金纳米粒子在传感器中的应用探索

金纳米粒子在传感器中的应用探索
金纳米粒子在传感器中的应用探索

金纳米粒子在传感器中的应用探索

【摘要】:金纳米粒子是当前的热门研究课题之一,以其独特的电学、光学性质及生物相融性,受到了物理、化学及生命科学等相关领域的广泛关注。本文采用氯金酸还原柠檬酸钠法制得金纳米粒子,该制备步骤简单、成本低廉,并成功地将其应用于不同传感器进行探索研究。

在本论文的第一部分中,主要介绍了金-聚合物核壳材料的制备及其在湿度传感器中的应用研究。通过对金-聚合物核壳材料的湿度敏感机理和电容式湿度传感器工作原理的分析,提出了用聚乙烯吡咯烷酮(PVP)包裹金纳米粒子(Au)制成核壳型的湿敏材料Au-PVP,并将其引入插指电极中制作成电容式湿度传感器。通过自行设计的湿度测试系统,对该传感器的各项湿度特性参数进行了测量研究。实验分析表明,Au-PVP电容式湿度传感器对水蒸汽具有良好的敏感特性,其灵敏度为-136Hz/%RH,且具有较好的线性度;重复性和稳定性较好,信号输出的最大波动率不超过2.2%:可在11.3%RH至93%RH的相对湿度环境范围内工作,响应时间在2min以内;具有一定的湿滞效应,但滞回较小,其最大滞环率仅为2.6%,在可接受范围之内。总之,Au-PVP电容式湿度传感器制备过程简单、成本低廉、与传统的IC工艺兼容,加上良好的湿度敏感性能,将在湿度传感器领域具有一定的研究和应用价值。

第二部分中,主要介绍了微纳间隙-金电极的设计、制备及其在DNA电学检测中的应用研究。通过对硅氧化理论的分析,巧妙地设计了用微米级的光刻技术和热氧化工艺来实现电极间隙从微米向纳米尺度转换。通过版图设计和工艺实验,成功制得了亚微米间隙-金电极,并对其进行了形貌和电学性能表征。实验结果表明,不同的电极形状,氧化效果不同,其中平对平形状的电极氧化效果最佳,其间隙宽度从1.4μm缩小到500nm,且具有良好的绝缘性能。然后,将制备的平对平电极阵列(即插指型电极)用于DNA的电学检测,三种插指型电极的间隙宽度分别为1.8μm、1.3μm和600nm。通过比较裸电极、单链DNA 固定后的电极、双链DNA杂交后的电极这三种情况的Ⅰ-Ⅴ特性曲线,可以发现只有在与匹配的目标DNA杂交后,三个电极的Ⅰ-Ⅴ特性才有明显的变化,并计算得这三种间隙电极所对应的灵敏度分别为0.11、1.75和2.5μA/nM。由此说明,电极的间隙越小,灵敏度就越高。理论计算得其探测极限为~60fM。总之,该微纳电极的制作方法简单、巧妙、适合大批量生产。利用微纳电极为基体制作微纳传感器,有利于传感器的微型化和集成化。

第三部分,主要介绍了一种基于金纳米粒子修饰的硅纳米线生物传感器的制备及其在DNA检测中的应用研究。通过湿化学方法制备

硅纳米线,将金纳米粒子通过硅烷偶联剂APTMS修饰于硅纳米线表面,再用导电银浆和环氧树脂将导线连接于样品上,完成探测电极的制作,即DNA生物传感器;再通过金纳米粒子与DNA之间化学键的结合,将单链探针DNA固定于Au/SiNWs电极的表面,将其用于探测靶溶液中未知DNA序列。借助于电化学工作站,通过循环伏安法对样品进行测试扫描。实验表明,基于Au/SiNWs的生物传感器可成功区分匹配和非匹配的DNA序列,且不受背底缓冲液的影响。总之,由该方法所设计的样品具有以下优点:第一,通过简单的微加工工艺能够进行大批量生产,成本低且与大规模集成电路工艺相兼容,易于实现微型化,且能够实现实时监测。第二,该方法设计的DNA生物传感器,巧妙地利用了硅纳米线、金纳米粒子和DNA相互之间的特异性和生物相容性,想法新颖,易于实现,具有广泛的适用性。

总之,本课题的主要研究内容是根据金纳米粒子的优良特性,采用不同的方法将其运用于不同传感器进行探索研究,为传感器向微型化、集成化、多参数检测发展提供一定的参考方案,具有一定的科研价值。

【关键词】:金纳米粒子核壳结构湿度传感器亚微米间隙电极DNA探测生物传感器硅纳米线表面修饰光刻

技术热氧化工艺

【学位授予单位】:华东师范大学

【学位级别】:博士

【学位授予年份】:2012

【分类号】:TP212

【目录】:

摘要6-8Abstract8-19第一章绪论19-39 1.1 纳米技术概述19 1.2 纳米材料简介19-23 1.2.1 纳米材料的定义与分类20 1.2.2 纳米材料的基本特性20-23 1.3 金纳米粒子简介23-31 1.3.1 金纳米粒子的制备方法23-26 1.3.2 金纳米粒子的表面修饰26-27 1.3.3 金纳米粒子的应用研究回顾27-31

1.4 本文主要研究内容及意义31-33 参考文献33-39第二章金-聚合物核壳材料的制备及其在湿度传感器中的应用研究39-81

2.1

湿度传感器概述39-49 2.1.1 湿度的定义及重要性40-41

2.1.2 湿度传感器及其特性参数41-44 2.1.3 湿度传感器的分类及其敏感机理44-49 2.2 金-聚合物核壳材料电容式湿度传感器的敏感机理49-55 2.2.1 电容式湿度传感器的原理49-51 2.2.2 金-聚合物核壳材料湿度敏感机理51-55 2.3 基于LabVIEW的湿度测试系统55-62 2.

3.1 传感器结构56-57 2.3.2 标准湿度环境57-58 2.3.3 信号转换电路58-60 2.3.4 数据采集系统60-62

2.4 金-聚合物核壳材料的制备及表征62-66 2.4.1 金-聚合物核壳材料的制备62-64 2.4.2 金-聚合物核壳材料的表征64-66

2.5 基于金-聚合物核壳材料的湿度传感器性能测试66-71

2.5.1 灵敏度和线性度67-68 2.5.2 重复性和稳定性68-70

2.5.3 响应时间和湿滞特性70-71 2.6 讨论71-73 2.6.1 金在聚合物包裹前后的感湿性能比较71-73 2.6.2 与同类电容式湿度传感器的性能比较73 2.7 本章小结73-75 参考文献75-81第三章微纳间隙-金电极的制备及其在电阻式生物传感器中的应用研究81-121

3.1 DNA生物传感器概述81-91 3.1.1 DNA基本特性与检测原理82-84 3.1.2 DNA生物传感器分类84-88 3.1.3 DNA在电极上的固定方法88-90 3.1.4 DNA电学检测文献回顾90-91

3.2 微纳间隙电极的设计原理91-100 3.2.1 研究背景91-92

3.2.2 理论依据92-98 3.2.3 版图设计98-100 3.3 微纳间隙电极的制备与表征100-107 3.3.1 微纳间隙电极的工艺制备流程100-101 3.3.2 微纳间隙-金电极的形貌表征101-106

3.3.3 微纳间隙电极的电学性能表征106-107 3.4 微纳间隙-金电

极实现DNA电学检测107-111 3.4.1 实验步骤108-109 3.4.2 测试结果109-111 3.5 本章小结111-113 参考文献113-121第四章金修饰的硅纳米线的制备及其在电化学生物传感器中的应用研究121-149 4.1 电化学DNA传感器概述121-127 4.1.1 电化学DNA传感器原理121-122 4.1.2 电化学DNA传感器类型122-126 4.1.3 各类电化学DNA传感器的特点比较126-127

4.2 硅纳米线的制备方法与应用127-132 4.2.1 硅纳米线的制备方法127-129 4.2.2 硅纳米线的表面修饰129-130 4.2.3 硅纳米线的研究现状130-132 4.3 金修饰的硅纳米线的制备及表征132-137 4.3.1 硅纳米线的生长机理132-133 4.3.2 硅纳米线的制备及表面金修饰133-136 4.3.3 金纳米粒子修饰的硅纳米线表征136-137 4.4 金修饰的硅纳米线实现DNA电化学检测137-141 4.4.1 测试步骤137-139 4.4.2 测试结果139-141

4.5 本章小结141-143 参考文献143-149第五章总结与展望149-152致谢152-153博士期间发表的论文和专利153-154

(完整版)金属纳米颗粒制备中的还原剂与修饰剂の总结,推荐文档

《金属纳米颗粒制备中的还原剂与修饰剂》总结 一:金属纳米材料具有表面效应(比表面积大,表面原子多,表面原子可与其他原子结合稳定下来,使材料化学活性提高。)和量子尺寸效应,因而有不同于体相材料的光学、电磁学、化学特性。 目前制备方法为液相合成(操作简便、成本低、产量高、颗粒单分散性好)。——以金属盐或金属化合物为原料将其还原得到金属原子后聚集成金属纳米粒子。而金属纳米粒子比表面积大、物化活性高、易氧化、易团聚,所以需要引入修饰剂来控制形貌、稳定或分散纳米颗粒。 液相还原法按照溶剂不同可分为有机溶剂合成法(结晶性好、单分散性好、形貌易控、不能直接用于生物体系、环境不友好)和水溶液合成法(水溶性、制备方法简单环保、成本低、颗粒大小不均一)。按照还原手段不同可分为化学试剂还原法、辐射还原法、电化学还原法。 二:化学试剂还原法中常用的还原剂及其还原机理 还原能力不同:1)强还原剂(硼氢化物、水合肼、氢气、四丁基硼氢化物),还原能力强、反应速率快、纳米颗粒多为球形或类球形、尺寸小。2)弱还原剂(柠檬酸钠、酒石酸钾、胺类化合物、葡萄糖、抗坏血酸、次亚磷酸钠、亚磷酸钠、醇类化合物、醛类化合物、双氧水、DMF),反应体系一般需要加热。例如多元羟基类化合物可做溶剂和还原剂,通过控制反应条件可制备多种形貌的材料。柠檬酸钠、抗坏血酸做还原剂的同时可做保护剂。(一)无机类还原剂 1,硼氢化物(硼氢化钠钾、硼氢化四丁基铵TBAB),硼氢化钠化学性质活波与水反应放出 氢气,与金属盐反应时所需浓度低。 2,氢化铝锂,还原性极强,应用不及硼氢化钠。 3,水合肼N2H4·H2O,应用广泛。在碱性介质中为强还原剂。 4,双氧水。 5,有机金属化合物,二茂铁还原制备银纳米线。 6,氢气,(可以合成相当稳定无保护的可进一步修饰的银纳米颗粒。),控制反应时间可以得到相当大尺寸跨度的纳米颗粒,进一步处理如过滤离心可以得到尺寸分布窄的颗粒。 7,次亚磷酸盐,弱还原剂,因为容易与氧气反应所以一般用3-4倍。酸性条件下反应速度加快,认为酸性条件下利于次亚磷酸像活泼型转变。

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

002通过G-四链体、功能化金纳米粒子,可视化检测肌红蛋白的比色生物传感器

Sensors and Actuators B 212(2015)440–445 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /s n b Visual detection of myoglobin via G-quadruplex DNAzyme functionalized gold nanoparticles-based colorimetric biosensor Qing Wang,Xiaohan Yang,Xiaohai Yang ?,Fang Liu,Kemin Wang ? State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province,Hunan University,Changsha 410082,China a r t i c l e i n f o Article history: Received 19December 2014 Received in revised form 7February 2015Accepted 10February 2015 Available online 18February 2015 Keywords: Gold nanoparticles DNAzyme Aptamer Myoglobin a b s t r a c t Since myoglobin plays a major role in the diagnosis of acute myocardial infarction (AMI),monitoring of myoglobin in point-of-care is fundamental.Here,a novel colorimetric assay for myoglobin detection was developed based on hemin/G-quadruplex DNAzyme functionalized gold nanoparticles (AuNPs).In the presence of myoglobin,the anti-myoglobin antibody,which was modi?ed on the surface of polystyrene microplate,could ?rst capture the target myoglobin.Then the captured target could further bind to DNA1probe which contained the aptamer sequence through aptamers/myoglobin interaction.Next,as the DNA2probe modi?ed AuNPs were introduced,DNA2probe modi?ed AuNPs could hybridize with the captured DNA1probe.Subsequently,DNA2probe which was modi?ed on the AuNPs could fold into a G-quadruplex structure and bind to hemin,and then catalyze the oxidation of colorless ABTS 2?to green ABTS +by H 2O 2.Consequently,the relationship between the concentration of myoglobin and the absorbance was established.Due to AuNPs ampli?cation,the myoglobin concentration as low as 2.5nM could be detected,which was lower than clinical cutoff for myoglobin in healthy patients.This assay also showed high selectivity for myoglobin and was used for the detection of myoglobin in the human serum samples.This work may provide a simple but effective tool for early diagnosis of AMI in the world,especially in developing countries. ?2015Elsevier B.V.All rights reserved. 1.Introduction Since acute myocardial infarction (AMI)remains the leading cause of death in most industrialized nations,it is important to evaluate accurately the patients who show symptoms sugges-tive of AMI [1,2].Myoglobin,although not cardiac speci?c,has been widely suggested as one of the best candidate markers for an early diagnosis of AMI [3].Generally,myoglobin is present in very low concentrations (0.48–5.9nM)in serum of healthy indi-viduals.When muscle tissues are damaged,myoglobin is rapidly released into the circulation and the myoglobin concentration in serum is elevated to 4.8?M subsequently [4].Some conventional approaches have been employed to detect myoglobin,such as mass spectrometry [5],liquid chromatography [6],electrochemi-cal [7–11]and surface plasmon resonance (SPR)[12–15].Most of these methods showed high sensitivity,but these methods were time consuming and required expensive equipment,which was unable to be applied in point-of-care (POC)testing [16].Recently, ?Corresponding authors.Tel.:+8673188821566;fax:+8673188821566.E-mail addresses:yangxiaohai@https://www.360docs.net/doc/f06624271.html, (X.Yang),kmwang@https://www.360docs.net/doc/f06624271.html, (K.Wang). we reported a novel assay for sensitive and selective detection of myoglobin using a personal glucose meter [17].Besides glucose meter,colorimetric method offers great potential for POC testing,due to its intrinsic advantages such as cost-effective,rapid,simple,and even only utilizing naked eyes.Zhang et al.reported a colori-metric method for myoglobin detection based on the aggregation of iminodiacetic acid-functionalized gold nanoparticles (AuNPs)[18].Although this method was easy to perform,low cost and time-saving,the detection limit is relatively high. Here,a novel colorimetric method was developed for myoglobin detection based on hemin/G-quadruplex DNAzyme functional-ized AuNPs.G-quadruplex DNAzyme,which is usually formed by binding G-rich nucleic acid to hemin [19–21],can exhibit peroxidase-like activity and effectively catalyze the H 2O 2-mediated oxidation of 2,2 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS)[22–24].In this assay,hemin/G-quadruplex DNAzyme complex showed inherent advan-tages of simplicity,stability and relatively low cost.Moreover,since a single Au nanoparticle was loaded with hundreds of DNA2probes which contained DNAzyme section [25,26],it could enhance the sensitivity effectively.This work may provide the new tool for early diagnosis of AMI in the world,especially in developing countries. https://www.360docs.net/doc/f06624271.html,/10.1016/j.snb.2015.02.040 0925-4005/?2015Elsevier B.V.All rights reserved.

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

最新 金纳米粒子在医学领域中的运用-精品

金纳米粒子在医学领域中的运用 金纳米粒子潜在的细胞毒性是制约其临床应用的一个重要原因,下面是小编搜集的一篇关于金纳米粒子在领域中的运用探究的,供大家阅读借鉴。 金是典型的惰性元素,由金制成的历史文物能够保留几千年的灿烂光泽不变色,如图1所示.金被广泛使用于珠宝、硬币和电子器件等方面.目前,20nm 厚的金薄膜已用在办公室的窗户上,因为它能够在传输大量可见光的同时有效地反射红外光线,并吸收光的热量.因金纳米粒子具有很好的稳定性、易操作性、灵敏的光学特性、易进行表面修饰以及良好的生物相容性,使其广泛应用于食品安全检测、环境安全检测和医学检测分析等领域[1-4].金纳米粒子尺寸范围为1nm~100nm.图2(a)为50nm的金纳米棒,(b)为二氧化硅包覆的金纳米颗粒,其中扇形金纳米粒子尺寸比较小,被二氧化硅包覆后的纳米粒子尺寸大约140nm,(c)为50nm的金纳米笼[5].由于其比较微小的结构,这些颗粒比小分子更能积聚在炎症或肿瘤增长部位.具有高效的光转热属性的金纳米颗粒,可以被应用于特异性地消融感染或患病组织.因金纳米颗粒具有吸收大量X射线的能力,而被用于改善癌症放射治疗或CT(断层扫描)诊断成像.另外,金纳米粒子可以屏蔽不稳定的药物或难溶造影剂,使之有效传递到身体各个部位. 1金纳米粒子在加载药物方面的应用 1.1金纳米粒子可作为内在药制剂 金基疗法有着悠久的历史,这是金自然的优异性能以及其神秘效应引起的药效应用.金基分子化合物已被发现可以显着限制艾滋病病毒的生长[6].目前,搭载药物的金纳米粒子常用于靶向癌细胞[7].将放射性金种子植入肿瘤中,对其内部进行放射疗法,实现近距离放射治疗[7].直径非常小的金纳米颗粒(小于2nm)能够渗透到细胞和细胞区室(如细胞核)[8].金纳米颗粒与其无毒的较大尺寸的表面修饰试剂[8],有杀菌和杀死癌细胞的功效,并有诱导细胞氧化的应激能力,促使损伤的线粒体和DNA相互作用. 最近,人们发现,纳米金(直径5nm)表现出抗血管生成性质(抑制新血管的生长).这些纳米颗粒可选择性结合肝素糖蛋白内皮细胞,并抑制它们的表面活性.因为上述纳米金的大小和生物分子或蛋白质差不多,在生理过程中,它们也可以相互修饰或作用,尤其在细胞和组织内.最近,El-Sayed和他的同事针对恶性生长与分裂的细胞核,已探索出微分细胞质. 通过将金纳米粒子聚集于细胞表面,从而认识到整合肽序列(细胞质交付)和核内蛋白(核周交付),并通过金纳米颗粒选择性地靶向恶性细胞,他们已证明凋亡效应(DNA的双链断裂).另外,使用类似的研究策略,已发现金纳米粒子可选择性地发挥抗增殖和放射增敏效应. 1.2基于金纳米粒子的光热疗法

纳米电化学生物传感器重点

收稿:2008年3月, 收修改稿:2008年8月 *深圳大学科研启动基金项目(No. 200818 资助**通讯联系人 e 2mail:yang hp@https://www.360docs.net/doc/f06624271.html,. cn 纳米电化学生物传感器 * 杨海朋 ** 陈仕国李春辉陈东成戈早川 (深圳大学材料学院深圳市特种功能材料重点实验室深圳518060 摘要纳米电化学生物传感器是将纳米材料作为一种新型的生物传感介质, 与特异性分子识别物质如酶、抗原P 抗体、D NA 等相结合, 并以电化学信号为检测信 号的分析器件。本文简要介绍了生物传感器的分类和纳米材料在电化学生物传感器中的应用及其优势, 综述了近年来各类纳米电化学生物传感器在生物检测方面的研究进展, 包括纳米颗粒生物传感器, 纳米管、纳米棒、纳米纤维与纳米线生物传感器, 以及纳米片与纳米阵列生物传感器等。 关键词生物传感器电化学传感器纳米材料生物活性物质固定化 中图分类号:O65711; TP21213 文献标识码:A 文章编号:10052281X(2009 0120210207 Nanomaterials Based Electrochemical Biosensors Y ang Haipeng **

Chen Shiguo Li Chunhui Chen Dongche ng Ge Zaochuan (Shenzhen Key Laboratory of Special Functional M aterials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China Abstract Biosensors w hich utilize immobilized bioac tive compounds (such as enz ymes, antigen, antibody, D N A, etc. f or the c onversion of the target analytes into electroc he mically detectable products is one of the most widely used detection methods and have become an area of wide ranging research activity. The advances in biocompatible nano technology make it possible to develop ne w biosensors. A variety of biosensors with high sensitivity and excellent reproducibility based on nano technology have been reported in recent years. In this paper, the development of the researches on nano amperometric biosensors, one of the most important branches of biosensors, is revie wed. Nanoscale architectures here involve nano 2particles, nano 2wires and nano 2rods, nano 2sheet, nano 2array, and carbon nanotube, etc. Remarkable sensitivity and stability have been achieved by coupling immobilized bioactive compounds and these nanomaterials. Key words biosensors; electroche mistry sensors; nanomaterials; bioactive compounds; immobiliz ation Contents 1 Introduction to biosensors 2 Nanomaterials based electrochemical biosensors 2. 1 Challenges and developments of biosensors 2. 2 Introduction of nanomaterials 2. 3 Nanomaterials based electrochemical biosensors 2. 3. 1 Nano particles based electrochemical biosensors

磁性纳米材料的特性、发展及其应用

2011412690 应用化学董会艳 题目纳米材料的磁学性质、发展及其应用前景 内容摘要:磁性纳米材料的特性不同于一般的磁性材料,当与磁性相关联的特征物理长度恰好出于纳米量级,以及电子平均自由路程等大致处于1~100nm量级,或磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。不同分类的磁性纳米材料有着大不相同的特性。从纳米科技诞生的那一刻起就对人类产生着深远的影响。同时磁性材料一直是国民经济,国防工业的重要支柱与基础,与此同时在信息化高度发展的今天,磁性纳米材料的地位显的更加的重要与不可替代。 关键词:磁性,纳米,磁性纳米材料,应用 Abstract:Characteristics of magnetic nanomaterials is different from the general magnetic materials and magnetic properties associated with the characteristics of the physical length of just for the nanoscale, and the electron mean free path, etc. generally in the 1 ~ 100nm orders of magnitude, or magnetic body size and characteristicsphysical length is quite showing the anomalous magnetic and electrical properties. Different classification of magnetic nanomaterials differ materially from those features. The moment of the birth of nanotechnology on humans with far-reaching impact. Magnetic materials has been an important pillar and foundation of the national economy, defense industry, at the same time in the development of information technology today, the status of magnetic nanomaterials significantly more important and irreplaceable. Key words:Magnetic ,Nano ,Magnetic nanomaterials,Application 前言:在社会发展和科技进步的同时,磁性纳米材料的研究和应用也有了很大的突 破。磁性纳米材料在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。 当磁性微粒处于单畴尺寸时, 矫顽力将呈现极大值。铁磁材料, 如铁、钻等磁性单畴临界尺寸大约在l0 nm 量级,可以作为高矫顽力的永磁材料和磁记录材料。由于颗粒磁性与其尺寸有关, 如果尺寸进一步减小, 颗粒将在一定的温度范围内呈现出超顺磁性。利用微粒的这个特性, 人们在开始对镍纳米微粒进行低温磁性研究, 并提出磁宏观量子隧道效应的概念, 随后在60年代末期研制成了磁性液体。80 年代以后, 在理论与实验二方面, 开始研究纳米磁性微粒的磁宏观量子隧道效应,在1988 年首先在Fe/ Cr 多层膜中发现了巨磁电阻效应, 也为磁性纳米材料的研究奠定了更夯实的基础。 正文 磁性纳米材料的特性不同于常规的磁性材料,其原因在于与磁性相关联的特征物理长度恰好出于纳米量级,例如,磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1~100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学与电学性质。利用这些新特性已涌现出一系列新材料,尤其在信息存储,处理与传输中已成为不可或缺的组成部分,广泛地应用于电信,自动控制,通讯,家用电器等领域,信息化发展的总趋势是向小,轻,薄以及多功能方

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

3.1 金纳米粒子性质

金纳米粒子性质 1 金纳米粒子类型 不同形状的金纳米粒子对应着不同的应用目的。目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。 根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。 2 金纳米粒子特性 块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面: 2.1 表面等离子体共振特性 有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。表面等离子体(surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。 金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。金纳米粒子的这种表面等离子体共振特性被广泛应用与检测,传

14.1 DNA功能化的金纳米粒子及其应用

DNA功能化的金纳米粒子 1 DNA功能化的金纳米粒子及其应用 用DNA分子修饰无机纳米粒子为其在传感,药物和基因传输,光学和能源领域的应用带来了新的机遇。同时利用DNA对纳米颗粒间相互作用的控制,基于DNA的平台也能为构建复杂纳米粒子组装结构提供灵活性和多样性。DNA金纳米粒子复合物(DNA-AuNPs)是一种纳米生物复合物,由内层的纳米粒子和外层的DNA组成,起到了连接生物体系和纳米材料的作用。上世纪九十年代中期,Mirkin研究组和Alivisatos研究组在他们的开创性工作中,首次报道了DNA功能化的金纳米粒子体系。Mirkin等人合成了13 nm的金纳米粒子(在溶液中呈现均一的红色,紫外吸收峰波长为520 nm),然后将末端为巯基修饰的DNA通过S-Au化学键相互作用固定到金纳米粒子表面得到DNA.金纳米粒子复合物(图1.9),后来他们将这种复合物重新命名为球形核酸(spherical nucleic acid,SNA)。由于这种DNA修饰的金纳米粒子复合物既具有金纳米粒子的光学和物理化学特性,又具有DNA分子的可编程特性和生物特性,自从Mirkin等人的开创性工作发表以来,DNA功能化的金纳米粒子发展应用迅速,已经被广泛应用于生物传感,离子检测,核酸比色检测,金纳米粒子结晶组装,生物成像等领域。 图1.9 Spherical nucleic acid(SNA) conjugates. 1.1 DNA功能化的金纳米粒子在核酸检测中的应用 基因突变的检测可以为诊断提供重要的目树,使人们对用于包括癌症在内的许多疾病早期诊断的核酸检测越来越感兴趣。荧光和放射性检测读出方法(如PCR,PT-PCR,分子印迹法,以及高密度微阵列法等)是传统的核酸检测方法。金纳米粒子比色法已经被证明是核酸目标链检测方面的一种极具竞争力的检测技术。在金纳米粒子比色法中,待检测目标物直接

油酸修饰的四氧化三铁磁性纳米颗粒

无论是三氧化二铁还是四氧化三铁等都是常用的磁性纳米材料,其中又以纳米磁性四氧化三铁应用尤其广泛。而随着纳米技术的进步由各种各样大分子修饰的四氧化三铁磁性纳米材料的应用也在逐渐增加,本次就分享油酸修饰的四氧化三铁磁性纳米颗粒。 油酸修饰的磁性Fe3O4纳米颗粒(OA@Fe3O4),具有优异的磁性、分散性和稳定性,可广泛应用于纳米探针构建、磁共振造影与分子影像、磁热疗、药物载体及靶向诊疗一体化研究等。OA@Fe3O4纳米颗粒为油溶性,可分散在环己烷、氯仿、四氢呋喃等溶剂中,用于掺杂水包油纳米乳、修饰纳米脂质体、构建磁性纳米药物等。高温热解法所制备的油酸修饰的磁性Fe3O4纳米颗粒,磁性更强、尺寸更均一。 油酸修饰的四氧化三铁磁性纳米颗粒制备方法主要有:微乳液法、水热合成法、热分解铁有机物法、化学共沉淀合成法、凝胶-溶胶法等。四氧化三铁纳米颗粒通过表面修饰过程可以降低磁性纳米粒子的表面能,从而改善提高磁性纳米粒子的分散性,还可以通过特定的修饰方法引入功能性基团实现磁性纳米微粒的

功能化。 经油酸修饰的四氧化三铁磁性纳米粒子晶体的晶体结构为反立方的尖晶石型结构。用方程d=Xk/(Bcos0)可估算出四氧化三铁磁性纳米粒子的晶体粒径,在方程中λ=0.15406,0为衍射角,β为半峰宽,k=0.89。有研究表明油酸修饰未改变磁性四氧化三铁纳米粒子晶体结构;修饰后的磁性四氧化三铁纳米粒子的粒径约2Inm;其饱和磁化强度在50ermu/g以上,磁响应性能佳、具有超顺磁性。 以上是对油酸修饰的四氧化三铁磁性纳米颗粒的相关介绍,下面介绍一家生产纳米材料的公司。南京东纳生物科技有限公司,是一家集产学研于一体的高新技术型企业,主要从事纳米材料及生物医学纳米技术,功能微球、体外诊断试剂

纳米粒子的制备方法综述

纳米粒子的制备方法综述 摘要: 纳米材料是近期发展起来的一种多功能材料。在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。本文主要概述了纳米材料传统的及最新的制备方法。纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 [1] Abstract : Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution . 关键词: 纳米材料制备方法 Key words : Nanometer material produce-methods 正文: 纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。下面分别从三个方面介绍纳米材料的制备方法。 物理制备方法 早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种: 1.真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 1.物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 8四川化工第14卷 2019年第3期 金纳米粒子的制备及表征研究 王静 易中周 李自静 (红河学院理学院,云南蒙自,661100) 摘要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分 散分布。 关键词:纳米金 制备 表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的 化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例,Frens获得了不同尺寸的单分散 金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更 小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳 定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变, 方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子 聚合物保护剂PVA(聚乙烯醇)、PVP(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液UV Vis吸收 光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报 道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 [5] 2 1 试剂与仪器

HAuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂); 水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900UV/VIS/NIR光谱仪(Per kinElmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/mlHAuCl4加入水中,保持温度并定容,30分钟后冷却。2 3 纳米粒子的表征 Au纳米粒子用UV Vis吸收光谱表征和TEM表征,TEM的样品制备是将胶体溶液滴在碳 膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取TEM图像。 3 结果与机理探讨 3 1 UV Vis吸收光谱表征 当将HAuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长, 又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 12 实验部分 第3期金纳米粒子的制备及表征研究粒子的UV Vis吸收光谱图[5,6]。3 2 TEM表征图2为柠檬酸钠水溶液体系所制备的Au纳米粒子的TEM 图。 9 柠檬酸钠还原为Au单质;然后,Au单质在柠檬酸钠保护下进行团聚和不断长大,最后成为Au纳米粒子,但是柠檬酸钠阻止了Au纳米粒子的进一步团聚,控制了较小粒径,并使其 颗粒均匀并呈球形分布。 图3 柠檬酸钠水溶液体系金纳米粒子的热化学合成机理 3 结论 通过较为严格温度控制的柠檬酸钠水溶液体系制备得到的Au纳米粒子: (1)尺寸均匀; (2)呈球形单分散分布;(3)平均粒径只有7-8nm。 参考文献 [1]Marie ChristineDaniel,DidierAstruc.GoldNanoparticles:As sembly,SupramolecularChemistry,Quantum Size RelatedProper

相关文档
最新文档