锂电池充电原理图

锂电池充电原理图
锂电池充电原理图

锂电池过充电,过放电,过流及短路保护电路

下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能。

锂电池保护工作原理:

1、正常状态

在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。

此状态下保护电路的消耗电流为μA级,通常小于7μA。

2、过充电保护

锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。

在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。

在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。

3、过放电保护

电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。

在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC 有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切

断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。

由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

在控制IC检测到电池电压低于2.3V至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常设为100毫秒左右,以避免因干扰而造成误判断。

4、过电流保护

由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题。

电池在对负载正常放电过程中,放电电流在经过串联的2个MOSFET时,由于MOSFET的导通阻抗,会在其两端产生一个电压,该电压值U=I*RDS*2, RDS为单个MOSFET导通阻抗,控制IC上的“V-”脚对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使U>0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用。

在控制IC检测到过电流发生至发出关断V1信号之间,也有一段延时时间,该延时时间的长短由C3决定,通常为13毫秒左右,以避免因干扰而造成误判断。

在上述控制过程中可知,其过电流检测值大小不仅取决于控制IC的控制值,还取决于MOSFET的导通阻抗,当MOSFET导通阻抗越大时,对同样的控制IC,其过电流保护值越小。

5、短路保护

电池在对负载放电过程中,若回路电流大到使U>0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚将迅速由高电压转变为零电压,使V1由导通转为关断,从而切断放电回路,起到短路保护作用。短路保护的延时时间极短,通常小于7微秒。其工作原理与过电流保护类似,只是判断方法不同,保护延时时间也不一样。

LT8490锂电池充电器电路设计详解

LT8490 锂电池充电器电路设计详解 标签:LT8490(3) 低功耗(190)电源管理(505) LT8490( $12.5700)是降压升压开关稳压电池充电器,实 现恒流恒压( CCCV )充电模式,适用于大多数电池,包括密封铅酸电池( SLA )、溢流电池、胶体电池和锂电池。片上 逻辑在太阳能应用时提供自动最大功率点跟踪( MPPT),并 具有自动温度补偿功能。主要用在太阳能电池充电器、多种类型铅酸电池充电、锂电池充电器以及电池供电的工业或手持军用设备。 状态和故障引脚含有充电器的信息可以被用来驱动 LED指示灯。该器件采用扁平(高度仅0.75mm)7mm x 11mm 64 引脚QFN 封装。 图1 LT8490 框图 LT8490 主要特性

-VIN 范围:6V?80V - VBAT 范围:1.3V?80V ?单 电感器允许VIN高于,低于或等于VBAT ?自动MPPT,用于太阳能充电?自动温度补偿?无需任何软件或固件开发?从 太阳能电池板或直流电源供电?输入和输出电流监视器销弓 脚?四位一体的反馈回路?同步固定频率: 100kHz?400kHz 的-64 引脚(7mm X 11mm x 0.75mm 高度)QFN 封装LT8490 应用?太阳能电池充电器?多种铅酸蓄电池充电?锂离子电池充电器?电池供电工业产品或便携式军用设备 图2 LT8490 27.4V 锂电池充电器电路图 DC2069A( $195.9800)-LT8490 演示板高效率MPPT 电池充电器控制器17V?54V ,最高200W 太阳能电池板的输入电压。12V SLA 电池,最高16.6A 充电电流。演示电路2069A采用了LTR8490 (高性能降压-升压型转换器),实现了最大功率点跟踪功能和灵活的充电特性,适用于大多数类型的电池,如水淹电池,密封铅酸电池和锂离子电池,可在输入电压高于、低于或等于电池电压的情况下工作。 该演示板配置为17V~54V 的输入电压范围,电源可以 是太阳能电池板36?72单元(最高200W),或直流电压源。 提供两种输入接口。LTC4359($2.5500)理想的二极管控制器可以保护直流电源的输出(不受太阳能电池板回流的影响)这使得,例如在 24VDC 电源接通的同时,又可以使具有更高的电压的太阳能电池板,被用于对电路供电。

锂电池的工作原理

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了

困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。 其使用有一定要求:充电温度:0℃~45℃;保存温度:-20℃~+60℃。锂离子电池不适合大电流充放电。一般充电电流不大于1C,放电电流不大于2C(C 是电池的容量,如C=950mAh,1C的充电率即充电电流为950mA)。充电、放电在20℃左右效果较好,在负温下不能充电,并且放电效果差[4],(在-20℃放电效果最差,不仅放电电压低,放电时间比20℃放电时的一半还少)。 锂离子电池的充放电特性 锂离子电池的标称电压为3.6V,充满电压为4.2V,对过充电和过放电都比较敏感。为了最大限度减少锂离子电池易受到的过充电、深放电以及短路的损害,单体锂离子电池的充电电压必须严格限制。其充放电特性如图2-3 锂离子电池的充电特性 锂电池在充电中具有如下的特性: 1.在充电前半段,电压是逐渐上升的; 2.在电压达到4.2V后,内阻变化,电压维持不变; 3.整个过程中,电量不断增加; 4.在接近充满时,充电电流会达到很小的值。 经过多年的研究,已经找到了较好的充电控制方法: 1.涓流充电达到放电终止电压 2. 7V ; 2.使用恒流进行充电,使电压基本达到4.2V。安全电流为小于0.8C; 3.恒流阶段基本能达到电量的80% ;

蓄电池充电原理

原理简介 蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法

①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,恒压充电很少使用,只有在充电电源电压低而电流大时采用。例如,汽车运行过程中,蓄电池就是以恒压充电法充电的。 4、快速充电法 ①脉冲式充电法,这种充电法不仅遵循蓄电池固有的充电接受率,而且能够提高蓄电池充电接受率,从而打破了蓄电池指数充电接受曲线的限制,这也是蓄电池充电理论的新发展。

关于浅谈锂电池充电电路原理及应用的专业论文

专业电子类论文 题目:浅谈锂电池充电电路原理及应用 作者:yyj 职称:自动化工程师 发表期刊号:XXX-XX 浅谈锂电池充电电路原理及应用 现代生活中,科技高速发展,电子产品需求量急升,应用之广,已达到一个新高度。从而对电子产品充电电池的要求,也越来越高。常用的电池有多种,而锂电池占据较大份额。锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比;

2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。 四、锂电池的充放电要求: 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA以内时,应停止充电。

锂电池充电的原理解析

锂电池充电的原理解析 锂离子电池的充电过程可以分为四个阶段:涓流充电(低压预充)、恒流充电、恒压充电以及充电终止。 锂电池充电器的基本要求是特定的充电电流和充电电压,从而保证电池安全充电。增加其它充电辅助 功能是为了改善电池寿命,简化充电器的操作,其中包括给过放电的电池使用涓流充电、电池电压检测、 输入电流限制、充电完成后关断充电器、电池部分放电后自动启动充电等。 锂电池的充电方式是限压恒流,都是由IC芯片控制的,典型的充电方式是:先检测待充电电池的电压,如果电压低于3V,要先进行预充电,充电电流为设定电流的1/10,电压升到3V后,进入标准充电过程。标准充电过程为:以设定电流进行恒流充电,电池电压升到4.20V时,改为恒压充电,保持充电电压为4.20V。此时,充电电流逐渐下降,当电流下降至设定充电电流的1/10时,充电结束。下图为充电曲线。

阶段1:涓流充电——涓流充电用来先对完全放电的电池单元进行预充(恢复性充电)。在电池电压低于3V左右时采用涓流充电,涓流充电电流是恒流充电电流的十分之一即0.1c(以恒定充电电流为1A举例,则涓流充电电流为100mA), 阶段2:恒流充电——当电池电压上升到涓流充电阈值以上时,提高充电电流进行恒流充电。恒流充电的电流在0.2C至1.0C之间。电池电压随着恒流充电过程逐步升高,一般单节电池设定的此电压为3.0-4.2V. 阶段3:恒压充电——当电池电压上升到4.2V时,恒流充电结束,开始恒压充电阶段。电流根据电芯的饱和程度,随着充电过程的继续充电电流由最大值慢慢减少,当减小到0.01C时,认为充电终止。(C 是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA。)阶段4:充电终止——有两种典型的充电终止方法:采用最小充电电流判断或采用定时器(或者两者的结合)。最小电流法监视恒压充电阶段的充电电流,并在充电电流减小到0.02C至0.07C范围时终止充电。第二种方法从恒压充电阶段开始时计时,持续充电两个小时后终止充电过程。 上述四阶段的充电法完成对完全放电电池的充电约需要2.5至3小时。高级充电器还采用了更多安全措施。例如如果电池温度超出指定窗口(通常为0℃至45℃),那么充电会暂停. 充电结束后,如检测到电池电压低于3.89V将重新充电。 图3是可以对短路的电池激活的充电方法。 手机充电器的工作流程一般为:1. 检测电池的电压,如果低于一个阈值电压,就要进行涓流充电;2. 电池充到一定电压(一般设置为2.9V)时,进行全电流充电;3. 当电池电压达到预置电压(锂离子电池一般为4.2V)时,开始恒压充电,同时充电电流降低;4. 当电流逐渐减小到规定的值时,充电过程结束。 电池电压低于2.5V(Vshort)时,锂离子电池充电器用25mA的电流预充,防止深度放电的锂离子电池在快充时被损坏甚至发生危险。

镍镉镍氢电池的原理及充电方法

镍镉/镍氢电池的原理及充电方法 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发 明了用于电动车的镍铁电池。遗憾的是,由 于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在 镍电池中开始使用了活性物质。他们将活性 物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947 年密封型镍镉电池研制成功。在这种电池中 ,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应 用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在 工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命 长、成本低的镍氢电池,并且于1978年成功 地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉 带来的污染问题。它的工作电压与镍镉电池 完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国 的重视,各种新技术层出不穷。镍氢电池刚 问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢 电池。1992年,日本三洋公司每月可生产 200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际 先进水平。 蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量通 常用Ah(安时)表示,1Ah就是能在1A的电流 下放电1小时。单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用 的材料和体积决定,因此,通常电池体积越

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

锂离子电池工作原理

锂离子电池工作原理

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越

快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

自制简单锂电池充电器电路

自制简单锂电池充电器电路 充电器电路图及原理 电路很简单,如附图所示,元件很容易廉价获得,适用范围很宽,可以适应1节-4节串连电压,充电电流可以通过元件参数选择,充电特性也比较理想,原理如下:由LM317和R1、R2、R3组成一个典型的恒流电路(431暂时认为断开R4比较大可以先不看)。当电压不太高时保持恒定的充电电流。以两节电池充电为例,理想状态下,充电电流应该是电压达到8.3V前一直保持恒定。当A点电压达到拐点值8.3V时,经过R4、R5分压,TL431开始导通,并把LM317的基准点电压从8.3V逐渐拉下。所谓拐点就是指电流开始下降的那点。直到电压达到8.4V的0电流点,A点仍然保持这个8.3V电压,LM317的输出V out下降到8.4V,其调整端下降到7.17V。 电池电压为8.3V时(拐点)各点的电压都标在图上,充电截止(8.4V)的各点电压以括号形式也标在后边。 元件选择 LM317,三端可调串连稳压块,选塑封的,LM317T,常用。根据电流不同,应选用相应的散热片。 TL431,三端可调并联稳压块,与一个小三极管外形一样,常用。 RL就是外接被充电池。 电流采样电阻R1,计算方法是R1 = 1.23 / 充电电流。例如,若充电电流为0.3A,则电阻应该选择4.1欧。这个电阻一般要选择功率大一些的,比如1A就应该是2W的。 可调电阻R4可以选择那种篮色的精密多圈,取比额定值大一些的,比如23.2k的就可以选择25K的多圈。若嫌多圈太贵或难找,也可以用一个固定电阻串连一个普通可调电阻。例如23.2k的就可以选择22k固定加一个2.2k-3.9k可调节的,以便进行精细调节。

蓄电池的充电原理

综合监测单元模块说明V4.0 一、概述 综合监测单元模块是对系统交、直流检测及对整流模块进行控制的一种设备,内部采用CPU控制,高精度的模数转换,采用RS485数字口与上位机通讯,采样回路与数字口光耦隔离,因此该模块采样速度快,可靠性高。同时给彩屏提供DC24V电源。 二、功能方框图 三、使用方法 模块为板后安装,外形尺寸和面板示意分别如下图所示: 图一:外形尺寸

图二:丝印图 接线端口定义: 综合监测单元 复位 电源0 112 通讯 J4合母电压正485 - B 485 - A 控母电压正大 地母线电压负路交流电压 J61路交流A相1路交流B相1路交流C相路交流电压 J7交流电流 J8G N D + 12 V A G N D - 12 V C A N L C A N H 温 度J10 G N D 温 度电源 J11PC: 0 V PC:+ 24 V 电 源J1大 地电 源 正电 源 负J2开关量输入J3 DI 9直流电压检测J52路交流A相2路交流B相2路交流C相直流电流检测J91212流电流交流电池电1234567891011121212345123451234 1234567 1212J0通讯 B 2 A 2线母光闪正组池电负 组池电123 12345678910111213141516 12345 678910 11 12131415 16 1718192021 22232425 继电器输出 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7 DI 8 DI 10COM DI 11 DI 12 DI 13 DI 15 DI 14 DI 16 DI 17 DI 18 DI 19 DI 20 DI 21 DI 22 DI 23 DI 24 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7 DO 8 + 12 V - 12 V 流电母控3+ 5 V 通讯

锂电池充电电路及原理简介

锂离子电池的原理及充电器 锂离子电池是前几年出现的金属锂蓄电池的替代产品,它的阳极采用能吸藏锂离子的碳极,放电时,锂变成锂离子,脱离电池阳极,到达锂离子电池阴极。锂离子在阳极和阴极之间移动,电极本身不发生变化。这是锂离子电池与金属锂电池本质上的差别。锂离子电池的阳极为石墨晶体,阴极通常为二氧化锂。充电时,阴极中锂原子电离成锂离子和电子,并且锂离子向阳极运动与电子合成锂原子。放电时,锂原子从石墨晶体内阳极表面电离成锂离子和电子,并在阴极处合成锂原子。所以,在该电池中锂永远以锂离子的形态出现,不会以金属锂的形态出现,所以这种电池叫做锂离子电池。 一、锂离子电池的充放电特性 500mAh的AA型锂离子电池的充放电特性曲线如图1。单只锂离子电池的充电电压最好保持在4.1V+50mV,充电电流通常限制在1C(500mA)以下,否则会造成锂离子电池永久性损坏。锂离子电池通常采用恒流/恒压充电模式,即先采用1C的恒定电流充电,电池电压不断上升,当上升到4.1V时充电器应立即转入恒压方式(4.1V+50mV),充电电流逐渐减小,当电池充足电时,电流降到涓流充电电流。用此方法,大约两个小时电池可以充足(500mAh)。锂离子电池放电电流不应超过3C(1.5A),单体电池电压不应低于2.2V,否则会造成损坏。采用0.2C的放电电流,电池电压下降到2.7V时,可以放出额定电池容量(500mAh),采用1C的放电电流时,电池能够放出90%的电池容量,另外环境的温度对电池的放电容量也会产生影响,所以规定了锂离子电池放电时的温度为-20℃~+60℃。锂离子电池的一个特点是比较容易显示剩余电量,因为锂离子电池的工作电压随时间徐徐下降,锂离子电池放电起始电压为4.1V(4.2V),放电终止电压为2.5V。 二、锂离子电池的优缺点 优点:1.工作电压高;2.体积小、重量轻、能量高;3.寿命长;4.安全快速充电;5.允许温度范围宽;6.放电电流小、无记忆效应、无环境污染。 缺点:1.与干电池无互换性;2.不能快速充电;3.内部阻抗高;4.工作电压变化大;5.放电速率大,容量下降快,无法大电流放电。 三、锂离子电池充电器 下面介绍一种新型的锂离子电池充电器模块PS1719,它采用恒流/恒压方式控制锂离子电池充电。恒流、恒压调整方便,以充电电流减小到最大电流(恒流)的15%作为充满判别基准,并终止充电。此外还有充电显示和充满显示功能。PS1719模块工作电压为9V,内部结构见图2。 图3给出了PS1719的典型电路图,按图可以组成简单且功能齐全的锂离子电池充电器。

各种锂电池充电电路设计

六、简易充电电路: 现在有不少商家出售不带充电板的单节锂电池。其性能优越,价格低廉,可用于自制产品及锂电池组的维修代换,因而深受广大电子爱好者喜爱。有兴趣的读者可参照图二制作一块充电板。其原理是:采用恒定电压给电池充电,确保不会过充。输入直流电压高于所充电池电压3伏即可。R1、Q1、W1、TL431组成精密可调稳压电路,Q2、W2、R2构成可调恒流电路,Q3、R3、R4、R5、LED为充电指示电路。随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后R4上的压降将降低,从而使Q3截止, LED将熄灭,为保证电池能够充足,请在指示灯熄灭后继续充1—2小时。使用时请给Q2、Q3装上合适的散热器。本电路的优点是:制作简单,元器件易购,充电安全,显示直观,并且不会损坏电池.通过改变W1可以对多节串联锂电池充电,改变W2可以对充电电流进行大范围调节。缺点是:无过放电控制电路。图三是该充电板的印制板图(从元件面看的透视图)。

概述 PT6102 是一款高度集成的单节锂离子电池充电器,较少的外部元件数目使得它非常适合于便携式应用。内部集成功率管,不需要外部检测电阻和防倒灌二极管。充电电流通过外部电阻进行设置,充电结束电压固定在4.2V。热反馈可以自动调节充电电流,可以在大功率或高环境温度下对芯片加以保护PT6102 分三个阶段对电流进行充电:当电池电压低于2.9V 时是涓流充电,当电池电压大于2.9V 时是恒流充电,并且涓流充电电流是恒流充电电流的1/10,当电池电压到4.2V 时进行恒压充电,在恒压充电过程中,充电电流逐渐减少,当减少到恒流充电电流的1/10 时,结束充电过程。 特点 可以用 USB 端口直接对单节电池进行充电. 充电电流最大可以到 800mA 不需要外部功率管,检测电阻和防倒灌二极管 涓流、恒流、恒压三阶段,并有热调节功能,可以在无过热的情况下最大化充电电流 精度达±1%的4.2V 充电电压 SOT23-5 和ESOP8 封装

锂电池保护电路原理分析

锂离子电池保护电路原理分析 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。 与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些

BQ2057锂电池充电器原理

摘要:本文介绍美国TI 公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP 、TSSOP 和SOIC 的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED 指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP 、TSSOP 和SOIC 三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C 、BQ2057T 和BQ2057W 四种信号,分别适合4.1V 、4.2V 、8.2V 和8.4V 的充电需要。 BQ2057的引脚功能描述如下: VCC (引脚1):工作电源输入; TS (引脚2):温度感测输入,用于检测电池组的温度; STA T(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; VSS (引脚4):工作电源地输入; CC (引脚5):充电控制输出; COMP(引脚6):充电速率补偿输入; SNS (引脚7):充电电流感测输入; BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。 元件型号 充电电压 BQ2057 4.1V BQ2057C 4.2V BQ2057T 8.2V BQ2057W 8.4V

电池充电器原理图详解

电池充电器原理图详解(附图) 时间:2012-06-27 11:49:27 来源:中国装备制造网点击量:42 锂电池充电器原理图就是什么呢?在充电时,手机与电动车使用得充电器多为锂电池充电器,那么您知道锂电池充电器原理图就是什么呢?下面世界工厂网小编就与大家聊聊锂电池充电器原理图,也长长见识。 锂离子电池具有单只端电压高、比容量大等优点,但其充电必须使用专用充电器,因为它在过充电时极易损坏。锂离子电池充电器之所以称“新创意”,就是因为它除监视电池得充电状态外,还能分阶段控制电池得最大充电电流。用本充电器充电开始时,充电电流从10mA依次递增至270mA,当电量充至70%左右时,自动改用最大220mA充电,然后依次改为最大170mA、120mA与70mA,最后以10mA左右得涓流结束充电。这种充电方法可以较大限度地将锂离子电池充足。 本装置电路如附图所示。IC1构成频率约1Hz1得多谐振荡器,IC2构成脉冲频率6分配器,IC3构成充电执行电路。通电后IC2复位,Q0输出高电平,这时IC3输出电压仅1、25V,电路由+15V经R1给电池提供约10mA得充电电流。通电后IC1起振,其③脚输出得脉冲触发IC2工作,使输出端Q1~Q5依次出现高电平,经不同得分压电阻分压后,IC3得输出电压按6V、7V、8V、9V、10V依次递增,充电电流也因此在70mA至270mA之间依次递增。当Q6输出高电平时IC2被复位,此后电路在IC1输出脉冲得作用下重复上述过程。 锂电池得标称电压为3、6V,通常放电至3V即需充电,终止充电电压最高为4、2V。IC4构成电池端电压检测电路,其门限电压即电池充电终止电压可通过RP在4~4、2V范围

锂电池的工作原理

锂电池的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富

锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。

笔记本电池充放电原理

笔记本电池充放电原理 (1) NB 电池: 目前电池皆以锂电池(Li-Ion) 为主, 锂离子电池除了轻巧,电容量又大,而且也没有记忆特性。当一颗电池被反覆的充到一特定的电量时,它会产生出一种化学记忆特性,日後任你再怎样充电,都没法超过那个特地的电量额度了,这就是电池的记忆性。锂离子电池没有这种问题,但它唯一的缺点是怕冷。而锂电池是以持续等电压方式来充电的, 我们以下图来加以说明锂电池的充电原理: 在上图中, 横轴是充电时间, 纵轴为电压, 在充电过程中,电池的电压数缓缓的升高,到达一个顶点(在我们图上是 4.2 伏特) 然後保持恒定,一直以4.2v 来充电, 所以为定电压充电(固定在4.2v, 但并非所有锂电池都是固定在 4.2 v, 要看各厂商的规格), 同时,充电电流则是缓缓下降。一旦电流低到一个设定的阈值(我们图上的例子是80 mA (毫安培)),充电器则自动停止充电, 这里的所设定的阀值, 也必须是各厂商而定. 而锂电池有六个对外的接脚连接至Notebook, Pins: 1. 接地(GND) 2. TS (侦测电池插入) 3. HDQ BUS (主要在存取电池的各项叁数) 4. BAT_BC 5. No connection 6. 电池输入/ 输出电压 (2) Gauge IC: Gauge IC 一般称为"电池管理晶片", 而华硕Notebook 常用的电池当中皆含有

此Gauge IC, 以M2A 为例, 其电池中所包含的Gauge IC 就是采用美国Bechmar q 公司的锂电池管理晶片"BQ2050H". 而Gauge IC 中包含了电池容量暂存器,温度暂存器, 电池识别(ID) 暂存器, 电池状态暂存器, 锂电池充电状态暂存器, 放电计数暂存器, 这些暂存器中的值, 会因为使用的时间或使用不当而产生变化, 导致电池充不满, 或使用时间变短等情形, 而这些暂存器中的值是可以利用特殊的方式来更改的, 大家常听到的电池学习, 其实就是更改电池容量暂存器以及电池状态暂存器中的值, 将原本暂存器中错误或误差的值加以修正, 使电池的充电时间及充电容量能恢复正常. (3) Charge IC: Charge IC 顾名思义就是用来控制电池充电的IC, 华硕常用的Charge IC 为M B3877 系列, 但Charge IC 并无法单独工作, 必须搭配一颗可程式化的IC (如: PIC 16C54) 才能正常工作, 而此PIC 16C54 是一颗可程式化的IC, 里面记载着电池充电时所需要的数据, 例如: 要用多大的电压电流来充电, 必须符合 哪些条件, 电池才会被充电, 电池充饱时要切断哪些电源以及电池的充电指示灯该如何变化(闪烁或改变颜色) 等等, 而这些"值" 或"条件" 都是RD 预先设定好的, 下图以A1B 的充电简易方块图为各位说明NOTEBOOK 的充电流程: 在上图中, 只有AC_IN (外加电源) 有讯号进来时, 才会进行电池的充电动作,而Battery 中的Gauge IC 会告知MB3877(Charge IC) 目前的电池状态(例如: 是否需要充电, 电量多少等等), 而PIC16C54 亦会侦测目前是否符合充电的条件(例如: AC_IN 是否有讯号, Battery 是否有插好等等), 如果目前Battery 是符合需要充电的条件, 其充电过程如下: Step 1: AC_IN 有讯号, 而且也已侦测到Battery in. Step 2: PIC 16C54 会发出CHG_EN 的讯号, 告知MB 3877 可以对Battery 进行充电.

DW01、8205A锂电池保护板工作原理及过放过充短路保护解析

锂电池保护板工作原理及过放过充短路保护解析 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS 管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-

相关文档
最新文档