经典大肠杆菌基因敲除方法--之详细操作步骤

经典大肠杆菌基因敲除方法--之详细操作步骤
经典大肠杆菌基因敲除方法--之详细操作步骤

PCR targeting system in Streptomyces coelicolor A3(2)

Bertolt Gust, Tobias Kieser and Keith Chater, John Innes Centre, Norwich Research Park, Colney, Norwich NR47UH, UK, Tel: +44 (0)1603 452751 Fax: +44 (0)1603 456844

Introduction

Many bacteria are not readily transformable with linear DNA because of the presence

of the intracellular recBCD exonuclease that degrades linear DNA. However, the λ RED (gam, bet, exo) functions promote a greatly enhanced rate of recombination when using linear DNA. By exploiting this, Datsenko and Wanner (2000) made 40 different disruptions on the E. coli chromosome by replacing the wild-type sequences with a selectable marker generated by PCR using primers with 36 nt homology extensions.

The strategy for PCR-targeting for mutagenesis of Streptomyces coelicolor is to replace a chromosomal sequence within a S. coelicolor cosmid (Redenbach et al., 1996) by a selectable marker that has been generated by PCR using primers with 39 nt homology extensions. The inclusion of oriT (RK2) in the disruption cassette allows conjugation to be used to introduce the PCR targeted cosmid DNA into S. coelicolor. Conjugation is much more efficient than transformation of protoplasts and it is readily applicable to many actinomycetes (Matsushima et al., 1994). The potent methyl-specific restriction system of S. coelicolor is circumvented by passaging DNA through a methylation-deficient E. coli host such as ET12567 (MacNeil et al., 1992). Vectors containing oriT (RK2; Pansegrau et al., 1994) are mobilisable in trans in E. coli by the self-transmissible pUB307 (Bennett et al., 1977, Flett et al., 1997) or the non-transmissible pUZ8002, which lacks a cis-acting function for its own transfer (Kieser et al., 2000).

To adapt the procedure of λ RED mediated recombination for Streptomyces, cassettes

for gene disruptions were constructed that can be selected both in E. coli and in Streptomyces (Table 1). After a single disruption with an oriT-containing cassette, further disruptions can be performed on the same cosmid using oriT-free cassettes containing alternative selective markers. The λ RED recombination plasmid pKD20

(E. coli Genetic Stock Center CGSC Strain # 7637) was modified by replacing the ampicillin resistance gene bla with the chloramphenicol resistance gene cat, generating pIJ790, to permit selection in the presence of Supercos1-derived cosmids (ampicillin and kanamycin resistance).

Name of plasmid Resistance-

marker

Resistance

Concentration

for E. coli oriT Size of template

pIJ773 Fig. 5 aac(3)IV apramycin

50 μg/ml LB + 1382

bp

pIJ778 Fig. 6 aadA

spectinomycin

streptomycin

50 μg/ml LB

50 μg/m LB

+ 1425

bp

pIJ779. aadA spectinomycin-

streptomycin

50 μg/ml LB

50 μg/ml LB

- 1057

bp

pIJ780 Fig.7 vph viomycin

30 μg/ml DNA+ 1497

bp

pIJ781 vph viomycin

30 μg/ml DNA- 1622

bp

Table 1: Disruption cassettes containing different resistance markers with and without oriT: All disruption cassettes were cloned into the Eco RV site of pBluescript SK II (+) allowing the isolation of a Eco RI/Hind III fragment for use as template for the PCR reaction. The size of the cassettes includes the 19 bp and 20 bp primer site (see section 2: “primer design”) which are identical in all disruption cassettes. The resistance genes with or without oriT are flanked by FRT sites (FLP recognition targets) which allows FLP-mediated excision of the cassette (see section 7: “FLP-mediated excision of the disruption cassette”).

Fig. 1: Flowchart of gene disruption by PCR-targeting

Protocol (see Flowchart Fig. 1)

Purification of the PCR template (resistance (-oriT) cassette)

Using whole plasmids as templates for the PCR can result in a high proportion of antibiotic-resistant transformants without gene disruption. This is caused by traces of CCC DNA that compete with the linear PCR fragment and result in the occurrence of false positive transformants. Using gel-purified disruption cassettes as templates prevents the occurrence of false positives.

1.Digest ~ 10 μg plasmid DNA (see Table 1) with 50 U Eco RI (Roche) and

50 U Hin dIII (Roche) in 1 X buffer B (Roche) in a 100 μl reaction.

? A 2938 bp vector fragment and a fragment 14 bp larger than the size of the cassette given in Table 1 should be generated.

2.Run the digest on a 20 x 20 x 0.25 cm (100 ml) 1% TAE (1x) agarose gel at

5V/cm for 2 - 3 h in 1x TAE buffer.

?Longer runs exhaust the buffer capacity and destroy the gel unless the buffer is recycled.

3.Cut out the cassette band from the gel and purify using the Qiagen gel

extraction kit. The purified fragment is stored in 10 mM Tris.HCl (pH 8) at a

concentration of 100 ng / μl at –20°C.

4.Absence of plasmid DNA is tested by using 1μl (100 ng) of purified cassette

DNA to transform highly competent E. coli DH5α cells (108/μg). Plate on LB

agar containing 100 μg/ml carbenicillin. If any transformants appear, repeat

steps 2-4.

Design of long PCR primers

For each gene disruption, two long PCR primers (58 nt and 59 nt) are required. Each has at the 5′end 39 nt matching the S. coelicolor sequence adjacent to the gene to be inactivated, and a 3′sequence (19 nt or 20 nt) matching the right or left end of the disruption cassette (all cassettes have the same “right” and “left” ends). The precise positioning of the 39 nt sequence as indicated in Fig. 2 is important for creating in-frame deletions by FLP recombinase-induced excision of the resistance marker (see section 7).

?The 5′- 39 nt sequence of the forward primer (upstream primer; Fig. 2) must be from the coding strand of the gene of interest and its 3’ end must be in the correct reading frame with respect to the replaced gene. The 5′- 39 nt sequence of the reverse primer (downstream primer; Fig. 2) must be from the complementary strand.

?To prevent unwanted recombination, a BlastN search is performed comparing each

39 nt sequence with the “real cosmid” (sequences at the Sanger Centre Homepage in the

folder https://www.360docs.net/doc/f02228142.html,/pub/S_coelicolor/cosmid_inserts and on the CD in the folder /S_coelicolor/cosmid inserts). The perfect match should be found but no other matches >30 bp. If necessary, the 39 nt sequence is shifted in 3 nt steps until the above criteria are met.

Fig.2: Designing PCR primers for making an 6

(20bp + 19bp priming sequence + 42bp FLP core recombination site (see Fig.3); no in frame STOP)

in-frame deletion

(the example illustrates a complete deletion)

39 nt from sense strand ending in ATG or GTG start codon

39 nt from anti-sense strand ending in Stop codon

58 nt downstream primer

FLP recombinase (BT340)

PCR amplification of the extended resistance cassette

All PCR amplifications are performed using the Expand high fidelity PCR system according to the manufacturer’s instructions (Roche). Reaction conditions:

?Primers (100 pmoles/μl) 0.5 μl each 50 pmoles each

?Template DNA (100 ng/μl) 0.5 μl 50 ng ≈ 0.06 pmoles

1

μl

x

5

?Buffer

(10x)

?dNTPs (10 mM) 1 μl each 50 μM each

?DMSO (100 %) 2.5 μl 5%

?DNA polymerase (2.5 U/μl) 1 μl 2.5 Units

?Water 36 μl

50

μl

volume

?Total

Cycle conditions:

1. Denaturation: 94°C, 2 min

2. Denaturation: 94°C, 45 sec

3. Primer annealing: 50°C, 45 sec 10 cycles

4. Extension: 72°C, 90 sec

5. Denaturation: 94°C, 45 sec

6. Primer annealing: 55°C, 45 sec 15 cycles

7. Extension: 72°C, 90 sec

8. Final extension: 72°C, 5 min

5 μl of the PCR product is used for analysis by gel electrophoresis. The expected sizes are 78 bp larger than the sizes of the disruption cassettes listed in Table 1 (because of the 2 x 39 bp 5′-primer extensions). The remaining 45 μl of the PCR product is purified using the Qiagen PCR purification kit according to the manufacturer’s instructions. The PCR product is finally eluted from the columns with 12 μl of water (~200 ng/μl).

Introduction of S. coelicolor cosmid clone into E. coli BW25113/pIJ790 (λ RED recombination plasmid) by electroporation

pIJ790 contains the resistance marker cat (chloramphenicol resistance) and a temperature sensitive origin of replication (requires 30°C for replication).

1.Grow E. coli BW25113/pIJ790 overnight at 30°C in 10 ml LB (Luria-Bertani

medium; Sambrook et al., 1998) containing chloramphenicol (25 μg/ml).

2.Inoculate 100 μl E. coli BW25113/pIJ790 from overnight culture in 10 ml

SOB (Hanahan, 1983) containing 20 mM MgSO4 (add 200 μl of 1M stock to

10 ml SOB) and chloramphenicol (25 μg/ml).

3.Grow for 3-4 h at 30°C shaking at 200 rpm to an OD600 of ~ 0.

4.

4.Recover the cells by centrifugation at 4000 rpm for 5 min at 4°C in a Sorvall

GS3 rotor (or equivalent).

5.Decant medium and resuspend the pellet by gentle mixing in 10 ml ice-cold

10 % glycerol.

6.Centrifuge as above and resuspend pellet in 5 ml ice-cold 10 % glycerol,

centrifuge and decant. Resuspend the cell pellet in the remaining ~ 100 μl

10 % glycerol.

7.Mix 50 μl cell suspension with ~ 100 ng (1-2 μl) of cosmid DNA. Carry out

electroporation in a 0.2 cm ice-cold electroporation cuvette using a BioRad GenePulser II set to: 200 Ω, 25 μF and 2,5 kV. The expected time constant is

4.5 – 4.9 ms.

8.Immediately add 1 ml ice cold LB to shocked cells and incubate shaking for

1h at 30°C.

9.Spread onto LB agar containing carbenicillin (100 μg/ml), kanamycin

(50 μg/ml) and chloramphenicol (25 μg/ml).

10.Incubate overnight at 30°C.

11.Transfer one isolated colony into 5 ml LB containing antibiotics as in (9)

above.

12.Incubate overnight at 30°C. This culture will be used as a pre-culture for

generating competent cells to be transformed with the extended resistance cassette.

PCR targeting of the S. coelicolor cosmid

E. coli BW25113/pIJ790 containing a S. coelicolor cosmid is electro-transformed with the extended resistance cassette. The example described uses the apramycin – oriT disruption cassette from pIJ773. Table 1 lists alternative cassettes and their resistance determinants. 8. Spread onto LB agar containing carbenicillin (100 μg/ml), kanamycin (50 μg/ml) and apramycin (50 μg/ml). If no further gene disruptions will be made on this cosmid, incubate overnight at 37°C to promote the loss of pIJ790. (If further disruptions are planned propagate overnight at 30°C and include chloramphenicol (25 μg/ml) so that pIJ790 is retained).

7. Immediately add 1 ml ice cold LB to shocked cells and incubated shaking 1 h at 37°C (or 30°C if further gene disruptions will be made on the same cosmid; see below).

6. Mix 50 μl cell suspension with ~ 100 ng (1-2 μl) of PCR product. Carry out electroporation in a 0.2 cm ice-cold electroporation cuvette using a BioRad GenePulser II set to: 200 Ω, 25 μF and 2,5 kV. The expected time constant is 4.5 – 4.9 ms.

5. Centrifuge as above and resuspend pellet in 5 ml ice-cold 10 % glycerol,

centrifuge and decant. Resuspend the cell pellet in remaining ~ 100 μl 10 % glycerol.

4. Decant medium and resuspend the pellet by gentle mixing in 10 ml ice-cold 10% glycerol.

3. Recover the cells by centrifugation at 4000 rpm for 5 min at 4°C in a Sorvall GS3 rotor (or equivalent).

2. Grow for 3-4 h at 30°C shaking at 200 rpm to an OD 600 of ~ 0.4.

1. Inoculate a 10 ml SOB (without MgSO 4) culture containing carbenicillin (100

μg/ml), kanamycin (50 μg/ml) and chloramphenicol (25 μg/ml) with 1% of the overnight culture of E. coli BW25113/pIJ790 and the S. coelicolor cosmid. Add 100 μl 1M L-arabinose stock solution (final concentration is 10 mM, induces red genes).

?If no colonies are obtained after 16 h growth at 37°C, repeat the experiment starting with a 50 ml SOB culture instead of 10 ml culture for generating

electrocompetent cells. Try to concentrate the cells as much as possible by

removing all of the remaining 10% glycerol. Resuspend the cell pellet in 50 μl

10% glycerol and use for electroporation.

?After 12 – 16 h growth at 37°C different colony-sizes are observed. Cultivating for longer time results in an increased background of small colonies, which are

false positives. It is important to note that at this stage wild-type and mutant

cosmids exist within one cell. The transformation with a PCR product and its

integration in the cosmid DNA by homologous recombination will not occur in

all copies of the cosmid molecules in one cell. One copy of a cosmid containing

the incoming resistance marker is sufficient for resistance to this antibiotic.

Normally, the larger the size of a colony, the more copies of mutagenised

cosmids are present. Inoculating a large colony in 5 ml LB liquid cultures

containing carbenicillin (100 μg/ml), kanamycin (50 μg/ml) and apramycin

(50 μg/ml) result in a growth at 37°C to a cell density (OD600 ~ 0.1 – 0.3) within

3-4 h (E. coli BW25113 without pIJ790 grows very fast). After 6 h plasmid DNA

can be isolated and tested by restriction analysis and/or PCR using the primers

described below.

?PCR analysis with a primer pair (test primers) priming just ~ 100 bp outside the region affected by homologous recombination will generate the expected

fragment after gene disruption, but will usually also generate the wild-type

fragment, caused by remaining wild-type copies within the same transformant.

These will be lost during the subsequent transformation step into the

methylation-deficient E. coli host ET12567 containing the non-transmissible

plasmid pUZ8002 (this is not a problem anyway because wild-type copies lack

the oriT).

?Notes on viomycin selection: selecting for viomycin R depends critically on the amount of salt in the medium; more viomycin is required at higher salt

concentrations. For a clean selection of E. coli clones, use DNA agar or 2xYT

agar containing 30 μg/ml viomycin (see Kieser et al., 2000).

For multiple gene replacements, choose an oriT-containing disruption cassette for the first knock-out, and a cassette without oriT and different resistance markers for further gene disruptions.

The gene disruption is confirmed by restriction analysis and/or PCR. Cosmid DNA of transformants is isolated from a 6 h, 37°C, 5 ml LB culture containing carbenicillin (100 μg/ml), kanamycin (50 μg/ml) and apramycin (50 μg/ml). Alkaline lysis followed by phenol/chloroform extraction produces cosmid DNA suitable for restriction analysis.

Cosmid CCC DNA isolation

1.Resuspend the cell pellet from 1 ml culture by vortexing in 100 μl solution I

(50 mM Tris/HCl, pH 8; 10 mM EDTA).

2.Immediately add 200 μl solution II (200 mM NaOH; 1% SDS) and mix by

inverting the tubes 10x.

3.Immediately add 150 μl solution III (3 M potassium acetate, pH 5.5) and mix

by inverting the tubes 5x.

4.Spin at full speed in a microcentrifuge for 5 min at room temperature.

5.Immediately extract supernatant with 400 μl phenol/chloroform, vortex 2 min

and spin at full speed in a micro centrifuge for 5 min.

6.Transfer the upper phase and add 600 μl 2-propanol. Leave the tubes on ice

for 10 min.

7.Spin as above and wash the pellet with 200 μl 70% ethanol.

8.Spin as above and leave the tube open for 5 min at room temperature to dry

the pellet. Resuspend the pellet in 50 μl 10mM Tris/HCl (pH 8) and use 10 μl for restriction digest.

?Omitting the phenol/chloroform extraction step results in degradation of the cosmid DNA. Use of miniprep-columns without including a phenol/chloroform

extraction is not recommended.

Verification of positive transformants by PCR requires an additional pair of 18 – 20 nt test primers which anneal 100 – 200 bp upstream and downstream of the 39 bp recombination region. (These primers can also be used later to verify the FLP-mediated excision of the resistance cassette.)

?Primers (100 pmoles/μl) 0.2 μl each 20 pmoles each

?Template DNA (~50 ng/μl) 1 μl 50 ng

1

μl

x

?Buffer

5

(10x)

?dNTPs (10 mM) 1 μl each 50 μM each

?DMSO (100 %) 2.5 μl 5%

?DNA polymerase (2.5 U/μl) 1 μl 2.5 Units

?Water

μl

36.1

50

μl

volume

?Total

Cycle conditions:

1. Denaturation: 94°C, 2 min

2. Denaturation: 94°C, 45 sec

3. Primer annealing: 55°C, 45 sec 30 cycles

4. Extension: 72°C, 90 sec

5. Final extension: 72°C, 5 min

5 μl of the PCR product is used for gel electrophoresis.

Transfer of the mutant cosmids into Streptomyces

If the target Streptomyces for mutagenesis carries a methyl-sensing restriction system (as is the case for S. coelicolor and S. avermitilis), it is necessary to passage the cosmid containing an apramycin resistance-oriT cassette through a non-methylating E. coli host. To achieve this, it is introduced by transformation into the non-methylating E. coli ET12567 containing the RP4 derivative pUZ8002. The cosmid is then transferred to Streptomyces by intergeneric conjugation (see Table 2 for resistance markers). If the target Streptomyces for mutagenesis does not carry a methyl-sensing restriction system (as is the case for S. lividans), common E. coli strains such as DH5α containing pUZ8002 can be used instead.

Description Name Replication Carb R Cml R Kan R Tet R S. coelicolor

Supercos 1Carb R Kan R

cosmid clones

λ Red plasmid pIJ790 t s Cml R

FLP recombinase

BT340 t s Carb R Cml R

plasmid

OriT- RP4 derivative pUZ8002 Kan R

OriT+ RP4 derivative pUB307 Kan R

Non-methylating E. coli ET12567 Cml R Tet R

Table 2. Resistance markers of vectors, helper plasmids and strains (carbenicillin resistance (Carb R ), chloramphenicol resistance (Cml R), kanamycin resistance (Kan R), tetracycline resistance (Tet R), temperature sensitive replicon (t S)). See Table 1 for replacement cassettes.

1.Prepare competent cells of E. coli ET12567/pUZ8002 grown at 37oC in LB

containing kanamycin (25 μg/ml) and chloramphenicol (25 μg/ml) to maintain selection for pUZ8002 and the dam mutation, respectively. (ET12567 has a doubling time > 30 min.)

?High competence is required when Dam-methylated plasmids are introduced into a dam- strain.

2.Transform competent cells with the oriT-containing cosmid clone, and select

for the incoming plasmid only using apramycin (50 μg/ml) and carbenicillin (100 μg/ml) .

3.Inoculate a colony into 10 ml LB containing apramycin (50 μg/ml),

chloramphenicol (25 μg/ml) and kanamycin (50 μg/ml). Grow overnight at

37oC.

?Chloramphenicol S or Kanamycin S segregants arise frequently among transformants, so set up more than one culture. The kanamycin selection is probably ineffective

because both the cosmid and pUZ8002 confer resistance (Table 2).

4.Inoculate 100 μl overnight culture into 10 ml fresh LB plus antibiotics as

above and grow for ~ 4 h at 37°C to an OD600 of 0.4.

5.Wash the cells twice with 10 ml of LB to remove antibiotics that might inhibit

Streptomyce s, and resuspend in 1 ml of LB.

6.While washing the E. coli cells, for each conjugation add 10 μl (108)

Streptomyces spores to 500 μl 2 × YT broth. Heat shock at 50°C for 10 min,

then allow to cool.

7.Mix 0.5 ml E. coli cell suspension and 0.5 ml heat-shocked spores and spin

briefly. Pour off most of the supernatant, then resuspend the pellet in the

c. 50 μl residual liqui

d.

8.Make a dilution series from 10-1 to 10-4 each step in a total of 100 μl of water.

9.Plate out 100 μl of each dilution on MS agar + 10mM MgCl2 (without

antibiotics) and incubate at 30°C for 16-20 h.

10.Overlay the plate with 1 ml water containing 0.5 mg nalidixic acid (20 μl of

25 mg/ml stock; selectively kills E. coli) and 1.25 mg apramycin (25 μl of

50 mg/ml stock). Use a spreader to lightly distribute the antibiotic solution

evenly. Continue incubation at 30°C.

11.Replica-plate each MS agar plate with single colonies onto DNA plates

containing nalidixic acid (25 μg/ml) and apramycin (50 μg/ml) with and

without kanamycin (50 μg/ml). Double cross-over exconjugants are kanamycin S and apramycin R. (DNA gives fast, non-sporulating growth.)

12.Kanamycin S clones are picked from the DNA plates and streaked for single

colonies on MS agar (promotes sporulation) containing nalidixic acid

(25 μg/ml) and apramycin (50 μg/ml).

13.Confirm kanamycin sensitivity by replica-plating onto DNA plates containing

nalidixic acid (25 μg/ml) with and without kanamycin (50 μg/ml).

14.Purified kanamycin sensitive strains are then verified by PCR and Southern

blot analysis.

? Typically, ~ 10 % of the exconjugants are double cross-over recombinants. The frequency of double cross-overs depends on the length of the flanking regions of homologous DNA on the cosmid. If < 1 kb is left on one side of the disrupted gene, obtaining kanamycin S double cross-over types directly on the conjugation plates may be difficult. It may be necessary to streak out several exconjugants for single colonies on MS agar without antibiotics. After 3-5 days growth replica-plate onto DNA with and without kanamycin.

Concentration in Antibiotic

Stock mg/ml

μl for 1 ml overlay

Final conc. after flooding

μg/ml

MS, DNA μg/ml

R2YE μg/ml

Apramycin 50 25 50 50 50 Kanamycin 50 100 200 50 200 Spectinomycin 200 25 200 400 400 Streptomcyin 10 25 10 10 10 Viomycin 30 25 30 30 NA

Nalidixic acid 25 in

0.3 M NaOH

20 20

25

25

Table 3: Antibiotic concentrations for selection on S. coelicolor MS conjugation plates, DNA replica plates or R2YE protoplast regeneration plates (Note some small differences from Kieser et al ., 2000).

FLP-mediated excision of the disruption cassette

The disruption cassettes are flanked by FRT sites (FLP recognition targets). Expression of the FLP-recombinase in E. coli removes the central part of the disruption cassette, leaving behind a 81 bp “scar” sequence which, in the preferred reading frame (bold in Fig. 3), lacks stop codons.

Fig. 3: Sequence of the 81 bp “scar” sequence remaining after FLP-mediated excision of the disruption cassette. The translation of the preferred reading frame is printed bold. The 20 and 19 nt priming sites are underlined and printed in colour. (Fig.

2 explains the determination of the reading frame.)

indicate stop codons,

priming site (20 nt)

priming site (19 nt)

This allows the generation of (hopefully) non-polar, unmarked in-frame deletions and repeated use of the same resistance marker for making multiple knock-outs in the same cosmid or in the same strain. E. coli DH5α cells containing the temperature sensitive FLP recombination plasmid BT340 (Datsenko and Wanner, 2000; can be obtained from the E. coli Genetic Stock Center: CGSC Strain# 7629) are transformed with the mutagenised cosmid DNA (obtained in section 5). BT340 contains ampicillin and chloramphenicol resistance determinants and is temperature sensitive for replication (replicates at 30°C). FLP synthesis and loss of the plasmid are induced at 42°C (Cherepanov and Wackernagel, 1995).

1.Grow E. coli DH5α/BT340 overnight at 30°C in 10 ml LB containing

chloramphenicol (25 μg/ml).

?Transforming E. coli BW25113/cosmid::apramycin (mutagenised cosmid) with the plasmid BT340 is not recommended because the isolates after PCR targeting

may still contain copies of undisrupted cosmid DNA (see page 10, second

paragraph).

2.Inoculate 100 μl E. coli DH5α/BT340 from overnight culture into 10 ml

LB containing chloramphenicol (25 μg/ml).

3.Grow for 3-4 h at 30°C shaking at 200 rpm to an OD600 of ~ 0.

4.

4.Recover the cells by centrifugation at 4000 rpm for 5 min at 4°C in a

Sorvall GS3 rotor (or equivalent).

5.Decant medium and resuspend the pellet by gentle mixing in 10 ml ice-

cold 10 % glycerol.

6.Centrifuge as above and resuspend pellet in 5 ml ice-cold 10 % glycerol,

centrifuge and decant. Resuspend the cell pellet in remaining ~ 100 μl 10% glycerol.

7.Mix 50 μl cell suspension with ~ 100 ng (1-2 μl) of mutagenised cosmid

DNA. Carry out electroporation in a 0.2 cm ice-cold electroporation cuvette using a BioRad GenePulser II set to: 200 Ω, 25 μF and 2,5 kV. The expected time constant is 4.5 – 4.9 ms.

8.Immediately add 1 ml ice cold LB to shocked cells and incubate shaking

for 1 h at 30°C.

9.Spread onto LB agar containing apramycin (50 μg/ml) and

chloramphenicol (25 μg/ml).

10.Incubate for 2 d at 30°C (E. coli DH5α/BT340 grows slowly at 30°C).

11.A single colony is streaked on an LB agar plate without antibiotics for

single colonies and grown overnight at 42°C to induce expression of the FLP recombinase followed by the loss of plasmid BT340.

12.Make two masterplates by streaking 20 – 30 single colonies with a

toothpick first on a LB agar plate containing apramycin (50 μg/ml) and then on a LB agar plate containing kanamycin (50 μg/ml).

13.Grow the masterplates overnight at 37°C. Apramycin S kanamycin R clones

indicate the successful loss of the resistance cassette and are further

verified by restriction and PCR analysis.

?Typically, ~ 10 % of the single colonies after non-selective growth lose the incoming resistance marker and the plasmid BT340 simultaneously.

?Using the same test primers as in section 5 (annealing ~ 100 bp upstream and downstream of the 39 nt primer sequence) should produce a PCR product of

~ 300 bp (200 bp + 81 bp “scar”). PCR fragments can be sequenced using the

amplification primers for verification.

Replacing resistance cassette inserts in S. coelicolor with the unmarked “scar” sequence

The chromosomal apramycin resistance cassette insert in S. coelicolor is replaced by the “scar” sequence. This is achieved by homologous recombination between the chromosome and the corresponding “scar cosmid” prepared in 7. The procedure differs from section 6 because the cosmid lacks oriT, and the desired product is antibiotic sensitive. Therefore, it is necessary to introduce the scar cosmid into Streptomyces by protoplast transformation, and then select for kanamycin resistant Streptomyces containing the entire scar cosmid integrated by a single crossover. Restreaking to kanamycin-free medium, followed by screening for concomitant loss of kanamycin resistance and apramycin resistance, then identifies the desired Streptomyces clones.

Preparation of Streptomyces coelicolor protoplasts

1.Add 25 ml YEME medium to a baffled flask. Add ~ 0.1 ml spore suspension

and required growth factors. Incubate 36-40 h at 30°C in an orbital incubator shaker.

?Cultures of S. lividans and S. coelicolor are ready for harvesting when they start to produce red pigment

2.Pour culture broth into a 20 ml screw cap bottle and spin in the bench

centrifuge (~ 1000 x g, 10 min).

?Before centrifugation, examine the culture for contamination by unicellular bacteria, usually indicated by turbidity: the Streptomyces mycelium sediments

quickly while unicellular contaminants remain suspended. In case of doubt, use the microscope.

3.Discard the supernatant carefully; the pellet is easily disturbed.

?If the mycelium does not pellet add 5 ml sterile water to reduce the density of the medium and centrifuge again.

4.Resuspend pellet in 15 ml 10.3% sucrose and spin in bench centrifuge as

above. Discard supernatant.

5.Repeat step 4.

?The mycelial pellet, without added liquid, can be stored frozen at –20°C

6.Resuspend mycelium in 4 ml lysozyme solution (1 mg/ml P buffer, filter

sterilised); incubate at 30°C, 15-60 min.

7.Draw in and out of a 5 ml pipette three times and incubate for a further 15

min.

?This helps to free protoplasts from the mycelium so that they will pass through the cotton wool filter used in step9. At least with S. lividans, it is possible to obtain transformants with unfiltered material, but the washing (steps 9-10) is still needed to remove lysozyme.

8.Add 5 m1 P buffer. Repeat step 7.

9.Filter protoplasts through cotton wool (using a filter tube) and transfer to a

plastic tube.

10.Sediment protoplasts gently by spinning in a bench centrifuge (~ 1000 x g, 7

min).

11.Discard supernatant and suspend protoplasts in 1 ml P buffer.

?At this and any other steps when pelleted protoplasts are to be resuspended, resuspend in the remaining drop of liquid by tapping the side of the tube repeatedly with a finger until the protoplasts are dispersed to form a creamy suspension, then add the suspending P buffer (otherwise the protoplast pellet is difficult to disperse).

Avoid vortexing, which induces foaming and consequent lysis. To freeze the protoplasts for storage, place samples of the protoplast suspension in small plastic tubes, close them and place them in ice in a plastic beaker. Place the beaker at –70°C overnight. Free the frozen protoplasts in their tubes from the ice and store at –70°C.

To thaw, shake the frozen tube under running warm water (i.e. freeze slowly, thaw quickly). To assess the proportion of non-protoplasted units in the suspension, samples can be diluted in parallel in P buffer and in dilute detergent (~ 0.01% SDS) and plated on regeneration plates. Any colonies arising after dilution in detergent are likely to have arisen from non-protoplasted units.

Rapid small-scale transformation of Streptomyces coelicolor

1.Dispense 50 μl samples of protoplasts (~ 1010/ml) into as many tubes as there

are transformations.

?We usually spin the protoplasts down immediately before the transformation experiment. This eliminates substances that may have leaked out of the protoplasts

during storage and the contents of protoplasts which have lysed spontaneously

(which may include nucleases).

https://www.360docs.net/doc/f02228142.html,plete steps 2a-c for each transformation individually.

a.Add up to 5 μl DNA solution to protoplasts and mix immediately by

tapping tube.

b.Add 200 μl 25% PEG 1000 in P buffer and mix by pipetting up and

down four times (be careful not to contaminate the barrel of the

pipette).

c.Spread protoplast suspension (100-200 μl) on two dried R2YE plates.

Use P buffer to make dilutions if required.

?l ml glass pipettes can be used instead of spreaders. The solution will spread to some extent by itself if the plates are left on a horizontal surface.

3.Incubate plates at 30°C. After 14-20 h, flood for kanamycin selection. Score

for resistant colonies after 3 d.

4.Select single colony and streak non-selectively for single colonies on MS agar

plates and grow 3-4 d at 30°C.

5.Replica-plate to DNA agar plates with apramycin (50 μg/ml) or kanamycin

(50 μg/ml) to screen for apramycin S and kanamycin S transformants.

大肠杆菌基因型及遗传符号说明系列一DXY

大肠杆菌基因型及遗传符号说明系列一 点击次数:982 作者:佚名发表于:2009-09-27 00:00转载请注明来自丁香园 来源:丁香园 实验室的一般大肠杆菌拥有4288条基因,每条基因的长度约为950bp,基因间的平均间隔为118bp (基因Ⅷ)。E.coli基因组中还包含有许多插入序列,如λ-噬菌体片段和一些其他特殊组份的片段,这些插入的片段都是由基因的水平转移和基因重组而形成的,由此表明了基因组具有它的可塑造性。 利用大肠杆菌基因组的这种特性对其进行改造,使其中的某些基因发生突变或缺失,从而给大肠杆菌带来可以观察到的变化,这种能观察到的特征叫做大肠杆菌的表现型(Phenotype),把引起这种变化的基因构成叫做大肠杆菌的基因型(Genotype)。具有不同基因型的菌株表现出不同的特性。 分子克隆中常用的大肠杆菌及其遗传标记按Demerec等1966年提出的命名原则,采用的菌株所有的基因都假定处于野生型状态,除非在基因型上另外注明。 大肠杆菌基因型的表示方法(Demerec, et, al. 1966): 一、一般规则: 1、根据基因产物或其作用产物的英文名称的第一个字母缩写成3个小写斜体字母来表示。例如:D NA Adenine Methylase→dam。 2、不同的基因座,其中任何一个突变所产生的表型变化可能相同,其表示方法是在3个小写斜体字母后加上一个斜体大写字母来表示区别。例如:Recombination→recA、recB、recC。 3、突变位点应通过在突变基因符号后加不同数字表示。如supE44(sup基因座E的44位突变)。

如果不知道几个等位基因中哪一/几个发生了功能性突变,则用连字符“ -”代替大写字母,如trp-31。 4、细菌的基因型中应该包含关于其携带的质粒或附加体的的信息。这些符号包括菌株携带的质粒或附加体、质粒或附加体上的突变基因座和突变位点。其基因符号应与基因座的表示符号明显区别,符号的第一个字母大写、不斜体并位于括号内;质粒或附加体上的突变基因座和突变位点的基因符号的表示方法与染色体上突变基因座、突变位点的符号相同。 5、对于携带附加体的菌株的完整基因型描述应包括附加体的状态(游离或整合)。以F因子为例,F-:F因子缺失;F+:自主性F因子,不携带任何遗传可识别染色体片段;F':携带有遗传可识别细菌染色体片段的自主性F因子;Hfr:整合到染色体上的F因子(high frequency of recombination)。当这些质粒或噬菌体片段变异或缺失时,用()“或”/“等以区别。例如:/F' [traD3 6、proAB、lac I q、lacZ. M 15] 6、某个基因或某个领域缺失时,在其基因型前面加上“ ”表示。例如:lac-proAB基因缺失时它的基因型表示为(lac-proAB)。 7、由于某种基因的变异导致大肠杆菌可以明显观察到特征变化,有时也用其表现型代替基因型进行表示。例如:某些抗药性的获得或丧失,用如下方式表示:Streptomycin抗性→Str +或Str r,Ampicilli n敏感性→ Amp-。(第一个字母要大写,“+”或“r”表示有抗性,“-”表示无抗性或敏感)。 8、根据某些特异性蛋白的变异及其导致的结果变化进行表示。例如:TH2菌株上有一种基因型表示如下:hsdS20 (rB-、mB-),其中S20代表特异性识别蛋白发生变异,()中的rB-、mB-表示由于 S20的变异而导致B株来源的hsdR和hsdM的功能缺失。 9、蛋白质的名称与对应的基因或等位基因相同,但不用斜体,且首字母大写,如,UvrA、UvrB。 二、基因符号和意义(见表1)

大肠杆菌基因组DNA的提取及荧光定量PCR试验设计

大肠杆菌基因组DNA得提取 一、传统法提取大肠杆菌基因组DNA。 1、实验原理 提取DNA得一般过程就是将分散好得组织细胞在含十二烷基硫酸钠(SDS)与蛋白酶K得溶液中消化分解蛋白质,再用酚与氯仿/异戊醇抽提分离蛋白质,得到得DNA溶液经乙醇沉淀使DNA从溶液中析出。 SDS得作用机理就是由于其能结合蛋白,中与蛋白得电性,使蛋白质得非共价键受到破坏,失去二级结构,从而变形失活,蛋白酶K或链霉蛋白酶E均为光谱蛋白酶,其重要特性就是能在SDS与EDTA(乙二胺四乙酸二钠)存在得情况下保持很高得活性。在匀浆后提取DNA得反应体系中,SDS可通过失活蛋白破坏细胞膜、核膜,并使组织蛋白与DNA分离;而蛋白酶K可将蛋白质降解成小肽或氨基酸,使DNA分子完整地分离出来。用酚、酚/氯仿抽提除去蛋白质,最后用无水乙醇沉淀DNA。为获得高纯度DNA,操作过程中常加入RNaseA除去RNA。CTAB(十六烷基三乙基溴化铵)就是一种去污剂,可溶解细胞膜,它能与核酸形成复合物,在高盐溶液中(0、7 mol/L NaCl)就是可溶得,当降低溶液盐浓度到一定得程度(0、3 mol/L NaCl)时,从溶液中沉淀,通过离心就可将CTAB核酸得复合物与蛋白,多糖物质分开。最后通过乙醇或异丙醇沉淀DNA,而CTAB溶于乙醇或异丙醇而除去。 2、实验试剂与仪器 1)实验材料:大肠杆菌 2)实验试剂: LB液体培养基,TE溶液,10%SDS,蛋白酶K,5mol/L NaCl, CTAB/NaCl溶液,酚/氯仿/异戊醇,异丙醇,70%乙醇 3)实验仪器:恒温摇床、低温离心机、微量移液器、水浴锅

3、溶液配制 1)LB液体培养基:细菌培养用胶化蛋白胨10 g/L,细菌培养用酵母提取物5 g/L,NaCl 10g/L,去离子水。 (搅拌溶解后,用5mol/LNaOH调pH至7、0、用去离子水定容100ml,用20/50ml 摇瓶分装5瓶,包扎好,在121℃,1、034×105 pa高压下蒸汽灭菌20min、) 2)TE缓冲液: 1M Tris 溶液(取Tris242、2g,加ddH2O至1600ml,加热溶解) 1M trisHCl pH8、0 溶液(取 1M Tris 溶液160ml用分析纯盐酸调至Ph=8、0(需浓盐酸约8、5ml),加ddH2O定容至200ml,高压灭菌备用) TE缓冲液(10 mM TrisHCl 1Mm EDTA pH=8、0,1M TrisHCl Buffer PH=8、0 5ml 0、5M EDTA PH =8、0 1ml向烧杯中加入约400mldd H2O均匀混合;将溶液 定容到500ml后,高温高压灭菌,室温保存) 3)蛋白酶K:(20mg蛋白酶K溶于1ml无菌双蒸水,20℃备用) 4)CTAB/NaCl溶液:(5% w/v,5gCTAB溶于100ml 0、5M NaCl溶液中,需加热到 65℃使之溶解,然后室温保存) 4、实验方法步骤 1、将大肠杆菌接种到灭菌好得LB培养基中,一级培养过夜,以10%得接种量进行二级培养,培养至对数期(46h)。 2、取菌液1、5ml置于离心管中,以5000rpm冷冻离心1min,弃上清液 3、加190 ul TE悬浮沉淀,并加10 ul 10%SDS,摇匀直至溶液变粘稠 4、加入1ul蛋白酶K(20mg/ml),混匀,37℃保温1小时。 5、加30ul 5 mol/L NaCl,混匀。 6、加30ul CTAB/NaCl溶液,混匀,65℃保温20min

水中大肠杆菌的检测方法

水中大肠杆菌的检测方法 一、方法概要本方法系用以检测水中革兰氏染色阴性,不产生内生孢子之杆状好氧或兼性厌氧菌,且能在351 ℃、483小时发酵乳糖并产生酸及气体之大肠杆菌群(Coliform group);在不同体积或不同稀释度之水样所产生之结果,以「100 mL水中最大可能数(MPN/100 mL)」表示100 mL水中存在之大肠杆菌群数目。 二、适用范围本方法适用地面水体、地下水体、废水、污水及水源水质水样中大肠杆菌群之检验。 三、干扰(一)水样中含有抑制或促进大肠杆菌群细菌生长之物质。(二)检测使用的玻璃器皿及设备含有抑制或促进大肠杆菌群细菌生长的物质。 四、设备(一)量筒:100至1000 mL之量筒。(二)吸管:有 0、1刻度之10 mL灭菌玻璃吸管或市售无菌塑料吸管,或无菌微量吸管(micropipet)。(三)试管:大小约15015 mm之试管或有盖螺旋试管。(四)发酵管(fermentation tube):大小约229 mm 之玻璃管。(五)稀释瓶:容量约100 mL可灭菌之硼硅玻璃制品。 (六)锥形瓶:200至2000 mL之可灭菌硼硅玻璃制品。(七)采样容器:容量120 mL以上无菌之硼硅玻璃瓶或无菌塑料有盖容器,或市售无菌袋。(八)冰箱:温度能保持在42℃者。(九)天平:待测物重量大于2 g时,须能精秤至0、01 g;待测物重量不大于2 g

时,须能精秤至0、001 g。()培养箱:温度能保持在351℃者。 (一)高压灭菌釜:温度能维持在121℃(压力约15 lb/in2 或1、 1 Kg/cm2)灭菌15分钟以上者。(二)高温干热烘箱:如用于玻璃器皿等用具之灭菌,温度须能保持在160℃达2小时或170℃达1小时以上者。(三)接种环:为白金或镍铬合金制,适用于细菌接种或移植,亦可使用无菌塑料制品。(四)pH计:精确度达0、1 pH单位。 五、试剂(一)试剂水:蒸馏水或去离子水,导电度在25 ℃时小于2 μ mho / cm(μS / cm)。(二)培养基,应使用市售商品化培养基。1、硫酸月桂酸胰化蛋白胨培养基(Lauryl sulfate tryptose broth,简称LST) 1倍浓度LST培养基含有下列成份:胰化蛋白胨(Tryptose) 20、0g乳糖(Lactose) 5、0g氯化钠(NaCl) 5、0g磷酸氢二钾(K2HPO4) 2、75g磷酸二氢钾(KH2PO4) 2、75g硫酸月桂酸钠(Sodium lauryl sulfate) 0、1g试剂水 1L 配成2倍浓度(取 71、2 g LST培养基粉末溶于1 L试剂水),完全溶解后,分取10 mL注入装有倒置发酵管之试管内,经121℃灭菌15分钟,

大肠杆菌的基因型 Takara公司

,-*+ .1/0 2TVOVSV INRTKJMQRPRLU JHTHPRL RQPNQK3X``]GFFaaaE`VYV_VEW\ZEW[cbegdfih u u @=47>< :9?\JA6_3w uqz -*~x Jv Ih EKB ^O A 2ms 4t u s ^t /c O 46msnt /c|46u E `lr >z c 1H /r H6E ~J.H w N G [J *i.p ,5/c r 9U {OH :3a Z OA_v I3/cU~{y *wshf 2~m D q {m D 3y N ^shf C/r H6_0E ~U \.H y kl ^J ~m D q {m D /c NP N:8J.H TG [C a 6T J }0{w l }0{v Je KS]r `M ^cG { v I d9^y .5`M JA6_3ynO 6fP I69:3a y i -@.5`MN C a w D a 6T JA6_3r A6_3C aS 60y *-,6y @w JP99@cG r ~xvl 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A =@ZX[ e K {/|zr v I /@BOL B 73EKB `h A y q U |6e3s Q v Ih EKB J T S`h ^O kM y u^2O R EKB Y [6mY J 7]e K r N /|zr v I J.H o 4\Jv I3`u T u HT EKB J `h 1K,5y +:2V EKB J {N 6y R EKB J d p O 8r ~xvm 2MUS\ZRX[Q`X\[3 JQ]]\_X`X\[A >9ZX[ e K {/|zs v I /@BOL B 73EKQ_U lk lwQA P J A a ;v y R /|zr J EKB `h AO \b l>,k M r EKQ_U ?p h;EKB J +:l +;y k lwQA P ?pD ;EKB J >+y U EKB J `h l mY 7]^Ur `>kM r /|zs v I J.H G [N EKB `h l 7]e KX]y +Y 9ZX[ e K {/|zt v I /@j _A y xk lwQA P y BOL B 73Jk lJQA y +:A w BOL A y qB l /|zr 5/|zs o /@J A .o 0M kM y U EKB J `h wY [6mY J 7]^Ur kM r /|zt v I J.H G [EKB `h e KS]y +Y w T EKB J {N 6r 876;547>< wu{2EKB QTU[X[U ZU`WbYQ_U3 JQ]]\_X`X\[A ?

水中大肠杆菌地检测方法

附件 水肠杆菌群检测方法-多管发酵法 NIEA E201.54B 一、方法概要 本方法系用以检测水中革兰氏染色阴性,不产生生孢子之杆状好氧或兼性厌氧菌,且能在35 ± 1 ℃、 48 ± 3小时发酵乳糖并产生酸及气体之大肠杆菌群(Coliform group);在不同体积或不同稀释度之水样所 产生之结果,以「100 mL水中最大可能数(MPN/100 mL)」表示100 mL水中存在之大肠杆菌群数目。 二、适用围 本方法适用地面水体、地下水体、废水、污水及水源水质水样肠杆菌群之检验。 三、干扰 (一) 水样中含有抑制或促进大肠杆菌群细菌生长之物质。 (二) 检测使用的玻璃器皿及设备含有抑制或促进大肠杆菌群细菌生长的物质。 四、设备 (一) 量筒:100至1000 mL之量筒。 (二) 吸管:有0.1刻度之10 mL灭菌玻璃吸管或市售无菌塑料吸管,或无菌微量吸管(micropipet)。 (三) 试管:大小约150 × 15 mm之试管或有盖螺旋试管。 (四) 发酵管(fermentation tube):大小约22 × 9 mm之玻璃管。 (五) 稀释瓶:容量约100 mL可灭菌之硼硅玻璃制品。 (六) 锥形瓶:200至2000 mL之可灭菌硼硅玻璃制品。 (七) 采样容器:容量120 mL以上无菌之硼硅玻璃瓶或无菌塑料有盖容器,或市售无菌袋。 (八) 冰箱:温度能保持在4 ± 2℃者。 (九) 天平:待测物重量大于2 g时,须能精秤至0.01 g;待测物重量不大于2 g时,须能精秤至0.001 g。 (十) 培养箱:温度能保持在35 ± 1℃者。 (十一) 高压灭菌釜:温度能维持在121℃(压力约15 lb/in2或 1.1 Kg/cm2)灭菌15分钟以上者。

基因敲除技术研究进展

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目:基因敲除技术研究进展 作者:王振宇 学号:201207744 指导教师:谢放 完成日期:2014-7-16

基因敲除技术研究进展 摘要基因敲除是自20世纪80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。在总结已有研究成果的基础上,本文对基因敲除技术的概况、原理方法应用以及近年来基因敲除技术的研究进展作一个简单的综述。 关键词基因敲除 RNA i生物模型基因置换基因打靶同源重组1. 基因敲除技术简介 基因敲除(Gene knockout)是指一种遗传工程技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因,令特定的基因功能丧失作用,从而使部分功能被屏障,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。 它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。基因敲除借助分子生物学、细胞生物学和动物胚胎学的方法,通过胚胎干细胞这一特殊的中间环节将小鼠的正常功能基因的编码区破坏,使特定基因失活,以研究该基因的功能;或者通过外源基因来替换宿主基因组中相应部分,以便测定它们是否具有相同的功能,或将正常基因引入宿主基因组中置换突变基因以达到靶向基因治疗的目的。基因敲除是揭示基因功能最直接的手段之一。通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段(即基因打靶),从而达到基因敲除的目的。随着基因敲除技术的发展,除了基因打靶技术外,近年来新的原理和技术也逐渐被应用,比较成功的有RNA干扰技术,同样也可以达到基因敲除的目的。简单的说基因敲除是指将目标基因从基因组中删除。基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是小鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的建立,使得对基因靶位时间和空间上的操作更加明确、效果更加精确、

大肠杆菌染色体基因组的结构和功能

大肠杆菌染色体基因组的结构和功能 大肠杆菌染色体基因组是研究最清楚的基因组。估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。在已知的基因中8%的序列具有调控作用。大肠杆菌染色体基因组中已知的基因多是编码一些酶类的基因,如氨基酸、嘌呤、嘧啶、脂肪酸和维生素合成代谢的一些酶类的基因,以及大多数碳、氮化合物分解代谢的酶类的基因。另外,核糖体大小亚基中50多种蛋白质的基因也已经鉴定了。 除了有些具有相关功能的基因在一个操纵子内由一个启动子转录外,大多数基因的相对位置可以说是随机分布的。如控制小分子合成和分解代谢的基因,大分子合成和组装的基因分布在大肠杆菌基因组的许多部位,而不是集中在一起。再如,有关糖酵解的酶类的基因分布在染色体基因组的各个部位。进一步发现,大肠杆菌和与其分类关系上相近的其他肠道菌如志贺氏杆菌属(Shigella)、沙门氏菌属(Salmonella)等具有相似的基因组结构。伤寒沙门氏杆菌(Salmonellatyphimurium)几乎与大肠杆菌的基因组结构相同,虽然有10%的基因组序列和大肠杆菌相比发生颠倒,但是其基因的功能仍正常。这更进一步说明染色体上的基因似乎没有固定的格局,相对位置的改变不会影响其功能。 在已知转录方向的50个操纵子中,27个操纵子按顺时针方向转录,23个操纵子按反时针方向转录,即DNA两条链作为模板指导mRNA合成的机率差不多相等。在大肠杆菌染色体基因组中,差不多所有的基因都是单拷贝基因,因为多拷贝基因在同一条染色体上很不稳定,极易通过同源重组的方式丢失重复的基因序列。另外,由于大肠杆菌细胞分裂极快,可以在20分钟内完成一次分裂,因此,携带多拷贝基因的大肠杆菌并不比单拷贝基因的大肠杆菌更为有利;相反,由于多拷贝基因的存在,使E.coli的整个基因组增大,复制时间延长,因而更为不利,除非在某种环境下,需要有多拷贝基因用来编码大量的基因产物,例如,在有极少量乳糖或乳糖衍生物的培养基上,乳糖操纵子的多拷贝化可以使大肠杆菌充分利用的乳糖分子。但是,一旦这种选择压力消失,如将大肠杆菌移到有丰富的乳糖培养基上,多拷贝的乳糖操纵子便没有存在的必要,相反,由于需要较长的复制时间,这种重复的多拷贝基因会重新丢失。 大肠杆菌染色体基因组中,大多数rRNA基因集中于基因组的复制起点oriC的位置附近。这种位置有利于rRNA基因在早期复制后马上作为模板进行rRNA的合成以便进行核糖体组装和蛋白质的合成。从这一点上看,大肠杆菌基因组上的各个基因的位置与其功能的重要性可能有一定的联系。

菌落总数、大肠菌群测定方法

菌落总数和大肠菌群测定(固体样品) 药品: 1、平板计数琼脂 2、月桂基硫酸盐胰蛋白胨肉汤(LST) 3、煌绿乳糖胆盐肉汤(BGLB) 4、氯化钠 设备材料: 烧杯、三角瓶、广口瓶、培养皿、刻度吸管、倒气管、玻璃 棒、试管、硅胶塞、洗耳球、棉花、布或报纸等。 一、准备工作 (指导书是按一个样品所需物品准备的,实验室可按样品量增加) 1、平板计数琼脂培养基准备----用于菌落总数测定 将三角瓶放在电子称上,去皮,按平板计数琼脂使用说明称量,加 200ml蒸馏水搅拌,放电炉上煮沸加热煮沸,充分溶解,盖上硅胶塞,用报纸或布包好,再用橡皮筋扎紧。 2、月桂基硫酸盐胰蛋白胨(LST)肉汤----用于大肠菌群测定 (a)将烧杯放在电子称上,去皮,按使用说明称量,加100ml蒸馏水搅拌,放电炉上煮沸,充分溶解。 (b)用10ml(毫升)的吸管分装到9支(18*180规格)试管中,每支试管加10ml的月桂基溶液LST (合计90毫升)。 (c)9支试管分别放入倒气管(开口向下),排气,盖上硅胶塞。

3、0.85%的生理盐水----用于样品稀释 将广口瓶去皮,称取氯化钠1.91g加225ml蒸馏水,摇匀,用报纸 或布包好,再用橡皮筋扎紧;同样配制第二瓶。 4、准备2个空试管,盖上硅胶塞----用于样品稀释。 5、准备8个培养皿,用布包扎好。 6、准备至少3支5ml和1支10ml带有刻度的吸管,用布包扎好(顶部可用棉球塞住,防止吸液时,液体不慎吸入洗耳球)。 7、准备操作的工具:剪刀1把、镊子1个、勺子等打开产品包装所需工具,用布包扎好。 二、使用灭菌锅灭菌 1、检查灭菌锅底部加热管水位是否正常,水位要高过加热丝。 2、将上面准备好的7步骤物品逐一放入锅内,注意:滴定管吸口向下,有棉球的向上。 3、盖上火菌锅盖子时,将排气管插到排气口内,注意从对角线开始拧紧螺丝,将排气阀打开(安全阀始终关闭),通电后,待排气阀放气3分钟后(锅内冷空气已经排完),关闭排气阀。 4、查看灭菌锅的压力表,当温度升到121°,压力升到0.1MP(兆帕)时,灭菌维持15分钟后(温度和压力不能过高或者过低),断电自然冷却到接近“ 0”度后,慢慢打开排气阀,再对角拧开灭菌锅。 三、无菌操作 进无菌室前的准备:放好工具(酒精灯,记号笔,消毒用75%酒精棉球,洗耳球,电子称),打开紫外线杀菌灯,杀菌30分钟后关闭,再等

大肠杆菌的基因型

[Z]_\^a` 7T B9.W +o mirzwv p Bn A`=C:VG 470p YunJ o JU dq B b 4288Yn A j mirzwv n A`V i w b G 0K*N 15q M t .]+kD Hd 9|Fhj_`SB D H q O |*N B D HG \F n A B aE \;dn AX`L ,0B q F 4|>4n A`*G i B -c N.j 0E 9.W +n A`B OW j .J F y -V N q XF V B @|n A M Tn {m KU q 5LZ9.W +:.-<_+@B {h q OW C _+@B j P v b 9.W +B |x +c DOMSTXZUM+qu B G OW {hBn A ^0v b 9.W +Bn A+o ?MSTXZUM dj *G ~m n A+B +Y |x 3~m B j .j O |~m n A+j .B +YM n A \1B 4|d T ,V *G `OB DE t R j 9.W +n A+B |[PN G Mv q W s 1r [~n A ,u m F cE ,u B C r?/BD 9Y _Af *0O Y ~k _A.|[j 1M s =C::LMSPSM BMXOZQIWM n oms j 2r{@n A ~m q ?S Bwa {mV q E F cE waB C r?/B HO Y _A~k er R 9Y9*_A.|[J }j 1M s EMKTRJPSIXPTS n vpnd i vpne i vpnf j 3r @Yn A m @Y 7J KUV q M F n A+HA]o U 2p d ]+k *ND H q >O |U 2m ]+kD H {@m KUV q E kc dl m k /l C h\g xvmgac i uvtde i rmn i V i rmnlyj_b hj 5r FH @W n A B {@?S 9.W +-<>w _+@j P {h q G V 8E F |x +;l n A+y -|[j 1M s @|,5.BlAm PU q E Mv P Z |[s FXVMUXTRZKPS ,.n kxv ;m kxv W q :RUPKPQQPS =X .n dsu H lARsnh U 2j

基因组DNA提取步骤

基因组DNA提取步骤 1.从无水乙醇中取出少许组织(约50mg)加入干净灭菌的EP管中, 剪碎; 2.加入400ul 1%的SDS,8ul(20mg/ml)的蛋白酶K,充分浸润, 入55℃摇床(100转/分),期间振荡助溶至澄清(5-6h); 3.取出消化液,加入6mol/L的NaCl300ul,氯仿200ul,轻柔正反 颠倒,使其充分乳化,4℃13000转/分离心30min; 4.取出上清(约400ul),加入等体积氯仿抽提一次,轻柔颠倒后, 4℃13000转/分离心10min; 5.上清加入5μl RNaseA(10μg/μl), 37℃10分钟, 除去RNA(RNA对DNA的操作、分析一 般无影响,可省略该步骤)。 6.取上清加入等体积异丙醇,轻柔混匀后-20℃沉淀10min; 7.4℃13000转/分离心15min,弃上清; 8.用75%乙醇洗涤1-2次(1000ul,11000转/分离心2min),弃上 清; 9.冰冻无水乙醇洗涤1-2次(1000ul,11000转/分离心4min)弃上 清,自然晾干或烘干,DDW溶解,30-50ul。 基因组DNA的提取通常用于构建基因组文库、Southern杂交(包括RFLP)及PCR分离基因等。利用基因组DNA较长的特性,可以将其与细胞器或质粒等小分子DNA分离。加入一定量的异丙醇或乙醇,

基因组的大分子DNA即沉淀形成纤维状絮团飘浮其中, 可用玻棒将其取出,而小分子DNA则只形成颗粒状沉淀附于壁上及底部, 从而达到提取的目的。在提取过程中,染色体会发生机械断裂,产生大小不同的片段,因此分离基因组DNA时应尽量在温和的条件下操作,如尽量减少酚/氯仿抽提、混匀过程要轻缓, 以保证得到较长的DNA。一般来说,构建基因组文库, 初始DNA长度必须在100kb以上,否则酶切后两边都带合适末端的有效片段很少。而进行RFLP和PCR分析, DNA长度可短至50kb, 在该长度以上,可保证酶切后产生RFLP片段(20kb以下),并可保证包含PCR所扩增的片段(一般2kb以下)。 不同生物(植物、动物、微生物)的基因组DNA的提取方法有所不同; 不同种类或同一种类的不同组织因其细胞结构及所含的成分不同,分离方法也有差异。在提取某种特殊组织的DNA时必须参照文献和经验建立相应的提取方法, 以获得可用的DNA大分子。尤其是组织中的多糖和酶类物质对随后的酶切、PCR反应等有较强的抑制作用,因此用富含这类物质的材料提取基因组DNA时, 应考虑除去多糖和酚类物质。 本实验以水稻幼苗(禾本科)、李(苹果)叶子、动物肌肉组织和大肠杆菌培养物为材料,学习基因组DNA提取的一般方法。 从植物组织提取基因组DNA 一、材料 水稻幼苗或其它禾本科植物,李(苹果)幼嫩叶子。 二、设备 移液器,冷冻高速离心机,台式高速离心机,水浴锅,陶瓷研钵,50ml离心管(有盖)及5ml和 1.5ml离心管,弯成钩状的小玻棒。 三、试剂 1、提取缓冲液Ⅰ:100mmol/L Tris·Cl, pH8.0, 20mmol/L EDTA, 500mmol/L NaCl, 1.5% SDS。 2、提取缓冲液Ⅱ:18.6g葡萄糖,6.9g二乙基二硫代碳酸钠,6.0gPVP,240ul巯基乙醇,加水至300ml。 3、80:4:16/氯仿:戊醇:乙醇 4、RnaseA母液:配方见第一章。 5、其它试剂:液氮、异丙醇、TE缓冲液,无水乙醇、70%乙醇、3mol/L NaAc。 四、操作步骤: (一)水稻幼苗或其它禾木科植物基因组DNA提取 1. 在50ml离心管中加入20ml提取缓冲液Ⅰ, 60℃水浴预热。 2. 水稻幼苗或叶子5-10g, 剪碎, 在研钵中加液氮磨成粉状后立即倒入预热的离心管中, 剧烈摇动混匀, 60℃水浴保温30-60分钟(时间长,DNA产量高), 不时摇动。 3. 加入20ml氯仿/戊醇/乙醇溶液, 颠倒混匀(需带手套, 防止损伤皮肤),室温下静置5-10分钟, 使水相和有机相分层(必要时可重新混匀)。 4. 室温下5000rpm离心5分钟。 5. 仔细移取上清液至另一50ml离心管,加入1倍体积异丙醇,混匀,室温下放置片刻即出现絮状DNA沉淀。 6. 在1.5ml eppendorf中加入1ml TE。用钩状玻璃棒捞出DNA絮团,在干净吸水纸上吸干,转

基因敲除技术的最新进展doc - 丁香园

基因敲除技术的最新进展  yunfenglin 干细胞与组织工程讨论版  【摘要】 自从上世纪80年代初的胚胎干细胞技术的成熟,在短短的20年里,关于基因敲除动物模型的报道呈几何数增长。现在的技术已经可以产生在时间和空间上都可以人为控制的,从点突变到染色体组大片段的删除和重排的各种基因突变小鼠,这样就可以让研究每个基因的具体功能成为可能。本文将首先简介基因敲除技术的技术背景、基本原理、基本步骤;然后将重点介绍现在基因敲除的常用策略及其利弊;接着将探讨基因打靶结果不理想的常见因素,包括基因背景、基因重复、基因补偿、和基因补充;最后介绍基因打靶技术的技术热点,包括组织特异性打靶、诱导性打靶。并探讨基因打靶技术在颌面外科的应用前景。 【关键词】基因敲除、条件性基因打靶、组织特异性基因打靶、诱导性基因打靶 技术背景 基因打靶技术是20世纪80年代发展起来的[1],是建立在基因同源重组技术基础以及胚胎干细胞技术基础上的一种新分子生物学技术。所谓胚胎干细胞(Embryonic Stem cell,ES)是从着床前胚胎(孕3—5天)分离出的内细胞团(Inner cell mass,ICM)细胞[2],它具有向各种组织细胞分化的多分化潜能,能在体外培养并保留发育的全能性。在体外进行遗传操作后,将它重新植回小鼠胚胎,它能发育成胚胎的各种组织。而基因同源重组是指当外源DNA片段大且与宿主基因片段同源性强者并互补结合时,结合区的任何部分都有与宿主的相应片段发生交换(即重组)的可能,这种重组称为同源重组。[3] 基因打靶就是通过同源重组将外源基因定点整合入靶细胞基因组上某一确定的位点,以达到定点修饰改造染色体上某一基因的目的的一种技术[4]。它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的建立,使得对基因靶位时间和空间上的操作更加明确、效果更加精确、可靠,它的发展将为发育生物学、分子遗传学、免疫学及医学等学科提供了一个全新的、强有力的研究、治疗手段,具有广泛的应用前景和商业价值。现在基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。2000年初的敲除了决定表面抗原的猪的模型的成功建立更是为异种器官移植排除了一道重要的障碍,展示了基因敲除技术的美好前景。 基本步骤 利用基因打靶技术产生转基因动物的程序一般为: a.ES细胞的获得:现在基因敲除一般应用于鼠,而最常用的鼠的种系是129及其杂合体,因为这类小鼠具有自发突变形成畸胎瘤和畸胎肉瘤的倾向,是基因敲除的理想实验动物。而其他遗传背景的胚胎干细胞系逐渐被发展应用,最近来自于C57BL/6×CBN/JNCrj F1小鼠的胚胎干细胞系成功地用于基因敲除。c57BL/6小鼠种系等已经广泛的应用于免疫学领域,并以此为背景建立了许多成功的转基因模型。[5,9,11] b.基因载体的构建:把目的基因和与细胞内靶基因特异片段同源的DNA分子都重组到带有标记基因(如neo基因,TK基因等)的载体上,此重组载体即为打靶载体。因基因打靶的目的不同,此载体有不同的设计方法,可分为替换性载体和插入型载体[6,7]。如为了把某一外源基因引入染色体DNA的某一位点上,这种情况下应设计的插入型载体要包括外源

大肠杆菌基因型列表111

A listed gene name means that gene carries a loss of function mutation, a Δ preceding a gene name means the gene is deleted. If a gene is not listed, it is not known to be mutated. Prophages present in wt K-12 strains (F, λ, e14, rac) are listed only if ab sent. E. coli B strains are naturally lon- and dcm-. F- = Does not carry the F plasmid F+ = Carries the F plasmid. The cell is able to mate with F- through conjugation. F'[ ] = Carries an F plasmid that has host chromosomal genes on it from a previous recombination event. This cell can also mate with F- through conjugation. Chromosomal genes carried in the F plasmid are listed in brackets. rB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the restriction system. mB/K+/- = The (B/K) defines the strain lineage. The +/- indicates whether the strain has or hasn't got the modification (methylation) system. hsdS = Both restriction and methylation of certain sequences is deleted from the strain. If you transform DNA from such a strain into a wild type strain, it will be degraded. hsdR = For efficient transformation of cloned unmethylated DNA from PCR amplifications INV( ) = chromosomal inversion between locations indicated ahpC = mutation to alkyl hydroperoxide reductase conferring disulfide reductase activity ara-14 = cannot metabolize arabinose araD = mutation in L-ribulose-phosphate 4-epimerase blocks arabinose metabolism cycA = mutation in alanine transporter; cannot use alanine as a carbon source dapD = mutation in succinyl diaminopimelate aminotransferase leads to succinate or (lysine + methionine) requirement Δ( ) = chromosomal deletion of genes between the listed genes (may include unlisted genes!) dam = adenine methylation at GATC sequences abolished; high recombination efficiency; DNA repair turned on dcm = cytosine methylation at second C of CCWGG sites abolished deoR = regulatory gene that allows constitutive expression of deoxyribose synthesis genes; permits uptake of large plasmids. See Hanahan D, US Patent 4,851,348. ***This has been called into question, as the DH10B genome sequence revealed that it is deoR+. See Durfee08, PMID 18245285. dnaJ = one of the chaparonins inactivated; stabilizes some mutant proteins dut1 = dUTPase activity abolished, leading to increased dUTP concentrations, allowing uracil instead of thymine incorporation in DNA. Stable U incorporation requires ung gene mutation as well. endA1 = For cleaner preparations of DNA and better results in downstream applications due to the elimination of non-specific digestion by Endonuclease I (e14) = excisable prophage like element containing mcrA gene; present in K-12 but missing in many other strains galE = mutations are associated with high competence, increased resistance to phage P1 infection, and 2-deoxygalactose resistance. galE mutations block the production of UDP-galactose, resulting in truncation of LPS glycans to the minimal, "inner core". The exceptional competence of DH10B/TOP10 is thought to be a result of a reduced interference from LPS in the binding and/or

相关文档
最新文档