实验二 金属材料系列冲击试验与低温脆性

实验二 金属材料系列冲击试验与低温脆性
实验二 金属材料系列冲击试验与低温脆性

金属材料系列冲击试验与低温脆性

姓名:

班级:

日期:

指导老师:

一、试验内容与目的:

试验测定3种不同金属材料的冲击吸收功随温度变化,比较分析低温脆性特点

二实验原理:

本次试验采用国标编号为GB/T 229-1994。

用规定高度的摆锤对一系列处于不同温度的简支梁状态的缺口试样进行一次性打击,测量各试样折断时的冲击吸收功。冲击吸收功的测量原理为冲击前以摆锤位能形式存在的能量中的一部分被试样在受冲击后发生断裂的过程中所吸收。摆锤的起始高度与它冲断试样后达到的最大高度之间的差值可以直接转换成试样在冲断过程中所消耗的能量,试样吸收的功称为冲击功(A k )。

所谓脆性断裂是一种快速的断裂,断裂过程吸收能量很低,断裂前及伴随着断裂过程都缺乏明显的塑性变形。包括铁素体钢在内的中、低强度体心立方金属以及合金,密排六方的锌、铍及其合金的冲击功A k 值随温度的下降而有显著降低的过程,也就是说,在一个有限的温度范围内,受到冲击载荷作用发生断裂时吸收的能量会发生很大的变化。这种现象称为材料的韧脆转变。

改变试验温度,进行一系列冲击试验以确定材料从人性过渡到脆性的温度范围,称为“系列冲击试验”。韧脆转变温度就是A k -T 曲线上A k 值显著降低的温度。曲线冲击功明显变化的中间部分称为转化区,脆性区和塑性区各占50%时的温度称为韧脆转变温度(DBTT )。当断口上结晶或解理状脆性区达到50%时,相应的温度称为断口形貌转化温度(FATT )。

脆性断裂百分数的测量:在显微镜下观察断裂试样的断裂面,脆性断裂部分一般是白亮的梯形,通过测量计算可得出梯形的面积,按下式计算出脆性断裂百分数:

%100%

η=

?脆性区面积

脆性断裂百分数端口横截面积

三、实验要求:

(1)阅读相关的国家标准(GB229),做好试验预习工作。

(2)按照国标文件中的试验报告内容要求编写试验报告。

(3)试验报告中,另外要包含下面两项内容的分析讨论:

第一,关于金属冷脆性的材料方面影响因素;

第二,冲击试验中致脆的因素。

特别注意:

第一,试验中将安全事项放在首位:一定要在保证安全的前提下,仔细观察试验;

第二,试验报告中,每个同学都要将本班所有试验数据收集齐全来进行数据处理(确定韧脆转变温度)。

四、实验试样:

本次试验采用的国家标准为GB/T229-1994金属夏比缺口冲击试验方法,试样为U型试样,试样的长度为55mm,横截面为10mm*10mm的方形截面。试样的具体尺寸及公差如下图所示:

试样的制备应避免由于加工硬化或过热而影响金属的冲击性能;试样缺口底部应光滑,对于仲裁试验,缺口底部表面粗糙参数Ra应不大于1.6um;试样标记的位置不应影响试样的支承和定位,并且应尽量远离缺口。

五、实验仪器与设备:

1、冲击试验机

冲击试验机的标准打击能量为300J(±10J),打击瞬间摆锤的冲击速度应为

5.0~5.5m/s,试验机的试样支座及摆锤刀刃尺寸应符合下图:

冲击试验机一般在摆锤最大能量的10%~90%范围内使用;实验前应检查摆锤空打时被动指针的回零道,回零差不应超过最小分度值的四分之一。

2、工具显微镜

用来测量长度后计算断口脆性区面积。

3、加热用电炉和保温瓶

对于高温或低温冲击试验,保温瓶应能将试验温度稳定在规定值的±2℃之内。使用液体介质加热或冷却试样时,保温瓶应有足够容量和戒指,并应使介质温度均匀。

4、温度计

测温用的玻璃温度计最小分度值应不大于1℃。

5、介质

在高温或低温冲击试验中,可使用各种方法加热或冷却试样,试验用介质应安全无毒,不腐蚀金属。建议采用如下介质:

试样应在规定温度下保持足够时间,使用液体介质时,保温时间不少于5min;使用气体介质时保温时间不少于20min。移取样品时,夹具的温度介质温度尽量相同。试样从介质中移出至打击的时间应在5s内。本次试验采用的介质有热水、液氮和酒精。

6.镊子

六、实验步骤

1.检查冲击试验机是否工作正常。包括试验机各部分距离如图2所示,各部分

是否工作正常和紧固;摆锤空载运动时指针应指向零刻度。

2.确定样品各测量温度。

3. 对样品依需要进行降温或升温。高温样品用热水加热,低温样品用液氮和酒精降温,从而得到不同所需温度的样品。在保温瓶中加入足够的热水/液氮(若温度过低可加入酒精升温),用镊子将三种不同材料的样品放入保温瓶中浸没,之后将镊子也放入保温瓶中。用温度计测量液体温度,待读数稳定读出示数,在降温处理时要看是否达到所需温度,若没达到,可再加入液氮/酒精来降温/升温(此时温度计要拿出)。达到所需温度后,盖上保温瓶盖子,将温度计、镊子和样品在保温瓶中保温5分钟。

4. 冲击试样。在将样品拿出前,读出保温瓶中温度计示数并记录下来,作为样品的冲击温度。之后冲击所有试样,得出冲击功并记录下来。注意当样品明显未冲断时,在冲击功前加上“>”。

5. 观察断口形貌。

6. 计算脆性断面率。将样品放在工具显微镜下,用工具显微镜测量所需的断面脆性区各长度,从而计算出脆性区面积。由上述公式计算出脆性断面率并记录下来。

7. 整理实验仪器及样品。

七、实验数据

八、数据处理

冲击功至少保留两位有效数字,确定韧脆转变温度时,应根据不同温度下的冲击试验结果,以冲击吸收功或脆性断面率为纵坐标,以试验温度为横坐标绘制曲线,如下图:

确定韧脆转变温度的方法包括:

a.冲击吸收功——温度曲线上平台与下平台区间规定百分数(一般50%)所对应的温度,用ETTn表示。

b. 脆性断面率——温度曲线中规定脆性断面率(一般50%)所对应温度,用FATTn表示。

实验中本人测量的试样是低碳钢,温度为—40℃。

处理过程:

1.断口形貌:

脆性区特征为无明显塑性变形,断口平整且形状改变不大,呈一颗颗晶粒状,颜色白亮。

塑性区特征为有明显塑性变形,断口不平整且形状改变大,颜色灰暗。

本人所测样品脆性区大,呈梯形。由各个所测样品断口形貌初步估计知T8钢的塑性最小,且随温度降低,各种样品的塑性减小。

2.计算脆性断面率:

由工具显微镜及测量出脆性区(梯形)的上底下、底及高为8.82mm、11.15mm、5.82mm,试样缺口处横截面积为8*10mm2,计算脆性区面积。从而得到脆性断面率为72.64%。

3.韧脆转变温度的确定(采用方法a)

①低碳钢

其韧脆转变行为曲线为

依据“温度曲线上平台与下平台区间50%所对应的温度为由冲击功曲线确定的韧脆转变温度(DBTT)”,由图1的冲击功曲线及Origin软件的波尔兹曼函数知低碳钢的DBTT为-4.57℃。依据“温度曲线中规定脆性断面率50%所对应温度为脆性断裂百分率曲线确定的韧脆转变温度(FATT)”,由图1的脆性断裂百分率曲线及Origin软件的波尔兹曼函数知低碳钢的FATT为-4.00℃。右上图得出的DBTT与FATT很接近,符合实际。

②T8钢

其韧脆转变行为曲线为

由图2知T8钢没有明显的韧脆转变现象,这是因为T8钢是含碳量高的BCC碳钢,并不是所有的BCC合金都会有明显的韧脆转变现象。对于碳钢,仅当含碳量比较低时(中、低强度),在系列冲击试验的某一温度才显示出冲击功/脆性断裂百分率的突然下降/上升,随着含碳量的不断提高及碳钢强度的提高,韧脆转变温度区间越来越宽,碳钢的韧脆转变现象变得越发不明显,因而T8钢没有明显的韧脆转变现象。

③工业纯铁

其韧脆转变行为曲线为

依据“温度曲线上平台与下平台区间50%所对应的温度为由冲击功曲线确定的韧脆转变温度(DBTT)”,由图3的冲击功曲线及Origin软件的波尔兹曼函数知工业纯铁的DBTT为2.41℃。依据“温度曲线中规定脆性断面率50%所对应温度为脆性断裂百分率曲线确定的韧脆转变温度(FATT)”,由图3的脆性断裂百分率曲线及Origin软件的波尔兹曼函数知工业纯铁的FATT为-4.70℃。右上图得出的DBTT与FATT不是很接近,这是由于实验过程中很多试样未断,得出的冲击功偏小,因而得出的DBTT偏大。

九、实验分析及结论

1. 金属冷脆性的材料方面影响因素

在三种材料中,T8钢的碳含量最高,工业纯铁的碳含量最低,低碳钢介于两者之间,由所得数据知同温度下T8的断口解理面积最大,冲击功最小,韧脆转变温度最高;工业纯铁的断口解理面积最小,冲击功最大,韧脆转变温度最低;低碳钢的断口解理面积和冲击功介于两者之间,韧脆转变温度较低。由此可知T8钢的冷脆性最大,工业纯铁的冷脆性最小,低碳钢的冷脆性介于两者之间。

因而得出结论:材料中随着碳含量的增加,其韧脆转变温度增加,冷脆性增加。

2. 冲击试验中致脆的因素

由所得数据知,同种材料在不同温度下,其塑性不同。随着温度的降低,同种材料的冲击功下降,断口解理面积增大。

因而得出结论:随着温度的下降,同种材料的塑性下降,脆性上升。温度为冲击试验中致脆的因素。

冷脆

冷脆 冷脆具有体心立方点阵的合金钢,当试验温度降低时,将由韧性断裂转变为脆性断裂。许多工业用钢在室温到零下温度范围将发生脆化,称为冷脆性。

图1 滑移过程形成的裂纹 a--位错塞积;b--两个{110)滑移带相交 合金钢的冷脆性(或低温脆化倾向)用韧性一脆性转化温度Tc表示。高纯铁(0.01%C)的Tc在一100。C,低于此温度则完全处于脆化状态。钢中大多数合金元素都升高钢的韧性一脆性转化温度,增加冷脆倾向。在室温以上韧性断裂时,合金钢的断口为韧窝型断口,而在低温下脆性断裂时为解理断口。合金钢的低温脆化的原因是:(1)形变时位错源产生的位错被障碍物(如晶界、第二相等)阻塞时,局部应力超过钢的理论强度而产生微裂纹(见图1a)。(2)几个塞积的位错在晶界合成一个微裂纹。(3)两个{110)滑移带相交处反应,引起不动位 错%26lt;010%26gt;,呈楔形微裂纹,它可沿{100}解理面裂开(见图1b)。 增加钢冷脆的因素有:(1)固溶强化元素。磷升高韧性一脆性转化温度最强烈;还有钼、钛和钒;含量低时影响不大而含量高时升高韧性一脆性转化温度的元素有,硅、铬和铜;降低韧性一脆性转化温度的有镍,先降低后升高韧性一脆性转化温度的有锰。(2)形成第二相的元素。以第二相增加钢冷脆最重要的元素为碳,随钢中碳含量增加,钢中珠光体含量增加,平均每增加1%珠光体体积,韧性一脆性转化温度平均升高2.2℃。图2为铁素体一珠光体钢中碳含量对脆性的影响。加入钛、铌和钒等微合金化元素,形成弥散分布的氮化物或碳氮化物,引起钢的韧性一脆性转化温度上升。(3)晶粒尺寸影响韧性一脆性转化温度,随晶粒粗化,韧性一脆性转化温度升高。细化晶粒则降低钢的冷脆倾向,这是广为应用的方法。 图2 铁素体-珠光体钢中碳含量对脆性的彰响

低温技术试验

第3章 低温技术实验 低温实验中使用低温液体的注意事项 1、所有盛低温液体的容器都不能完全封死。必须流有供蒸汽逸出的通道,否则由于不 可避免的外界漏热使低温液体逐渐气化,容器中的压强逐渐升高,最后会导致装置损坏甚至 爆炸。实验结束时尤其不可疏忽大意,一定要把可能存有低温液体的密封部件的封口打开。 2、盛有低温液体的杜瓦容器真空夹层的封口必须保护好,切不可突然打开或充入过量 的气体,否则由于绝热破坏,容器内液体迅速蒸发,有可能造成事故。 3、使用玻璃杜瓦瓶时,应小心,要避免骤冷骤热。否则玻璃杜瓦瓶可能破裂。 4、当心不要让低温液体触及人体,否则会造成冻伤。 5、氦气必须回收,使用液氦时必须按照操作规程进行。 实验7 低温固体热导率测量 该实验是使操作者对低温下的热测量有初步的了解,并对纯金属热导率随温度的变化有一些感性的认识。 【预习要求】 了解金属传热的物理过程,热导率与温度的关系。实验表明;金属热导率随温度的变化 在纯金属的传热中晶格热导部分占的比例很小,热量几乎全部都是由自由电子传导的。热阻和电阻的来源相同,一是晶格的热振动,及声子的散射;二是杂质和缺陷的散射。因此,和电阻类似,热阻也可近似表达成 W W W r i =+ (3-7-1) w i 和 w R 分别为声子和杂质因起的热阻 。电阻R和热阻之间的关系由魏弗兰茨(Wiedmann-franz )定律给出: L WT R = (3-7-2) 式中L 称为洛伦兹(Lorentz )常数,数值为2·45×10-8W ·Ω·K -2。公式中分母出现T 的原因是,自由电子 运载的电荷是常数,但运载的热能却正比于温度T 并随温度的一次方变化。这个定律在低温区(杂质散射为主)和高温区(电子散射时能量变化比kT 小得多时)是正确的,在中温区不够满意。 利用(3-7-2)式,我们可以从()T R 的行为推断出()T W 的变化。对杂质散射,R r 是常数,W r 应正比于T -1,在高温区R i ∝T ,W i 应为常数;在中温区,R i 一般按T 5变化,按式(3-7-2),w i 应正比于T 4,实际上W i 是正比于T 2 ,表现和式(3-7-2)的偏离。图3-7-1是热阻W 随温度的变化;图3-7-2是相应的热导λ=1∕W 随问度T 的变化。 图3-7-1 图3-7-2

金属材料硬度试验

实验一 金属材料的硬度实验 一、实验目的 1.了解布氏、洛氏硬度测定的基本原理及应用范围。 2.了解布氏、洛氏硬度试验机的主要结构及硬度数据的测试方法。 二、实验原理 金属的硬度可以认为是金属材料局部表面在接触压力的任用下抵抗塑性变形的一种能力。硬度值是材料性能的一个重要指标。试验方法简单、迅速,不需要专门的试样,同时保持试样的完整性,设备也比较简单。而且对大多数金属材料,可以硬度值估算出它的抗拉强度。因此在设计图纸的技术条件中大多规定材料的硬度值。检验材料或工艺是否合格有时也需用硬度。所以硬度试验在生产中广泛使用。 硬度测试方法很多,使用最广泛的是压入法。压入法就是一个很硬的压头以一定的压力压入试样的表面,使金属产生压痕,然后根据压痕的大小来确定硬度值。压痕越大,则材料越软;反之,则材料越硬。根据压头类型和几何尺寸等条件的不同,常用的硬度测试方法可分为布氏法、洛氏法和维氏法三种。 三、布氏硬度(HB ) 布氏硬度用符号HB 表示。这种试验方法是把规定直径(10mm 、5mm 、2.5mm )的硬质合金球以一定的试验力压入所测材料的表面(如图1-1所示),保持规定时间后,测量表面压痕直径(如图1-2所示),然后按下式计算硬度: ) (222d D D D P F P HBW --= = π 式中 HBW-表示用硬质合金球测试时的布氏硬度值; P-载荷(kgf );(1kgf =9.8N ) D-压头钢球直径(mm ); d-压痕平均直径(mm );

F-压痕面积(mm2); 式中只有d 是变数,故只需要测出压痕直径d ,根据已知D 和P 值就可以计算出HB 值。布氏硬度习惯上不标出单位。生产中已专门制定了平面布氏硬度值计算表见附录一,用读数显微镜测出压痕直径后,直接查表就可获得HB 硬度值。 图1-1 布氏硬度测量示意图 图1-2 用读数显微镜测量压痕直径 由于金属材料有软有硬,工件有厚有薄,有大有小,如果只采用同一种载荷和钢球直径时,就会出现对硬的材料合适,而对软的材料可能发生钢球陷入金属内部的现象;若对厚的材料合适,而对薄的材料又可能会出现压透的现象。因此为了得到统一的,可以相互比较的值,必须使P 和D 之间维持某一比值关系。这样对同一种材料而言,不论采用何种大小的载荷和钢球直径,只要能满 足2 D P =常数,所得的HB 值是同样的;则对不同的材料来说,所得的HB 值也是可以进行比较的。按照GB231-63规定,2 D P 比值有30、10和2.5三种。 具体试验数据的选择和使用范围可参考表1-1 由于硬度和强度都以不同形式反映了材料在外力作用下抵抗塑性变形的能力,因而硬度和强度之间有一定的关系,其经验换算公式为:

BS EN 10045-11990 金属材料夏比冲击试验 第一部分测试方法 中文版

BS EN 10045-11990 金属材料夏比冲击试验 第一部分测试方法中文版 第一部分:测试方法(V和U型缺口) 实施对象和领域: 本标准详细的描述了金属材料夏比冲击试验的的细节。 3、试验原理: 用规定高度的摆锤对处于简支梁扎的缺口试样进行依次性打击,测量试样折断时的冲击吸取功。 4、名词: 本标准所适用的名词如表1和图1、图2: 表1——名词 5、试样: 5.1 取样数量和取样位置应该在相应的产品标准中作出详细讲明。 5.2 标准试样应该是55mm长,同时它的截面是10mm见方的正方体,在长度的中心部位开有缺口,两种型号的缺口详细讲明如下:

a)V型缺口角度45度,缺口深2mm,缺口弯曲半径0.25mm,如不能制备标准试样,能够采纳宽度7.5mm或5mm等小尺寸试样,缺口应该开在狭窄的一面。 B)U型缺口或锁眼缺口试样,缺口深5mm ,缺口弯曲半径1mm。 除了铸造试样缺口所在的两平行表面达到所需要的周密度则能 够不进行机加工以外,原则上试样应该机加工完成。 5.3 缺口所在平均平面应垂直于试样的纵轴线。 5.4 试样详细尺寸公差在表2中给出。 表2——试样尺寸许用公差

5.5 。。。。。。如果相应的产品标准只能承诺,不管如何,只有两个试样的形状和尺寸相同,那他们的结果比较才有意义。 5.6 机加工应该尽可能的不改变试样的性能,例如,冷热加工应该把对试样的阻碍减到最小。开缺口应该专门小心。 6.1 试验机应该被严格的制造和安装并符合欧洲标准10 045-2的要求。 试验机要紧的特点含义见表3。 表3——试验机特点

6.2 当摆锤式冲击试验机的冲击能量为(300±10)J并采纳标准试样时,则试验视为在正常条件下进行。在上述条件下确定的缺口冲击功的缩写符号为: ——KU 适用于U型冲击试样 ——KV 适用于V型冲击试样 例如: ——KV=121J: ——名义能量300J ——标准V型缺口试样 ——断裂吸取功121J 6.3 试验机有不同的承诺冲击能量,因此在刻度盘上指针所指的冲击能量前应增加KU或KV的标记。 例如: KV 150:承诺能量150 J KU 100:承诺能量100 J ——KU 100=65 J ——承诺最大能量100J ——标准U型缺口试样 ——冲击功65 J 6.4 关于V型缺口辅助试样,KV符号后应补上实验机承诺冲击能量和试样的宽度。 例如: ——KV300/7.5:可用最大冲击功300 J,试样宽度7.5 mm ——KV150/5:可用最大冲击功150 J,试样宽度5 mm ——KV150/7.5=83 J

有关PPR低温脆性的解释

有关PPR低温脆性的解释 1、PPR管为什么存在低温脆性 答:PP-R是无规共聚聚丙烯,也就是我们所说的Ⅲ型聚丙烯。它是由丙烯单体和少量乙烯单体在加热、加压和催化剂作用下无规共聚得到的。乙烯单体随机地分布到丙烯长链中,其中乙烯单体一般控制在3-5%之间。乙烯含量和乙烯与丙烯的聚合方式决定了其具有冷脆性的特点。在气温较低的情况下,尤其冬季施工过程中,管材在低温下柔韧性有所降低,刚性增强,表现为脆性。在外力冲击或过大的意外载荷作用下,可能出现管材直线开裂等情况。给施工带来不便。为此相关国家规范针对此问题做出了明确的要求。在冬季施工时,应注意建筑给水聚丙烯(PP-R)管道的低温脆性的特点,并制定相应施工方案。GB/T50349-2005对此有详细规定。 2、PPR管材冷脆性在实际应用中的表现形式 答:当环境温度较低时,PPR管材韧性降低,表现为脆性,当管材受到外力的冲击或者重压时,会出现直线开裂现象,并且开裂情况是由内管开始,向外管延伸。管材受到一个点的作用力造成的开裂后,在瞬间内,这种开裂会沿着管材的轴线方向快速增长,这个特性叫做快速裂纹增长。另冬季管材在运输、在工地及安装过程中因外力致伤,会在使用过程中出现脆性和韧性(输送热水时)爆管。 3、大家经常会走入的误区----能砸裂的PPR水管就是差水管 答:这种判断方法是错误的,能否砸裂PPR管,这是一种判断PPR好坏的误区,这并不能检验PPR好坏与否,因为PP-R材料本身性能随着环境温度而发生一定程度的改变。在气温较低的情况下,尤其冬季管材在低温下柔韧性有所降低,刚性增强,表现为脆性。在外力冲击或过大的意外载荷作用下,可能出现管材断裂等情况。给施工带来不便。为此相关国家规范针对此问题做出了明确的要求。在冬季施工时,应注意建筑给水聚丙烯(PP-R)管道的低温脆性的特点,并制定相应施工方案。GB/T50349-2005对此有详细规定。反而是一些添加其它原料的假冒伪劣PPR管,倒是不易砸坏!真正的既能输送高温热水又能输送冷水可管用

金属材料检测检验检测标准

金属材料检测检验检测标准 金属材料检测范围涉及对黑色金属、有色金属、合金、铸件、机械设备及零部件等的机械性能测试、化学成分分析、金相分析、精密尺寸测量、无损探伤、耐腐蚀试验和环境模拟测试等。青岛科标检测中心出具权威资质认证国家认可的检测报告。 检测项目: 常规元素分析 品质(成份分析)、硅(Si)、锰(Mn)、磷(P)、碳(C)、硫(S)、镍(Ni)、铬(Cr)、铜(Cu)、镁(Mg)、钙(Ca)、铁(Fe)、钛(Ti)、锌(Zn)、铅(Pb)、锑(Sb)、镉(Cd)、铋(Bi)、砷(As)、钠(Na)、钾(K)、铝(Al)、牌号测定等 贵金属元素分析 银(Ag)、金(Au)、钯(Pd)、铂(Pt)、铑(Rh)、钌(Ru)、铱(Ir)、锇(Os) 物理性能:磁性能、电性能、热性能、抗氧化性能、耐磨、盐雾、腐蚀、密度、热膨胀系数、弹性模量、硬度; 化学性能:大气腐蚀、晶间腐蚀、应力腐蚀、点蚀、腐蚀疲劳、人造气氛腐蚀; 力学性能:拉伸、弯曲、屈服、疲劳、扭转、应力、应力松弛、冲击、磨损、硬度、耐液压、拉伸蠕变、扩口、压扁、压缩、剪切强度等; 工艺性能:细丝拉伸、断口检验、反复弯曲、双向扭转、液压试验、扩口、弯曲、卷边、压扁、环扩张、环拉伸、显微组织、金相分析; 检测产品: 钢铁材料:结构钢、铜、铝、铁、不锈钢、耐热钢、高温合金、精密合金等 金属及其合金:轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等; 特种金属材料:功能合金、金属基复合材料等; 金属材料制品:生铁、铝管、铁板、铁管、钢锭、钢坯、型材、线材、金属制品、有色金属及其制品等。 检测标准: 978-7-5066-5282-7 无机非金属材料检测标准手册胶凝材料卷 CB 1369-2002 舰船用金属材料进货检验及验收规则 CB 1370-2002 舰船用非金属材料进货检验及验收规则 CB/Z 264-1998 金属材料低周疲劳表面裂纹扩展速率试验方法

最新金属材料硬度对照表

硬度知识 一、硬度简介: 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: ?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 ?HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 ?HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV值(kgf/mm2)。 ############################################################################################# 注: 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。 洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。本站《硬度对照表》一文对钢的不同硬度值的换算给出了表格,请查阅。 ##############################################################################################

金属材料硬度对照表

布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而里氏硬度(HL)、肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 1、钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同,●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。●HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。●HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。●HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ VA(冲击速度)。便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 2、HB - 布氏硬度;布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。另外: 1.HRC含意是洛式硬度C标尺, 2.HRC和HB在生产中的应用都很广泛 3.HRC适用范围HRC 20--67,相当于HB225--650 若硬度高于此范围则用洛式硬度A标尺HRA。若硬度低于此范围则用洛式硬度B标尺HRB。布式硬度上限值HB650,不能高于此值。 4.洛氏硬度计C标尺之压头为顶角120度的金刚石圆锥,试验载荷为一确定值,中国标准是150公斤力。布氏硬度计之压头为淬硬钢球(HBS)或硬质合金球(HBW),试验载荷随球直径不同而不同,从3000到31.25公斤力。 5.洛式硬度压痕很小,测量值有局部性,须测数点求平均值,适用成品和薄片,归于无损检测一类。布式硬度压痕较大,测量值准,不适用成品和薄片,一般不归于无损检测一类。 6.洛式硬度的硬度值是一无名数,没有单位。(因此习惯称洛式硬度为多少度是不正确的。)布式硬度的硬度值有单位,且和抗拉强度有一定的近似关系。 7.洛式硬度直接在表盘上显示、也可以数字显示,操作方便,快捷直观,适用于大量生产中。布式硬度需要用显微镜测量压痕直径,然后查表或计算,操作较繁琐。 8.在一定条件下,HB与HRC可以查表互换。其心算公式可大概记为:1HRC≈1/10HB。硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 金属材料硬度对照表 硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。

ASTM E10-10 中文版 金属材料布氏硬度的标准试验方法

ASTM E10-10金属材料布氏硬度的标准试验方法本标准按固定的编号E10发布,紧随标记后的数字代表最初实施的年份,在经修订的情况下,代表最新修订本的年份。括号中的数字代表最近一次复审的年份,右上标(ε)表示自上次修订或复审以来所作的编辑上的修改。 本标准业经批准供美国国防部的机构使用。 1.范围 1.1本试验方法适用于通过布氏压痕硬度原理测定金属材料布氏硬度。本标准包括布氏硬度试验机的要求和布氏硬度试验执行程序。 1.2本标准包括以下四个附件的附加信息要求: 布氏硬度试验设备的检定附录A1 布氏硬度标准化设备附录A2 布氏硬度压头的标定附录A3 布氏硬度试验块的标定附录A4 1.3本标准包括布氏硬度试验相关的非强制性的附件信息: 布氏硬度数值表附件X1 确定布氏硬度不确定性程序的举例附录X2 1.4布氏硬度开始提出这个概念之时,力值水平采用千克-力(kgf)作为单位。尽管本标准规定力值采用SI国际体系单位(即牛顿N),但由于历史沿革和方便继续使用kgf单位等原因,本标准还采用kgf单位表示的数值作为参考信息,同时本标准的多数讨论所涉及的力值单位均为kgf单位。 1.5本标准并不涉及与使用本标准有关的所有安全问题,若有任何安全问题。在使用本标准以前,制定适当安全和健康操作规范并确定规定极限值的适用性,是本标准用户的职责。 2.引用文件 2.1ASTM标准 E29试验数据采用有效数字确定符合规范的标准方法 E74对用于验证试验机力值指示的测力仪进行校准的校准方法

E140布氏硬度、维氏硬度、洛氏硬度、洛氏表面硬度、努氏硬度和肖氏硬度的材料硬度转换表 E384材料努氏和维氏硬度标准测试方法 2.2美国轴承供应商协会标准 ABMA10-1989金属压球 2.3ISO标准 ISO/IEC17011合格评定认可机构通用要求 ISO/IEC17025校准和试验执行通用要求 3.术语和等式 3.1定义 3.1.1校准—通过与仲裁设备或仲裁标准装置测定的数值相互比较,确定关键参数的数值。 3.1.2检定—进行检查或测试,以确保符合规范要求。 3.1.3标准化—通过检定或校准,使得与已知标准试块一致。 3.1.4布氏硬度试验—采用鉴定试验机施加力值到某一压头(直径为D的硬质合金压球),在规定的条件下,将压头压入材料表面,则该压痕硬度试验称为布氏硬度试验。力值移除之后,测量压痕直径d。 3.1.5布氏硬度数值—正比于与试验力除以凹痕曲面面积的商的数,假定凹痕是球形的,并具有该球的直径。 3.1.6布氏硬度刻度—用于识别用于执行布氏硬度试验的压头直径和施加力值特定组合的某一称号。 3.1.7布氏硬度试验机—普通试验用途用布氏硬度设备。 3.1.8布氏硬度标准化设备—用于布氏硬度试块标准化的布氏硬度设备。标准化设备与常规布氏硬度试验机不同,通常某些参数设置为较紧公差。 3.1.9力值-直径比率—该比率指试验力(单位为kgf)除以压头直径(单位为mm)的比值(见表1)。 3.2等式: 3.2.1布氏硬度数值计算公式如下:

EN+金属材料夏比冲击试验(中文)

EN+金属材料夏比冲击试验(中文)

————————————————————————————————作者:————————————————————————————————日期:

EN10045 中文版 金属材料夏比冲击试验 第一部分:测试方法(V和U型缺口) 1、实施对象和领域: 1.1本标准详细的描述了金属材料夏比冲击试验的的细节。 2、涉及标准: 3、试验原理: 用规定高度的摆锤对处于简支梁扎的缺口试样进行依次性打击,测量试样折断时的冲击吸收功。 4、名词: 本标准所适用的名词如表1和图1、图2: 表1——名词 涉及名词 名称单位 (看图1和 图2) 1 试样长度mm 2 试样厚度mm 3 试样宽度mm 4 缺口处材料厚度mm 5 缺口角度Degree 6 缺口半径mm 7 砧骨距离mm 8 砧骨半径mm 9 每个枕骨锥形角度Degree 10 摆锤锥形角度Degree 11 摆锤弯曲半径mm 12 摆锤宽度mm KU或KV冲击功Joule

5、试样: 5.1 取样数量和取样位置应该在相应的产品标准中作出详细说明。 5.2 标准试样应该是55mm长,并且它的截面是10mm见方的正方体,在长度的中心部位开有缺口,两种型号的缺口详细说明如下: a)V型缺口角度45度,缺口深2mm,缺口弯曲半径0.25mm,如不能制备标准试样,可以采用宽度7.5mm或5mm等小尺寸试样,缺口应该开在狭窄的一面。 B)U型缺口或锁眼缺口试样,缺口深5mm ,缺口弯曲半径1mm。 除了铸造试样缺口所在的两平行表面达到所需要的精密度则可以不进行机加工以外,原则上试样应该机加工完成。 5.3 缺口所在均匀平面应垂直于试样的纵轴线。 5.4 试样详细尺寸公差在表2中给出。 表2——试样尺寸许用公差 名称 U型冲击试样V型冲击试样 名义尺 寸 机械公差 名义尺 寸 机械公差 ISO符 号 ISO符 号 长度55mm ±0.60m m j s 15 55mm ±0.60mm j s 15 厚度10mm ±0.11m m j s 13 10mm ±0.60mm j s 12 宽度 标准试样10mm ±0.11m m j s 13 10mm ±0.11mm j s 13 小尺寸试样7.5mm ±0.11mm j s 13 小尺寸试样5mm ±0.06mm j s 12 缺口角度45o±2o 缺口处材料厚度5mm ±0.09m m j s 13 8mm ±0.06mm j s 12 缺口半径1mm ±0.07m j s 12 0.25mm ±0.025m

金属材料检测报告

金属材料检测报告 抗拉强度(tensilestrength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临 界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着 横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变 形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈

缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensilestrength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yieldstrength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yieldstrength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。

金属材料检测标准大汇总

金属材料检测标准大汇 总 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料化学成分分析 GB/T 222—2006钢的成品化学成分允许偏差 GB/T 系列钢铁及合金X含量的测定 GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) GB/T 系列海绵钛、钛及钛合金化学分析方法X量的测定 GB/T 系列铜及铜合金化学分析方法第X部分:X含量的测定 GB/T 5678—1985铸造合金光谱分析取样方法 GBT 系列铝及铝合金化学分析方法 GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 GB/T 系列镁及镁合金化学分析方法第X部分X含量测定 金属材料物理冶金试验方法 GB/T 224—2008钢的脱碳层深度测定法 GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 GB/T 227—1991工具钢淬透性试验方法 GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 GB/T 1979—2001结构钢低倍组织缺陷评级图 GB/T 1814—1979钢材断口检验法 GB/T 2971—1982碳素钢和低合金钢断口检验方法 GB/T —2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法

GB/T —2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法GB/T 3488—1983硬质合金显微组织的金相测定 GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 GB/T 4236—1984钢的硫印检验方法 GB/T 4296—2004变形镁合金显微组织检验方法 GB/T 4297—2004变形镁合金低倍组织检验方法 GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 GB/T —2015不锈钢5%硫酸腐蚀试验方法 GB/T 4462—1984高速工具钢大块碳化物评级图 GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) GB/T 5168—2008α-β钛合金高低倍组织检验方法 GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法GB/T 10851—1989铸造铝合金针孔 GB/T 10852—1989铸造铝铜合金晶粒度 GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 GB/T 13298—2015金属显微组织检验方法

CRS-RBT70橡胶低温脆性试验机(单试样法)

苏州亚诺天下仪器有限公司YANUO WORLD Physical testing equipment expert CRS-RBT70橡胶低温脆性试验机(单试样) 产品介绍

一、特点及用途:测定硫化橡胶在规定条件下试样受冲击出现破坏时的最高温度,即为脆性温度,可以对塑料及其他弹性材料在低温条件下的使用性能作比较性鉴定。可以测定不同橡胶材料或不同配方的硫化橡胶的脆性温度和低温性能的优劣。因此无论在科学研究材料及其制品的质量检验,生产过程的控制等方面均是不可缺少的。本仪器各项技术指标符合GB/T1682-2014硫化橡胶低温脆性单试样法等国家标准的要求。本仪器再原有设计中,增加了冷井搅拌器,使容器四周温度更均匀,下降温度更快,节约时间,降低了能耗。 二、技术参数 1、试验温度:-60℃—0℃:-70℃—0℃:-80℃—0℃【客户自选】 2、冲击速度:2m/s±0.2m/s 3、恒温后,试验3min时间内温度波动:<±0.5℃ 4、冲击器中心到夹持器下端距离:11±0.5mm 5、外型尺寸:720×700×1380mm 6、功率:1100W 7、冷井容积:3L 三、结构原理 3.1升降夹持器 升降夹持器由带有夹持器的气缸和气缸座组成。 从试样受冲击部位,到夹持器下端的距离为11.0±0.5mm 3.2冲击装置 冲击装置由冲击器和弹簧组成。 3.3冲击器 冲击器头部形状和尺寸。冲击器的重量为200±20g,其工作行程为40±1mm。冲击气缸在复位状态下,冲击器端部到试样的距离为25±1mm。 四、使用方法 4.1接通电源,温控仪和计时器显示灯亮。 4.2向冷井中注入冷冻介质(一般为工业乙醇),其注入量应保证夹持器的下端到液面的距离为75±10mm。 4.3将试样垂直夹在夹持器上。夹的不宜过紧或过松,以防止试样变形或脱落。 4.4按下夹持器,开始冷冻试样,同时启动时序控制开关(或按动秒表)计时。试样冷冻时间规定为3.0±0.5min。试样冷冻期间,冷冻介质温度波动不得超过±1℃。 4.5提起升降夹持器,使冲击器在半秒钟内冲击试样。 4.6取下试样,将试样按冲击方向弯曲成180°,仔细观察有无破坏。 4.7试样经冲击后(每个试样只准冲击一次),如出现破坏时,应提高冷冻介质的温度,否则降低其温度,继续进行试验。 通过反复试验,确定至少有两个试样不破坏的最低温度和至少一个试样破坏的最高温度,如这两个结果相差不大于1℃时,即试验结束。 五、试验标准 5.1规格 试样的长为25.0±0.5mm,宽为6.0±0.5mm,厚为2.0±0.3mm。 5.2要求 试样的表面应光滑,无外来杂质及损伤。成品应经打磨后裁制成相应尺寸。

金属硬度标准

金属硬度标准 金属的硬度是指金属材料抵抗硬物压入的能力.常用的硬度指标有: 布氏硬度、洛氏硬度和维氏硬度。硬度是衡量金属材料软硬程度的指标。 金属的强度是指金属在外力作用下,抵抗塑性变形和断裂的能力。常用的强度指标有:屈服强度、抗拉强度。 硬度是评定金属材料力学性能最常用的指标之一。对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。 由于各种硬度试验方法原理的不同,“硬度”本身是一个不确定的物理量。即:对于同一试样,用不同方法测定的硬度值各不相同。各种硬度反映的是在各自规定的试验条件下(不同的压头和不同的试验力)所表现的材料弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。 PHR系列洛氏硬度计体积小,重量轻,操作简单,使用方便,精度较高,价格低廉,可以快速测试,直接读取硬度值。这是一种面向车间,面向个人,人人可用,随处可用的仪器。这种仪器的出现改变了传统的硬度测试概念,硬度测试不再是麻烦的、耗时的、需要专业人员在实验室里完成的。其简单方便,如同使用千分尺一样。这种仪器的使用,对于金属制品、机械加工行业具有重要意义,各种中小尺寸的金属零件都可以测试,应用范围十分广阔。这种仪器非常适于在生产现场对成批加工的成品或半成品工件做逐件检测。它可用于生产现场、销售现场和材料仓库。 将压头(金刚石圆锥、钢球或硬质合金球)按图所示,分两个步骤压入试样表面,保持规定时间后,卸除主试验力 F1 ,测量在初试验力 F0 作用下的残余压痕深度 h 。 根据 h 值及与标尺有关的常数 N 和 s ,用公式( 1 )计算洛氏硬度值: 洛氏硬度HR ………………( 1 ) 对于标尺A、C、D,N=100,s=0.002;对于标尺B、E、F、G、H、K,N=130,s=0.002;对于标尺N、T,N=100,s=0.001。 每一洛氏硬度单位对应的压痕深度,洛氏硬度为0.002mm,表面洛氏硬度为 0.001mm。压痕越浅,硬度越高。 1—在初始试验力 F0 下的压入深度; 2—在总试验力 F0+F1 下的压入深度;3—去除主试验力 F1 后的弹性回复深度; 4—残余压入深度 h ; 5—试样表面; 6—测量基准面; 7—压头位置。 主要技术规格 硬度标尺: 洛氏—A 、 B 、 C 、 D 、 E 、 F 、 G 、 H 、 K 表面洛氏—15N 、 30N 、 45N 、 15T 、 30T 、 45T 加力方式: 直接加力 试验力: 洛氏—初试验力 10kg ,总试验力 60kg 、 100kg 、 150kg 表面洛氏—初试验力 3kg ,总试验力 15kg 、 30kg 、 45kg

金属材料冲击实验指导书

实验二金属材料冲击实验 一、实验目的 1、观察分析低碳钢材料在常温冲击下的破坏情况和断口形貌。 2、测定低碳钢材料的冲击韧度αk值。 3、了解冲击试验方法。 二、实验设备 1、金属摆锤冲击试验机。 2、游标卡尺。 三、实验材料 本实验采用GB/T 229?1994标准规定的10mm?10mm?55mm U形缺口或V 形缺口试件。 四、实验步骤及注意事项 1、测量试件缺口处尺寸,测三次,取平均值,计算出横截面面积。 2、检查回零误差和能量损失:正式试验开始前在支座上不放试件的情况下 “空打”一次: (1)取摆:按“取摆”键,摆锤逆时针转动; (2)退销:按“退销”键,保险销退销; (3)冲击:按“冲击”键,挂/脱摆机构动作,摆锤靠自重绕轴开始进行冲击; (4)放摆:按“放摆”键,保险销自动退销,当摆锤转至接近垂直位置时便自动停摆; (5)清零:按“清零”键,使摆锤角度值复位为零。注意:必须在摆锤处于垂直静止状态时方可执行此动作。 第一次“空打”后显示屏上显示的空打冲击吸收功N1即为回零误差,此值经校正后应不大于此摆锤标称能量值的0.1%。 继续“空打”五次,记下第六次空打冲击吸收功N6,则摆锤在摆动中由于空气和摩擦阻力造成的能量损失为:

()1610 1N N e -= 此值应不大于此摆锤标称能量值的0.5%。 3、正式试验:按“取摆”键,摆锤逆时针转动上扬,触动限位开关后由挂摆机构挂住,保险销弹出,此时可在支座上放置试件(注意试件缺口对中并位于受拉边)。然后顺序执行以上“取摆”、“退销”、“冲击”、“放摆”动作。显示屏上将显示该试件的冲击吸收功和相应的冲击韧度。 4、摆锤抬起后,严禁在摆锤摆动范围内站立、行走和放置障碍物。 五、实验数据记录及结果处理

金属材料拉伸试验标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸 编制: 审核: 批准: 生效日期: 受控标识处: 分发号: 发布日期:2016年9月27日实施日期:2016年9月27日

本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。范围 适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2975 钢及钢产品力学性能试验取样位置和试样制备 GB/T 8170 数值修约规则与极限数值的表示和判定 GB/T 10623 金属材料力学性能试验术语 术语和定义 试件/试样test piece/specimen 通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。 标距gauge length 用于测量试样尺寸变化部分的长度。 原始标距original gauge length 在施加试验力之前的标距长度。 断后标距final gauge length after fracture 试样断裂后的标距长度。 平行长度parallel length 试样两头部或加持部分(不带头试样)之间平行部分的长度。 断面收缩率percentage reduction of area 断裂后试样横截面积的最大缩减量(S0-S u)与原始横截面积(S0)之比的百分率。 符号和说明

与试样相关的符号及说明如下: 形状和尺寸 一般要求 试样的形状与尺寸取决于要被试验的金属产品的形状和尺寸。通常从产品,压制坯或铸件切取样坯经机械加工制成试样。但具有恒定横截面的产品(型材,棒材,线材等)和铸造试样(铸铁和铸造非铁合金)可以不经机加工而进行试验。 原始标距与横截面有L0=k 关系的试样称为比例试样,国际上使用的比 例系数k。但试样横截面积太小时,以致采用比

6低温冲击实验

六、低温冲击实验 一、实验目的: 1. 了解材料的低温脆性,学会测定材料韧脆转变温度的原理和方法; 2. 掌握冲击韧性的实验方法,要求能正确地测试材料的冲击韧性; 3. 熟悉冲击试样的宏观断口特征。 二、实验仪器材料: JB30GD 型冲击实验机、游标卡尺、低温箱、液氮罐、标准夏氏V 型缺口试样 三、实验原理: (一)冷脆与冷脆转变温度T K 有一些金属材料如体心立方晶格的中、低强度结构钢,当其服役温度降低时,其塑性、韧性便急剧降低,使材料脆化,这种现象叫做冷脆。由于温度降低造成金属由韧性状态转变为脆性状态的温度叫做冷脆转变温度,用符T K 表示。不同金属的冷脆转变温度T K 是不同的,T K 愈低,表示脆化倾向愈小,即在低温下使用时危险性愈小。金属的冷脆现象对一些在寒冷地带服役的机械设备(工程机械、运输机械、桥梁、铁路、输油管道等)带来很大危害及影响。因此,对制造这些设备的金属材料,常常需要测定其冷脆转变温度T K 以确定其低温脆化倾向的大小。 (二)冷脆转变温度T K 的测定方法 金属冷脆转变温度T K 可通过低温系列温度冲击实验来测定。所谓低温系列冲击试验就是对同一种金属材料的冲击试样,在低于室温的一系列不同温度下作断口百分数 冲击吸收功温度t/°C 纤维区 晶状区 X100率 分百口断图1 冲击吸收功或断口形貌与温度的关系曲线

冲击试验。根据其冲击吸收功A K 随温度t 的变化关系,或试样冲断后断口形貌随温度t 的变化关系,来确定其冷脆转变温度。图l 为体心立方金属的A K —t 或断口率—温度关系曲线示意图。由图可见,这两种曲线一般都由三个部分组成。第一部分为冲击吸收功变化不大的高冲击吸收功部分(上平台),这部分冲击断口形貌特点是灰暗色、纤维状属于韧性断口;第三部分是冲击吸收功变化不大的低冲击吸收功部分(下平台),这一部分冲击断口形貌特点是结晶状,是典型的脆性断裂断口,曲线的中间部分(第二部分)冲击吸收功变化较大,断口形貌为不同比例的结晶状和纤维状的混合断口,所以在这个温度区间即为冷脆转变温度范围。 根据以上两种曲线,可以分别采用能量法或断口形貌法来确定金属材料的冷脆转变温度。 1、 能量法: 以冲击吸收功降低到某一个具体数值时的温度定位T K 。 对于夏比U 型缺口试样,取冲击能量为0.4A KUmax 所对应的温度为T K 或取12(A KUmax +A KUmin )所对应的温度为T K 。 A KUmax 是指室温下100%韧性断口所对应的 冲击吸收功,而A KUmin 是指刚刚出现100% 结晶状断口时所对应的冲击吸收功。 对于夏比V 型缺口试样,通常规定某 一个冲击吸收功所对应的温度T K 。这个冲 击吸收功是根据构件的使用条件来选取的。 2、 断口形貌法 指冲击断口形貌中纤维区所占面积下 降到50%时所对应的温度为T K ,记为 50%FATT 。这种方法主要适用V 型缺口试样。 3、 综合法 将A KU -t 关系曲线中的上平台开始上升的温度定义为t K 。因为这个温度相当于刚刚开始全部形成结晶状断口形貌时的温度,所以这种t K 也叫无塑性转变温度,常用符号NDT 表示。 四、实验步骤 1. 本实验温度可选择:20o C 、0 o C 、-10 o C 、-20 o C 、-30 o C 、-35 o C 、-40 o C 、-50 o C 八个温度,各温度下的冲击试样不得少于3个。 2. 试样的准备:领取试样,在端部打上编号。用棉纱擦净,再测量试样尺寸,最后检查试样缺口处的加工质量。 3. 了解冲击试验机的构造、工作原理、操作方法及安全注意事项 4. 冷却试样:根据试验温度要求在低温恒温箱内放入试样,进行保温。调节温纤维区晶状区剪切唇 图2 冲击断口形貌

相关文档
最新文档