高中数学专题讲义-数列的概念

高中数学专题讲义-数列的概念
高中数学专题讲义-数列的概念

【例1】 请写出下面数列的一个通项公式.

⑴2,0,2,0,2,…

⑵12-,16,112-,120

,…

⑶请写出下面数列的一个通项公式:0.9,0.99,0.999,0.9999,L

【例2】 ⑴ 请写出下面数列的一个通项公式:12,2,92,8,25

2

…,

⑵ 请写出下面数列的一个通项公式:1,2,3,4,5,8,7,16,9…,

【例3】 观察下列等式:

2111,22n i i n n ==+∑ 2

321111,326n i i n n n ==++∑ 3

4321111,424n i i n n n ==++∑ 4

54311111,52330n i i n n n n ==++-∑ 5

654211151,621212n i i n n n n ==++-∑ 6

7653111111,722642n i i n n n n n ==++-+∑ ……………………………………

212

112101

,n

k k k k k k k k k i i a n a n a n a n a n a +--+--==++++???++∑ 可以推测,当2n ≥时,1111

,,12

k k k a a a k +-===+ 2k a -= .

典例分析

数列的概念

【例4】 ⑴根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,

写出点数的通项公式.

⑵将全体正整数排成一个三角形数阵:

按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 .

【例5】 如下图,第⑴个多边形是由正三角形“扩展“而来,第⑵个多边形是由正方形

“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,则6a

【例6】 观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多

是( ),其通项公式为 .

A .40个

B .45个

C .50个

D .55个

【例7】 将正ABC ?分割成2n (2≥n ,n *∈N )个全等的小正三角形(图2,图3分别

给出了2n =,3的情形),在每个三角形的顶点各放置一个数,使位于ABC ?的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列.若顶点A ,B ,C 处的三个数互不相同且和为1,记所有顶点上的数之和为()f n ,则有(2)2f =,(3)f =_________,L ,()f n =_____________.

图3

图2

【例8】 已知一个数列的通项公式是230n a n n =+-.

⑴ 问60-是否是这个数列中的项? ⑵ 当n 分别为何值时,000n n n a a a =><,,? ⑶ 当n 为何值时,n a 有最大值?并求出最大值.

【例9】 一个数列的通项公式是2813n a n n =-+,写出此数列的前五项,并求此数列的

最小项的值?

【例10】 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ????=L ,求数列{}n a 的

通项公式n a .

【例11】 已知整数以按如下规律排成一列:()1,1、()1,2、()2,1、()1,3、()2,2,()3,1,

()1,4,()2,3,()3,2,()4,1,……,则第60个数对是( )

A .()10,1

B .()2,10

C .()5,7

D .()7,5

【例12】 已知数列()1212:,,,0,3n n A a a a a a a n <<

(),1i j i j n ≤≤≤,j i a a +与j i a a -两数中至少有一个是该数列中的一项.现

给出以下四个命题:

① 数列0,1,3具有性质P ;

② 数列0,2,4,6具有性质P ; ③ 若数列A 具有性质P ,则10a =;

④ 若数列()123123,,0a a a a a a <<≤具有性质P ,则1322a a a +=. 其中真命题有( )

A .4个

B .3个

C .2个

D .1个

【例13】 在数列{}n a 中,若221n n a a p --=,

(2,n n *∈N ≥,p 为常数),则称{}n a 为“等方差数列”.下列是对“等方差数列”的判断:

①若{}n a 是等方差数列,则{}

2

n a 是等差数列;

②{}

(1)n -是等方差数列;

③若{}n a 是等方差数列,则{}kn a (k *∈N ,k 为常数)也是等方差数列; ④若{}n a 既是等方差数列,又是等差数列,则该数列为常数列.

其中正确命题序号为 .(将所有正确的命题序号填在横线上)

【例14】 数列{}n a 满足11a =,23a =,()12n n a n a λ+=-(1,2,n =L ),则3a 等于( )

A .15

B .10

C .9

D .5

【例15】 在一个数列中,若每一项与它的后一项的乘积都同为一个常数(有限数列最

后一项除外),则称该数列为等积数列,其中常数称公积.若数列{}n a 是等积数列,且62a =,公积为6,则159********a a a a a ????????的值是( )

A .5022

B .5023

C .5032

D .5033

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学-数列的概念与简单表示法教案

课题: §2.1数列的概念与简单表示法 授课类型:新授课 备课人: ●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的一个通项公式;了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项; 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 了解数列的概念和简单表示法,了解数列是一种特殊函数,体会数列是反映自然规律的数学模型 ●教学难点 将数列作为一种特殊函数去认识,了解数列与函数之间的关系,根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入 (引言)数产生于人类社会的生产、生活需要,它是描绘静态下物体的量,因此,在人类社会发展的历程中,离不开对数的研究,在这一背景下产生数列。数列是刻画离散现象的函数,是一种重要的数学模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列 三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. ⒊数列的一般形式:ΛΛ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

2018年高中数学北师大版必修五:第1章 §1-1.1 数列的概念包含解析

[A 基础达标] 1.下列说法中不正确的是( ) A .数列a ,a ,a ,…是无穷数列 B .1,-3,45 ,-7,-8,10不是一个数列 C .数列0,-1,-2,-3,…不一定是递减数列 D .已知数列{a n },则{a n +1-a n }也是一个数列 解析:选B.A ,D 显然正确;对于B ,是按照一定的顺序排列的一列数,是数列,所以B 不正确;对于C ,数列只给出前四项,后面的项不确定,所以不一定是递减数列.故选B. 2.已知数列{a n }的通项公式为a n =1+(-1)n + 12,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1 C.12,0,12,0 D .2,0,2,0 解析:选A.当n 分别等于1,2,3,4时,a 1=1,a 2=0,a 3=1,a 4=0. 3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( ) A .30是数列{a n }的一项 B .44是数列{a n }的一项 C .66是数列{a n }的一项 D .90是数列{a n }的一项 解析:选C.分别令2n 2-n 的值为30,44,66,90,可知只有2n 2-n =66时,n =6(负值舍去),为正整数,故66是数列{a n }的一项. 4.已知数列的通项公式是a n =? ????2,n =1,n 2-2,n ≥2,则该数列的前两项分别是( ) A .2,4 B .2,2 C .2,0 D .1,2 解析:选B.当n =1时,a 1=2;当n =2时,a 2=22-2=2. 5.如图,各图形中的点的个数构成一个数列,该数列的一个通项公 式是 ( ) A .a n =n 2-n +1 B .a n =n (n -1)2 C .a n =n (n +1)2 D .a n =n (n +2)2 解析:选C.法一:将各图形中点的个数代入四个选项便可得到正确结果.图形中,点的个数依次为1,3,6,10,代入验证可知正确答案为C. 法二:观察各个图中点的个数,寻找相邻图形中点个数之间的关系,然后归纳一个通项公式.观察 点的个数的增加趋势可以发现,a 1=1×22,a 2=2×32,a 3=3×42,a 4=4×52,所以猜想a n =n (n +1)2 ,故选C.

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

《数列的概念与简单表示法》优质课比赛教学设计

数列的概念与简单表示法 一、教材与教学分析 1.数列在教材中的地位 根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题). 2.教学任务分析 (1)了解数列的概念 新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类. (2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系. 3.教学重点与难点 重点:理解数列的概念,认识数列是反映自然规律的基本数学模型. 难点:认识数列是一种特殊的函数,发现数列与函数之间的关系. 二、教学方法与学习方法 自主学习与合作探究相结合. 三、教学情境设计 问题设计设计意图师生活动 问题一:根据实际例子,归纳数列的概念. (1)棋盘中的数学 (2)一尺之棰,日取其半,万世不竭.——《庄子》 (3)三角形数; (4)正方形数; (5)观察树枝数目; (6)餐馆一周的营业额. 从生活实例引 入,让学生认识数 列是一种重要的数 学模型. 认识数列具有 顺序性.并总结数 列的定义. 师:引导学生分析每一列数的规律,并 利用所发现的规律求出下一个数. 生:分析每一个数的规律并利用规律求 出下一个数. 师:让学生体会从实际生活中提炼出一 列数据,分析这些数据的规律,利用这些规 律解决一些实际生活问题,引出数列是一种 重要的数学模型.(板书课题——§2-1-1 数列的概念) 师:请分析六组数的共同特征,总结数 列的概念. 生:分析并找出规律,总结数列的概念: 按照一定顺序排列着的一列数称为数列. 问题二:思考下面两个问认识数列是有师:肯定学生的回答,并引导学生分析

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高考第一轮复习数学:3.1 数列的概念

第三章数列 ●网络体系总览 ●考点目标定位 1.知识要求:(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出一种数列的表示方法,并能写出数列的前n项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解决简单的问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 2.能力要求:培养观察能力、化归能力和解决实际应用问题的能力. ●复习方略指南 本章在历年高考中占有较大的比重,约占10%~12%,特别是2002年共计26分,占17%,2003年共计21分,占14%,2004年26分,占17%.考题类型既有选择题,也有填空题和解答题,既有容易题,也有中档题,更有难题.由于等差数列和等比数列在内容上是平行的,所以在复习时要应用对比去认识、理解、掌握数列知识. 纵观近几年的高考试题,可发现如下规律: 1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有. 2.数列中a n与S n之间的互化关系也是高考的一个热点. 3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用. 4.解答题的难度有逐年增大的趋势. 因此复习中应注意: 1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算. 3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

高考数学专题复习数列求和

第4讲数列求和 一、选择题 1.设数列{(-1)n}的前n项和为S n,则对任意正整数n,S n=( ) A.n[1n-1] 2 B. 1n-1+1 2 C.1n+1 2 D. 1n-1 2 解析∵数列{(-1)n}是首项与公比均为-1的等比数列, ∴S n=11n1 11 = 1n-1 2 . 答案 D 2.已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|=( ) A.66 B.65 C.61 D.56 解析当n=1时,a1=S1=-1,当n≥2时,a n=S n-S n-1=n2-4n+2-[(n -1)2-4(n -1)+2]=2n-5.∴a2=-1,a3=1,a4=3,…,a10=15,∴|a1| +|a2|+…+|a10|=1+1+81+15 2 =2+64=66. 答案 A 3.在数列{a n}中,a n= 1 n n +1 ,若{a n}的前n项和为 2 013 2 014 ,则项数n为( ). A.2 011 B.2 012 C.2 013 D.2 014 解析∵a n=1 n n +1= 1 n - 1 n+1 ,∴S n=1- 1 n+1 = n n+1 = 2 013 2 014 ,解得n=2 013. 答案 C 4.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( ).A.3 690 B.3 660 C.1 845 D.1 830 解析当n=2k时,a2k+1+a2k=4k-1, 当n=2k-1时,a2k-a2k-1=4k-3,

∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61. ∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30 3+119 2 =30×61=1 830. 答案 D 5.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则 1~100 这100个数中,能称为“和平数”的所有数的和是( ) A .130 B .325 C .676 D .1 300 解析 设两个连续偶数为2k +2和2k (k ∈N +),则(2k +2)2-(2k )2=4(2k +1),故和平数 是4的倍数,但不是8的倍数,故在1~100之间,能称为和平数的有4×1,4×3,4×5,4×7,…,4×25,共计13个,其和为4×1+252 ×13=676. 答案 C 6.数列{a n }满足a n +a n +1=1 2(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21 = ( ). A.21 2 B .6 C .10 D .11 解析 依题意得a n +a n +1=a n +1+a n +2=1 2,则a n +2=a n ,即数列{a n }中的奇数项、 偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×1 2+1=6,故选B. 答案 B 二、填空题 7.在等比数列{a n }中,若a 1=1 2,a 4=-4,则公比q =________;|a 1|+|a 2|+… +|a n |=________. 解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

相关文档
最新文档