人教数学平行四边形的专项培优练习题(含答案)含详细答案

人教数学平行四边形的专项培优练习题(含答案)含详细答案
人教数学平行四边形的专项培优练习题(含答案)含详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.

①求证:四边形BFDE是菱形;

②直接写出∠EBF的度数;

(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;

(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.

【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.

【解析】

【分析】

(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.

②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.

(2)IH=3FH.只要证明△IJF是等边三角形即可.

(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.

【详解】

(1)①证明:如图1中,

∵四边形ABCD是矩形,

∴AD∥BC,OB=OD,

∴∠EDO=∠FBO,

在△DOE和△BOF中,

EDO FBO OD OB

EOD BOF ∠∠????∠∠?

=== , ∴△DOE ≌△BOF ,

∴EO =OF ,∵OB =OD ,

∴四边形EBFD 是平行四边形,

∵EF ⊥BD ,OB =OD ,

∴EB =ED ,

∴四边形EBFD 是菱形.

②∵BE 平分∠ABD ,

∴∠ABE =∠EBD ,

∵EB =ED ,

∴∠EBD =∠EDB ,

∴∠ABD =2∠ADB ,

∵∠ABD +∠ADB =90°,

∴∠ADB =30°,∠ABD =60°,

∴∠ABE =∠EBO =∠OBF =30°,

∴∠EBF =60°.

(2)结论:IH

=3FH .

理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .

∵四边形EBFD 是菱形,∠B =60°,

∴EB =BF =ED ,DE ∥BF ,

∴∠JDH =∠FGH ,

在△DHJ 和△GHF 中,

DHG GHF DH GH

JDH FGH ∠∠????∠∠?

=== , ∴△DHJ ≌△GHF ,

∴DJ =FG ,JH =HF ,

∴EJ =BG =EM =BI ,

∴BE =IM =BF ,

∵∠MEJ =∠B =60°,

∴△MEJ 是等边三角形,

∴MJ =EM =NI ,∠M =∠B =60°

在△BIF 和△MJI 中,

BI MJ B M BF IM ??∠∠???

===,

∴△BIF ≌△MJI ,

∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,

∴IH ⊥JF ,

∵∠BFI +∠BIF =120°,

∴∠MIJ +∠BIF =120°,

∴∠JIF =60°,

∴△JIF 是等边三角形,

在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,

∴∠FIH =30°,

∴IH

=3FH .

(3)结论:EG 2=AG 2+CE 2.

理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,

∵∠FAD +∠DEF =90°,

∴AFED 四点共圆,

∴∠EDF =∠DAE =45°,∠ADC =90°,

∴∠ADF +∠EDC =45°,

∵∠ADF =∠CDM ,

∴∠CDM +∠CDE =45°=∠EDG ,

在△DEM 和△DEG 中,

DE DE EDG EDM DG DM ??∠∠???

=== , ∴△DEG ≌△DEM ,

∴GE =EM ,

∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,

∴∠ECM =90°

∴EC 2+CM 2=EM 2,

∵EG =EM ,AG =CM ,

∴GE 2=AG 2+CE 2.

【点睛】

考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.

2.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;

(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

【答案】(1)作图参见解析;(2)作图参见解析.

【解析】

试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.

试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;

(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:

考点:1.作图﹣应用与设计作图;2.勾股定理.

3.如图,正方形ABCD的边长为8,E为BC上一定点,BE=6,F为AB上一动点,把△BEF沿EF折叠,点B落在点B′处,当△AFB′恰好为直角三角形时,B′D的长为?

【答案】4

65

5

或22

【解析】

【分析】

分两种情况分析:如图1,当∠AB′F=90°时,此时A、B′、E三点共线,过点B′作

B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=2222

+DN= 3.2 5.6

B N'+;如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,AF=2,过点B′作B′N⊥AD,则四边形AFB′N为矩形,在Rt△CB′N中,由勾股定理得,B′D=2222

+DN=22

B N'+;

【详解】

如图1,当∠AB′F=90°时,此时A、B′、E三点共线,

∵∠B=90°,∴AE=2222

AB BE=86

++=10,

∵B′E=BE=6,∴AB′=4,

∵B′F=BF,AF+BF=AB=8,

在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,

∴AF=5,BF=3,

过点B′作B′M⊥AB,B′N⊥AD,由三角形的面积法则可求得B′M=2.4,再由勾股定理可求得B′N=3.2,

∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,

在Rt△CB′N中,由勾股定理得,B′D=2222

+DN= 3.2 5.6

B N'+ =4

65

5

如图2,当∠AFB′=90°时,由题意可知此时四边形EBFB′是正方形,∴AF=2,

过点B′作B′N ⊥AD ,则四边形AFB′N 为矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2, 在Rt △CB′N 中,由勾股定理得,B′D=2222+DN =22B N '+ =22 ;

综上,可得B′D 的长为

4655

或22. 【点睛】 本题主要考查正方形的性质与判定,矩形有性质判定、勾股定理、折叠的性质等,能正确地画出图形并能分类讨论是解题的关键.

4.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .

(1)求证:DE DF ⊥;

(2)求证:DH DF =:

(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.

【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.

【解析】

【分析】

(1)根据正方形性质, CF AE =得到DE DF ⊥.

(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=?,BD 平分ABC ∠, 得45DBF ∠=?.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于

45DHF DBF BFH BFH ∠=∠+∠=?+∠,45DFH DFE EFH EFH ∠=∠+∠=?+∠, 所以DH DF =.

(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得

BD ==.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得

HM HN =.因为4590HBN HNB ∠=?∠=?,,所以sin 45HN BH ===?.

由cos 45DF EF ===?

,得22EF AB HM =-. 【详解】

(1)证明:∵四边形ABCD 是正方形,

∴AD CD =,90EAD BCD ADC ∠=∠=∠=?.

∴90EAD FCD ∠=∠=?.

∵CF AE =。

∴AED CFD △△≌.

∴ADE CDF ∠=∠.

∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=?.

∴DE DF ⊥.

(2)证明:∵AED CFD △△≌,

∴DE DF =.

∵90EDF ∠=?,

∴45DEF DFE ∠=∠=?.

∵90ABC ∠=?,BD 平分ABC ∠,

∴45DBF ∠=?.

∵FH 平分EFB ∠,

∴EFH BFH ∠=∠.

∵45DHF DBF BFH BFH ∠=∠+∠=?+∠,

45DFH DFE EFH EFH ∠=∠+∠=?+∠,

∴DHF DFH ∠=∠.

∴DH DF =.

(3)22EF AB HM =-.

证明:过点H 作HN BC ⊥于点N ,如图,

∵正方形ABCD 中,AB AD =,90BAD ∠=?, ∴222BD AB AD AB =+=.

∵FH 平分,

EFB HM EF HN BC ∠⊥⊥,,

∴HM HN =. ∵4590HBN HNB ∠=?∠=?,

, ∴22sin 45HN BH HN HM ===?

. ∴22DH BD BH AB HM =-=

-. ∵22cos 45DF EF DF DH ===?

, ∴22EF AB HM =-.

【点睛】

本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.

5.如图,点O 是正方形ABCD 两条对角线的交点,分别延长CO 到点G ,OC 到点E ,使OG=2OD 、OE=2OC ,然后以OG 、OE 为邻边作正方形OEFG .

(1)如图1,若正方形OEFG 的对角线交点为M ,求证:四边形CDME 是平行四边形. (2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;

(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD 的边相交于点N ,如图3,设旋转角为α(0°<α<180°),若△AON 是等腰三角形,请直接写出α的值.

【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.

【解析】【分析】

(1)由四边形OEFG是正方形,得到ME=1

2 GE

,根据三角形的中位线的性质得到

CD∥GE,CD=

1

2

GE,求得CD=GE,即可得到结论;

(2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,

∠AOD=∠COD=90°,由四边形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,

∠AG′O=∠DE′O,即可得到结论;

(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.

【详解】

(1)证明:∵四边形OEFG是正方形,

∴ME=1

2

GE,

∵OG=2OD、OE=2OC,

∴CD∥GE,CD=1

2

GE,

∴CD=GE,

∴四边形CDME是平行四边形;

(2)证明:如图2,延长E′D交AG′于H,

∵四边形ABCD是正方形,

∴AO=OD,∠AOD=∠COD=90°,

∵四边形OEFG是正方形,

∴OG′=OE′,∠E′OG′=90°,

∵将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,

∴∠G′OD=∠E′OC,

∴∠AOG′=∠COE′,

在△AG′O与△ODE′中,

OA OD

AOG DOE

OG OE

?

?

∠'∠'

?

?''

?

∴△AG′O≌△ODE′

∴AG′=DE′,∠AG′O=∠DE′O,

∵∠1=∠2,

∴∠G′HD=∠G′OE′=90°,

∴AG′⊥DE′;

(3)①正方形OE′F′G′的边OG′与正方形ABCD的边AD相交于点N,如图3,

Ⅰ、当AN=AO时,

∵∠OAN=45°,

∴∠ANO=∠AON=67.5°,

∵∠ADO=45°,

∴α=∠ANO-∠ADO=22.5°;

Ⅱ、当AN=ON时,

∴∠NAO=∠AON=45°,

∴∠ANO=90°,

∴α=90°-45°=45°;

②正方形OE′F′G′的边OG′与正方形ABCD的边AB相交于点N,如图4,

Ⅰ、当AN=AO时,

∵∠OAN=45°,

∴∠ANO=∠AON=67.5°,

∵∠ADO=45°,

∴α=∠ANO+90°=112.5°;

Ⅱ、当AN=ON时,

∴∠NAO=∠AON=45°,

∴∠ANO=90°,

∴α=90°+45°=135°,

Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°,

综上所述:若△AON是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.【点睛】

本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性

质的综合运用,有一定的综合性,分类讨论当△AON 是等腰三角形时,求α的度数是本题的难点.

6.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:

(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;

(2)如图②,当α=60°时,求点B′的坐标;

(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).

【答案】(1)(62,6)-;(2)(333,333)+;(3)323323AP +.

【解析】

【分析】

(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;

(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC ′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;

(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12

OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】

解:(1)∵A (﹣6,0)、C (0,6),O (0,0),

∴四边形OABC 是边长为6的正方形,

当α=45°时,

如图①,延长OA′经过点B ,

∵OB =2,OA′=OA =6,∠OBC =45°,

∴A′B =626,

∴BD =(626)21262=-,

∴CD =6﹣(1262-=626,

∴BC 与A′B′的交点D 的坐标为(662-6);

(2)如图②,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,∵∠OC′B′=90°,

∴∠OC′M=90°﹣∠B′C′N=∠C′B′N,

∵OC′=B′C′,∠OMC′=∠C′NB′=90°,

∴△OMC′≌△C′NB′(AAS),

当α=60°时,

∵∠A′OC′=90°,OC′=6,

∴∠C′OM=30°,

∴C′N=OM=33,B′N=C′M=3,

∴点B′的坐标为)

-+;

333,333

(3)如图③,连接OB,AC相交于点K,

则K是OB的中点,

∵P为线段BC′的中点,

∴PK=1

OC′=3,

2

∴P在以K为圆心,3为半径的圆上运动,

∵AK=2

∴AP最大值为323,AP的最小值为323,

AP+.

∴AP长的取值范围为323323

【点睛】

本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.

7.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .

()1求证:BD DF =;

()2求证:四边形BDFG 为菱形;

()3若AG 5=,CF 7=,求四边形BDFG 的周长.

【答案】(1)证明见解析(2)证明见解析(3)8

【解析】

【分析】

()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,

()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,

()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.

【详解】

()1证明:AG //BD ,CF BD ⊥,

CF AG ∴⊥,

又D 为AC 的中点,

1DF AC 2∴=

, 又1BD AC 2

=

, BD DF ∴=, ()2证明:

BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,

∴四边形BDFG 为菱形,

()3解:设GF x =,则AF 5x =-,AC 2x =,

在Rt AFC 中,222(2x)(7)(5x)=+-,

解得:1x 2=,216x (3

=-舍去), GF 2∴=,

∴菱形BDFG 的周长为8.

【点睛】

本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.

8.如图,P 是边长为1的正方形ABCD 对角线BD 上一动点(P 与B 、D 不重合),∠APE=90°,且点E 在BC 边上,AE 交BD 于点F .

(1)求证:①△PAB ≌△PCB ;②PE=PC ;

(2)在点P 的运动过程中,

的值是否改变?若不变,求出它的值;若改变,请说明理

由;

(3)设DP=x ,当x 为何值时,AE ∥PC ,并判断此时四边形PAFC 的形状.

【答案】(1)见解析;

(2)

; (3)x=

﹣1;四边形PAFC 是菱形.

【解析】

试题分析:(1)根据四边形ABCD 是正方形,得出AB=BC ,∠ABP=∠CBP°,再根据PB=PB ,即可证出△PAB ≌△PCB ,

②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB ,从而证出PE=PC ;

(2)根据PA=PC ,PE=PC ,得出PA=PE ,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求

出;

(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB 得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.

试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB (SAS).

②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.

(2)在点P的运动过程中,的值不改变.

由△PAB≌△PCB可知,PA=PC.

∵PE=PC,

∴PA=PE,

又∵∠APE=90°,

∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.

(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)

=67.5°.

在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.

∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,

∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,

∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.

考点:四边形综合题.

9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.

(1)如图1,当AD=2OF时,求出x的值;

(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.

【答案】(1)x=﹣1;

(2)S=﹣(x﹣)2+(0<x<1),

当x=时,S的值最大,最大值为,.

【解析】

试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到

CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,

求得OF=OM=解方程,即可得到结果;

(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据

全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)?x,根据二次函数的性质即可得到结论.

试题解析:(1)过O作OM∥AB交CE于点M,如图1,

∵OA=OC,

∴CM=ME,

∴AE=2OM=2OF,

∴OM=OF,

∴,

∴BF=BE=x,

∴OF=OM=,

∵AB=1,

∴OB=,

∴,

∴x=﹣1;

(2)过P作PG⊥AB交AB的延长线于G,如图2,

∵∠CEP=∠EBC=90°,

∴∠ECB=∠PEG,

∵PE=EC,∠EGP=∠CBE=90°,

在△EPG与△CEB中,

∴△EPG≌△CEB,

∴EB=PG=x,

∴AE=1﹣x,

∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),

∵﹣<0,

∴当x=时,S的值最大,最大值为,.

考点:四边形综合题

10.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-

CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN 与△ABC重叠部分图形的面积为S(平方单位).

(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).

(2)当点M落在边BC上时,求t的值.

(3)求S与t之间的函数关系式.

(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.

【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,

.当4<t<7时,.(4)或或

【解析】

试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时.(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;

(3)当0<t≤时,当<t≤4,当4<t<7时;

(4)或或.

试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.

当点Q在线段BC上时,PQ=7-t.

(2)当点M落在边BC上时,如图③,

由题意得:t+t+t=7,

解得:t=.

∴当点M落在边BC上时,求t的值为.(3)当0<t≤时,如图④,

S=.

当<t≤4,如图⑤,

当4<t<7时,如图⑥,

(4)或或..考点:四边形综合题.

相关主题
相关文档
最新文档