最小正周期。 解:因为csc4x的最小正周期,的最小正周期,由于和 的最小公倍数是。 所以函数的最小正周期为。 例8. 求函数的最小正周期。

解:因为的最小正周期,最小正周期,由于和的最小公倍数是, 所以函数的最小正周期为T=。 例9. 求函数的最小正周期。 解:因为sinx的最小正周期,的最小正周期, sin4x的最小正周期,由于,的最小公倍数是2。 所以函数的最小正周期为T=。 五、图像法 利用函数图像直接求出函数的周期。 例10. 求函数的最小正周期。 解:函数的图像为图1。 图1 由图1可知:函数的最小正周期为。

关于《三角函数的周期性》的教案

关于《三角函数的周期性》的教案 一、目标与自我评估 1掌握利用单位圆的几何作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。 分类计数原理与分步计数原理、排列 一.教学内容:分类计数原理与分步计数原理、排列

三角函数周期的常用求法

y x O π 2π - π -2π y x O π 2π -π -2π 三角函数周期的常用求法 河南 陈长松 三角函数的周期是三角函数的一个重要性质,也是高考的热点.本文通过实例介绍求三角函数周期的几种常用方法,供参考. 一、公式法 例1 函数)2 3sin( x y -=π的最小正周期是 ( ) A.π B.2π C.-4π D.4π 解:由公式,得ππ42 12=-=T ,故选D. 评注:对于函数)sin(?ω+=x A y 或)cos(?ω+=x A y 可直接利用公式ωπ 2=T 求得;对于)tan(?ω+=x A y 或)cot(?ω+=x A y 可直接利用公式ωπ= T 求得。 二、图像法 例2 求下列函数的最小正周期 ① x y sin = ②x y sin 解:分别作出两个函数的图像知 ①x y sin =的周期π=T ②x y sin =不是周期函数 评注:对于一 些含有绝对值的三角函数周期问题,常可借助于三角函数的图 像来解决. 三、定义法 x x y cos sin +=的最小正周期 例3 求函数 解:∵ 2 cos()2sin(ππk x k x +++=x x cos sin + (Z k ∈) ∴ 2πk 是函数x x y cos sin +=的周期.显然2πk 中最小者是2 π 下面证明2 π是最小正周期 假设2π不是x x y cos sin +=的最小正周期,则存在<+T T ②

三角函数周期最值

正弦函数、余弦函数的性质(一) 周期 【基础知识梳理】 1.正弦函数x y sin =与余弦函数x y cos =都是周期函数 都是它们的周期,且它们的最小正周期都是 ; 2.正弦型函数)sin(?ω+=x A y 和余弦型函数)cos(?ω+=x A y (0,0≠>ωA )的周期T= . 【典型例题】 【例1】1.函数x y sin =的周期为( ) A. π2 B.π C. 2π D.4π 2.设函数f (x )=3si ∈(-∞,+∞),且以 为最小正周期 若 则 的值为 【巩固练习】 1.求下列函数的周期: (1)y=3cosx ,x ∈R ; (2)y=sin2x, x ∈R ; (3)y=2sin(21x-6π),x ∈R ; (4))4 31cos(2π-=x y ; (5))3 21sin(π+-=x y 。 2.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈ 时 则 等于 A. 21- B. 21 C.23- D.23 3.若函数f (x )=sin ωx 的周期为π,则ω= . 4.函数y =|cos x|的最小正周期是( ) A.π2 B.π C.2π D.4 π 5.函数y=5si 的最小正周期为 A.π2 B.π5 C.25π D.5 2π

最值 【基础知识梳理】 1.正弦函数x y sin =在x = 时, 1max =y ; 在x = 时, 1min -=y 。 2.余弦函数x y cos =在x = 时, 1max =y ; 在x = 时, 1min -=y 。 【典型例题】 【例1】求下列函数的最值及取得最大值、最小值时的自变量x 的集合: (1))42sin(3π+ =x y ; (2))6 21cos(23- π-=x y ; (3)2)1(sin 2+-=x y 。 【例2】求函数2sin 5sin 22-+-=x x y 的最大值和最小值。

三角函数周期的几种求法.doc

三角函数周期的几种求法 深圳市福田区皇岗中学蔡舒敏 高中数学第一册第二节中涉及到函数周期的问题,学生们往往对此类的问题感到比较困难。本文就这个问题谈三角函数周期的几种求法。 1.定义法: 定义:一般地y=c,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值吋, f (x+T) = f ( X ) 都成立,那么就把函数y = f (x)叫做周期函数;不为零的常数叫做这个函数的周期。对于一个周期函数來说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。下面我们谈到三角函数的周期时,一般指的是三角函数折最小止周期。 例1.求函数y=3sin (-% + -)的周期 3 3 解:Vy=f (x) =3sin (-x+—) =3sin (-% + —+2^-) 3 3 3 3 =3sin (拿+ 2兀 +彳)=3sin[|(x + 3^) + |] 二f (x+3兀) 这就是说,当自变量由x增加到x+3龙,且必增加至!J x+3龙时,函数值重复出现。 二函数y=3sin (-x + —)的周期是T二3龙。 3 3 例2:求f (x) =sin6x+cos6x 的周期 解Tf (x+—) = sin b (x+—) + cos6 (x+—) 2 2 2 二cos h x +sir?x二f (x)

.?.f (x) =sin6x+cos6x 的周期为T= — 2 例3:求f (x)二血兀+血3兀的周期 cosx + cos3x 解:Vf (x+兀)二曲(只+兀)+血如+兀) COS(X + 7l) + COS(X + 71) _ -sinx-sin3x -cox - cos3x _ sinx + sin 3x cos x +cos 3^ 二f (x) ■求f(X)二Siz + sin3兀的周期:T F cos x +cos 3x 2.公式法: (1)如果所求周期函数可化为y二Asin (亦+ ?)、y二Acos (亦+炉)、y = tg (亦 + 0 )形成(其中X、co、cp为常数,且A H O、?>O、0W R),则可知道它们的周期分别是:—> —> -O co co co 例4:求函数y=l-sinx+V3 cosx的周期 解:Vy=l-2 (- sinx- —cosx) - 2 2 = 1-2 (cos —sinx-sin— cosx) 3 3 = l-2sin (x-—) 3 这里0二1 ???周期T二2龙 例5:求:y=2 (— sinx--cos3x) -1 2 2 解:Vy=2 (— sinx-—cos3x) -1 2 2

高中三角函数最值问题的一些求法

高中三角函数最值问题的一些求法 关于()f x ω?+型三角函数式的最值,可以由三角函数的性质直接求出,如 sin(),11y x y y ω?=+==-最大最小,; cos(),11y x y y ω?=+==-最大最小,; tan y x =与cot y x =在定义域内无最值。 一、直接应用三角函数的定义及三角函数值的符号规律解题 例1:求函数y = x x x x x x x x cot | cot ||tan |tan cos |cos ||sin |sin +++的最值 分析:解决本题时要注意三角函数值的符号规律,分四个象限讨论。 解: (1)当x 在第一象限时,有sin cos tan cot 4sin cos tan cot x x x x y x x x x = +++= (2)当x 在第二象限时,有sin cos tan cot 2sin cos tan cot x x x x y x x x x =+++=---- (3)当x 在第三象限时,有sin cos tan cot 0sin cos tan cot x x x x y x x x x =+++=-- (4)当x 在第四象限时,sin cos tan cot 2sin cos tan cot x x x x y x x x x =+++=---- 综上可得此函数的最大值为4,最小值为-2. 二、直接应用三角函数的有界性(sin 1,cos 1x x ≤≤)解题 例1:(2003北京春季高考试题)设M 和m 分别表示函数cos 13 x -1 y=的最大值和最小值,则M m +等于( ) (A ) 32 (B )32-(C ) 3 4-(D )-2 解析:由于cos y x =的最大值与最小值分别为1,-1,所以,函数cos 13 x -1 y=的最大值与最小值分别为 32-,34-,即M m +=32-+(3 4 -)=-2,选D. 例2:求3sin 1 sin 2 x y x +=+的最值(值域) 分析:此式是关于sin x 的函数式,通过对式子变形使出现12sin 3 y x y -=-的形式,再根据sin 1x ≤来求解。 解:3sin 1 sin 2 x y x += +,即有sin 23sin 1sin 3sin 12y x y x y x x y +=+?-=-

三角函数的周期性数学教案

三角函数的周期性数学教案 一、学习目标与自我评估 1掌握利用单位圆的几何方法作函数的图象 2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3会用代数方法求等函数的周期 4理解周期性的几何意义 二、学习重点与难点 “周期函数的概念”,周期的求解。 三、学法指导 1、是周期函数是指对定义域中所有都有 ,即应是恒等式。 2、周期函数一定会有周期,但不一定存在最小正周期。 四、学习活动与意义建构 五、重点与难点探究 例1、若钟摆的高度与时间之间的函数关系如图所示 (1)求该函数的周期; (2)求时钟摆的高度。 例2、求下列函数的周期。 (1)(2) 总结:(1)函数(其中均为常数,且 的周期T=。

(2)函数(其中均为常数,且 的周期T=。 例3、求证:的周期为。 例4、(1)研究和函数的图象,分析其周期性。 (2)求证:的周期为(其中均为常数, 且 总结:函数(其中均为常数,且 的周期T=。 例5、(1)求的周期。 (2)已知满足,求证:是周期函数 课后思考:能否利用单位圆作函数的图象。 六、作业: 七、自主体验与运用 1、函数的周期为() A、B、C、D、 2、函数的最小正周期是() A、B、C、D、 3、函数的最小正周期是() A、B、C、D、 4、函数的周期是() A、B、C、D、 5、设是定义域为R,最小正周期为的函数,

若,则的值等于() A、1 B、 C、0 D、 6、函数的最小正周期是,则 7、已知函数的最小正周期不大于2,则正整数 的最小值是 8、求函数的最小正周期为T,且,则正整数 的最大值是 9、已知函数是周期为6的奇函数,且则 10、若函数,则 11、用周期的定义分析的周期。 12、已知函数,如果使的周期在内,求 正整数的值 13、一机械振动中,某质子离开平衡位置的位移与时间之间的 函数关系如图所示: (1)求该函数的周期; (2)求时,该质点离开平衡位置的位移。 14、已知是定义在R上的函数,且对任意有 成立, (1)证明:是周期函数; (2)若求的值。

求三角函数最值的四种方法

求三角函数最值的四种方法 解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性 如有界性等 ,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数 二次函数等 最值问题.下面介绍几种常见的三角函数最值的求解策略 1.配方转化策略 对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2 x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决. [典例1] 求函数y =5sin x +cos 2x 的最值. [解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2? ????sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4. [题后悟道] 这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1]. 2.有界转化策略 对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一. [典例2] 设函数f (x )=4cos ? ????ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值. [解] f (x )=4? ?? ??32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx =3sin 2ωx +1, 因为-1≤sin 2ωx ≤1, 所以函数y =f (x )的最大值为3+1,最小值为1- 3.

相关文档
最新文档