最小二乘一次完成与递推算法示例

最小二乘一次完成与递推算法示例
最小二乘一次完成与递推算法示例

递推最小二乘法推导(RLS)——全网最简单易懂的推导过程

递推最小二乘法推导(RLS)——全网最简单易懂的推导过程 作者:阿Q在江湖 先从一般最小二乘法开始说起 已知x和y的一系列数据,求解参数theta的估计。用矩阵的形式来表达更方便一些: 其中k代表有k组观测到的数据, 表示第i组数据的输入观测量,yi表示第i组数据的输出观测量。令: ,则最小二乘的解很简单, 等价于即参数解为:如果数据是在线的不断的过来,不停的采用最小二乘的解法来解是相当消耗资源与内存的,所

以要有一种递推的形式来保证对的在线更新。 进一步推导出递推最小二乘法(RLS) 我们的目的是从一般最小二乘法的解 推导出 的递推形式。一定要理解这里的下标k代表的意思,是说在有k组数据情况下的预测,所以k比k-1多了一组数据,所以可以用这多来的一组数据来对原本的估计进行修正,这是一个很直观的理解。下面是推导过程: 先看一般最小二乘法的解 下面分别对 和 这两部分进行推导变换,令

得到下面公式(1) 下面来变换得到公式(2) 下面再来,根据一般最小二乘法的解,我们知道下式成立,得到公式(3)(注:后续公式推导用到) 好了,有了上面最主要的三步推导,下面就简单了,将上面推导的结果依次代入公式即可:

至此,终于变成 的形式了。 通过以上推导,我们来总结一下上面RLS方程: 注:以上公式7中,左边其实是根据公式1,右边I为单位矩阵

公式(5)和(7)中,有些文献资料是用右边的方程描述,实际上是等效的,只需稍微变换即可。例如(5)式右边表达式是将公式(1)代入计算的。为简化描述,我们下面还是只讨论左边表达式为例。 上面第7个公式要计算矩阵的逆,求逆过程还是比较复杂,需要用矩阵引逆定理进一步简化。 矩阵引逆定理: 最终RLS的方程解为:

递推最小二乘法算法

题目: (递推最小二乘法) 考虑如下系统: )()4(5.0)3()2(7.0)1(5.1)(k k u k u k y k y k y ξ+-+-=-+-- 式中,)(k ξ为方差为0.1的白噪声。 取初值I P 610)0(=、00=∧ )(θ。选择方差为1的白噪声作为输入信号)(k u ,采用PLS 法进行参数估计。 Matlab 代码如下: clear all close all L=400; %仿真长度 uk=zeros(4,1); %输入初值:uk(i)表示u(k-i) yk=zeros(2,1); %输出初值 u=randn(L,1); %输入采用白噪声序列 xi=sqrt(0.1)*randn(L,1); %方差为0.1的白噪声序列 theta=[-1.5;0.7;1.0;0.5]; %对象参数真值 thetae_1=zeros(4,1); %()θ初值 P=10^6*eye(4); %题目要求的初值 for k=1:L phi=[-yk;uk(3:4)]; %400×4矩阵phi 第k 行对应的y(k-1),y(k-2),u(k-3), u(k-4) y(k)=phi'*theta+xi(k); %采集输出数据 %递推最小二乘法的递推公式 K=P*phi/(1+phi'*P*phi); thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1); P=(eye(4)-K*phi')*P; %更新数据 thetae_1=thetae(:,k); for i=4:-1:2 uk(i)=uk(i-1); end uk(1)=u(k); for i=2:-1:2 yk(i)=yk(i-1);

几种最小二乘法递推算法的小结

一、 递推最小二乘法 递推最小二乘法的一般步骤: 1. 根据输入输出序列列出最小二乘法估计的观测矩阵?: ] )(u ... )1( )( ... )1([)(T b q n k k u n k y k y k ------=? 没有给出输出序列的还要先算出输出序列。 本例中, 2)]-u(k 1),-u(k 2),-1),-y(k -[-y(k )(T =k ?。 2. 给辨识参数θ和协方差阵P 赋初值。一般取0θ=0或者极小的数,取σσ,20I P =特别大,本例中取σ=100。 3. 按照下式计算增益矩阵G : ) ()1()(1)()1()(k k P k k k P k G T ???-+-= 4. 按照下式计算要辨识的参数θ: )]1(?)()()[()1(?)(?--+-=k k k y k G k k T θ?θθ 5. 按照下式计算新的协方差阵P : )1()()()1()(---=k P k k G k P k P T ? 6. 计算辨识参数的相对变化量,看是否满足停机准则。如满足,则不再递推;如不满足, 则从第三步开始进行下一次地推,直至满足要求为止。 停机准则:ε???<--) (?)1(?)(?max k k k i i i i 本例中由于递推次数只有三十次,故不需要停机准则。 7. 分离参数:将a 1….a na b 1….b nb 从辨识参数θ中分离出来。 8. 画出被辨识参数θ的各次递推估计值图形。 为了说明噪声对递推最小二乘法结果的影响,程序5-7-2在计算模拟观测值时不加噪 声, 辨识结果为a1 =1.6417,a2 = 0.7148,b1 = 0.3900,b2 =0.3499,与真实值a1 =1.642, a2 = 0.715, b1 = 0.3900,b2 =0.35相差无几。 程序5-7-2-1在计算模拟观测值时加入了均值为0,方差为0.1的白噪声序列,由于噪 声的影响,此时的结果为变值,但变化范围较小,现任取一组结果作为辨识结果。辨识结果为a1 =1.5371, a2 = 0.6874, b1 = 0.3756,b2 =0.3378。 程序5-7-2-2在计算模拟观测值时加入了有色噪声,有色噪声为 E(k)+1.642E(k-1)+0.715E(k-2),E(k)是均值为0,方差为0.1的白噪声序列,由于有色噪声的影响,此时的辨识结果变动范围远比白噪声时大,任取一组结果作为辨识结果。辨识结果为a1 =1.6676, a2 = 0.7479, b1 = 0.4254,b2 =0.3965。 可以看出,基本的最小二乘法不适用于有色噪声的场合。

递推阻尼最小二乘法辨识算法公式的详细推导与说明

控制理论与控制工程 学位课程《系统辨识》考试报告 递推阻尼最小二乘法公式详细 推导 专业:控制理论与控制工程 班级:2011双控(研) 学生姓名:江南 学号:20110201016 任课教师:蔡启仲老师 2012年06月29 日

摘要 在参数辨识中,递推最小二乘法是用得最多的一种算法。但是,最小二乘法存在一些缺点,如随着协方差矩阵的减小,易产生参数爆发现象;参数向量和协方差矩阵的处置选择不当会使得辨识过程在参数收敛之前结束;在存在随机噪声的情况下,参数易产生漂移,出现不稳定等。为了防止参数爆发现象,Levenberg 提出在参数优化算法中增加一个阻尼项,以增加算法的稳定性。本文在一般的最小二乘法中增加了阻尼因子,构成了阻尼最小二乘法。又根据实时控制的要求,详细推到了递推阻尼最小二乘公式,实现在线辨识。 关键字:系统辨识,最小二乘法,递推算法 正文 1.题目的基本要求 已知单入单出系统的差分方程以及噪声,在应用最小二乘法进行辨识的时候,在性能指标中加入阻尼因子,详细推导阻尼最小二乘法的递推公式。 2.输入辨识信号和系统噪声的产生方法和理论依据 2.1系统辩识信号输入选择准则 (1)输入信号的功率或副度不宜过大,以免使系统工作在非线性区,但也不应过小,以致信噪比太小,直接影响辩识精度; (2)输入信号对系统的“净扰动”要小,即应使正负向扰动机会几乎均等; (3)工程上要便于实现,成本低。 2.2白噪声及其产生方法 (1) 白噪声过程 (2)白噪声是一种均值为0、谱密度为非0常数的平稳随机过程。 (3)白噪声过程定义:如果随机过程 () t ω的均值为0,自相关函数为 ()()2 R t t ωσδ= (2.2.1) 式中()t δ 为狄拉克(Dirac) 分布函数,即 (){ (),00,0 1t t t dt δδ∞ ∞=≠∞ ==? -且t (2.2.2) 则称该随机过程为白燥声过程。 2.3白噪声序列 (1) 定义 如果随机序列{() }w t 均值为0,并且是两两不相关的,对应的自相关函数为 ()2 ,0,1,2w l R l l σδ==±± 式中{1,0 0,0 l l l δ=≠=则称这种随机序列{()}w t 为白噪声序列。 2.4白噪声序列的产生方法 (1) (0,1)均匀分布随机数的产生 在计算机上产生(0,1)均匀分布随机数的方法很多,其中最简单、最方便的是数学方法。产生伪随机数的数学方法很多,其中最常用的是乘同余法和混合同余法。 ①乘同余法。

用matlab实现最小二乘递推算法辨识系统参数

自动化专业综合设计报告 设计题目:最小二乘递推算法辨识系统参数所在实验室:自动化系统仿真实验室 指导教师: 学生姓名 班级计082-2 班 学号 撰写时间:2012-3-1 成绩评定:

一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用; 二.设计要求 最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1.5*z(k-1)+0.7*z(k-2)=1*u(k-1)+0.5*u(k-2)+v(k); 选择如下形式的辨识模型: z(k)+a1*z(k-1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k); 三.实验程序 m= 3; N=100; uk=rand(1,N); for i=1:N uk(i)=uk(i)*(-1)^(i-1); end yk=zeros(1,N); for k=3:N yk(k)=1.5*yk(k-1)-0.7*yk(k-2)+uk(k-1)+0.5*uk(k-2); end %j=100;kn=0; %y=yk(m:j)'; %psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j-2)]'; %pn=inv(psi'*psi); %theta=(inv(psi'*psi)*psi'*y); theta=[0;0;0;0]; pn=10^6*eye(4); for t=3:N ps=([yk(t-1);yk(t-2);uk(t-1);uk(t-2)]); pn=pn-pn*ps*ps'*pn*(inv(1+ps'*pn*ps)); theta=theta+pn*ps*(yk(t)-ps'*theta); thet=theta'; a1=thet(1); a2=thet(2); b1=thet(3); b2=thet(4); a1t(t)=a1; a2t(t)=a2;b1t(t)=b1;b2t(t)=b2; end t=1:N; plot(t,a1t(t),t,a2t(t),t,b1t(t),t,b2t(t));

递推算法

递推算法典型例题 一、教学目标 1、由浅入深,了解递推算法 2、掌握递推算法的经典例题 二、重点难点分析 1、重点:递推关系的建立 2、难点:如何将所求问题转化为数学模型 三、教具或课件 微机 四、主要教学过程 (一)引入新课 客观世界中的各个事物之间或者一个事物的内部各元素之间,往往存在(隐藏)着很多本质上的关联。我们设计程序前.应该要通过细心的观察、丰富的联想、不断的尝试推理.尽可能先归纳总结出其内在规律,然后再把这种规律性的东西抽象成数学模型,最后再去编程实现。递推关系和递归关系都是一种简洁高效的常见数学模型,我们今天先来深入研究一下递推算法如何实现。 (二)教学过程设计 递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,这样的问题可以采用递推法来解决。从已知条件出发,逐步推出要解决的问题,叫顺推;从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。 递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来可以将递推算法看成是一种特殊的迭代算法。(在解题时往往还把递推问题表现为迭代形式,用循环处理。所谓“迭代”,就是在程序中用同一个变量来存放每一次推算出来的值,每一次循环都执行同一个语句,给同一变量赋以新的值,即用一个新值代替旧值,

应用最小二乘一次完成法和递推最小二乘法算法的系统辨识讲解

1最小二乘法的理论基础 1.1最小二乘法 设单输入单输出线性定长系统的差分方程表示为: 其中δ(k)为服从N(0,1)的随机噪声,现分别测出n+N 个输出输入值y(1),y(2),…,y(n+N),u(1),u(2),…,u(n+N),则可写出N 个方程,写成向量-矩阵形式 (4.1.1) ()()()()()()()() 1201121n n y k a y k a y k a y k n b u k b u k b u k n k ξ=-------+ +-+ +-+()()()()()()101122,,n n a y n n y n a n y b y n N n N b ξξθξξ?? ??++????????????++? ???===??????????????++?????????? ???? ()()()()()()()()() () ()()()() ()( )()()10111121222112n n y n y n y u n u y n y n y u n u y n N y n N y N u n N u N a n a n b n N b ξξξ+--+???? ????+-+-+???? =?????????+-+--+???? ?? ???? ??+?? ??????+??+??????? ???+??????????

则式(1.1.1)可写为 (4.1.2) 式中:y 为N 维输出向量;ξ为N 为维噪声向量;θ为(2n+1)维参数向量;Φ为N ×(2n+1)测量矩阵。因此,式(4.1.1)是一个含有(2n+1)个未知参数,由N 个方程组成的联立方程组。 11y θφφξ--=- 在给定输出向量y 和测量矩阵Φ的条件下求参数θ的估计,这就是系统辨识问题。 设 表示 θ 的估计值,?表示y 的最优估计,则有 (4.1.3) 式中: ()()()10??1??2??,???n n a y n a y n y b y n N b θ???? +????????+????==????????+?????? ???? 设e(k)=y(k)- ?(k), e(k)称为残差,则有e=y- ?=y-Φθ 最小二乘估计要求残差的平方和最小,即按照指数函数 (4.1.4) 求J对 的偏导数并令其等于0可得: (4.1.5) 由式(4.1.5)可得的 θ 最小二乘估计: (4.1.6) J 为极小值的充分条件是: 即矩阵ΦT Φ为正定矩阵,或者说是非奇异的。 1.1.1最小二乘法估计中的输入信号 当矩阵ΦT Φ的逆阵存在是,式(1.1.6)才有解。一般地,如果u(k)是随机序列或伪随机二位式序列,则矩阵ΦT Φ是非奇异的,即(ΦT Φ)-1存在,式(1.1.6)有解。 现在从ΦT Φ必须正定出发,讨论对u(k)的要求。 y φθξ=+?θ??y θ=Φ()() ??T T J e e y y θ θ==-Φ-Φ?θ() ?20?T J y θ θ ?=-Φ-Φ=??T T y θ ΦΦ=Φ()1 ?T T y θ -=ΦΦΦ220?T J θ ?=ΦΦ>?1 n N yy yu T +-ΦΦ??

(完整word版)多种最小二乘算法分析+算法特点总结

第一部分:程序设计思路、辨识结果分析和算法特点总结 (2) 一:RLS遗忘因子法 (2) RLS遗忘因子法仿真思路和辨识结果 (2) 遗忘因子法的特点: (3) 二:RFF遗忘因子递推算法 (4) 仿真思路和辨识结果 (4) 遗忘因子递推算法的特点: (5) 三:RFM限定记忆法 (5) 仿真思路和辨识结果 (5) RFM限定记忆法的特点: (7) 四:RCLS偏差补偿最小二乘法 (7) 仿真思路和辨识结果 (7) RCLS偏差补偿最小二乘递推算法的特点: (9) 五:增广最小二乘法 (9) 仿真思路和辨识结果 (9) RELS增广最小二乘递推算法的特点: (11) 六:RGLS广义最小二乘法 (12) 仿真思路和辨识结果 (12) RGLS广义最小二乘法的特点: (14) 七:RIV辅助变量法 (14) 仿真思路和辨识结果 (14) RIV辅助变量法的特点: (16) 八:Cor-ls相关最小二乘法(二步法) (17) 仿真思路和辨识结果 (17) Cor-ls相关最小二乘法(二步法)特点: (18) 九:MLS多级最小二乘法 (19) 仿真思路和辨识结果 (19) MLS多级最小二乘法的特点: (22) 十:yule_walker辨识算法 (23) 仿真思路和辨识结果 (23) yule_walker辨识算法的特点: (24) 第二部分:matlab程序 (24) 一:RLS遗忘因子算法程序 (24) 二:RFF遗忘因子递推算法 (26) 三:RFM限定记忆法 (28) 四:RCLS偏差补偿最小二乘递推算法 (31) 五:RELS增广最小二乘的递推算法 (33) 六;RGLS 广义最小二乘的递推算法 (36) 七:Tally辅助变量最小二乘的递推算法 (39) 八:Cor-ls相关最小二乘法(二步法) (42) 九:MLS多级最小二乘法 (45) 十yule_walker辨识算法 (49)

AIC法定阶的依阶次递推算法程序.

AIC 法定阶的依阶次递推算法程序 依阶次递推算法所得到估计θ ?,再按下式计算残差方差的估计值: ∑==N j j e N 122 )?,(1?θσ 由上式的结果计算AIC : )(2?lg AIC 2b a n n N ++=σ 在结果中找到AIC 最小的模型(阶次和参数)就是估计的模型。 由输出数据可知当k1=5时aic 的值最小。所以最后的辨识结果取阶次为5,参数为: –1.18394,0.813938,–0.518174,0.348744,–0.116818, 1.07998,–0.74386,0.475444,–0.253022,0.122781 判断的阶次的最小aic 值: aic= – 8981.58发生在阶次为5时。 源程序: #include #include #include #include //矩阵求逆函数 int brinv(double f[],int n) { int *is,*js,i,j,k,l,u,v; double d,p; is=(int *)malloc(n*sizeof(int)); js=(int *)malloc(n*sizeof(int)); for (k=0; k<=n-1; k++) { d=0.0; for (i=k; i<=n-1; i++) for (j=k; j<=n-1; j++) { l=i*n+j; p=fabs(f[l]); if (p>d) { d=p; is[k]=i; js[k]=j;} } if (d+1.0==1.0) { free(is); free(js); cout<<"err**not inv\n"; return(0); } if (is[k]!=k) for (j=0; j<=n-1; j++) { u=k*n+j; v=is[k]*n+j; p=f[u]; f[u]=f[v]; f[v]=p; }

实验一用递推公式计算定积分

实验一 用递推公式计算定积分 09信息 符文飞 07 1、实验目的: 由于一个算法是否稳定,十分重要。如果算法不稳定,则数值计算的结果就会严重背离数学模型的真实结果,因此,在选择数值计算公式来进行近似计算时,我们应特别注意选用那些在数值计算过程中不会导致误差迅速增长的公式。体会稳定性在选择算法中的地位.误差扩张的算法是不稳定的,是我们所不期望的;误差衰竭的算法是稳定的.是我们努力寻求的,这是贯穿本课程的目标.通过上机计算,了解舍入误差所引起的数值不稳定性。 2、实验题目: 对n =0,1,2,…,20,计算定积分dx x x y n n ?+=10 5 3、实验原理 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)= – 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二:

利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* = 可取:y(20)≈*()≈0.008730. 4、实验内容: 算法1的程序: y0=log(6.0)-log(5.0); y1=0; n=1; while n<=30 y1=1/n-5*y0; fprintf('y[%d]=%-20f',n,y1); y0=y1; n=n+1; if mod(n,1)==0; fprintf('\n') end end 算法2的程序: y0=(1/105+1/126)/2;

y1=0; n=1; while n<=30 y1=1/(5*n)-y0/5; fprintf('y[%d]=%-20f',n,y1) y0=y1; n=n+1; if mod(n,1)==0 fprintf('\n') end end 5、实验结果 对于算法1: y[1]=0.088392 y[2]=0.058039 y[3]=0.043139 y[4]=0.034306 y[5]=0.028468 y[6]=0.024325 y[7]=0.021233 y[8]=0.018837 y[9]=0.016926

递推最小二乘法

线性方程组的最优求解方法 一.递推最小二乘法 设线性方程组 b Ax = (1) 则有 k b k =x :A ),(, (n k Λ,2,1=) (2) 其中,[]kn k k a a a k ,,,:),(21Λ=A ,[]T n x x x ,,,21Λ=x 。 设 x :A ),()(k k f = (3) 下面采用基于递推最小二乘法(RLS)的神经网络算法来训练权值向量x ,以获得线性方程组(1)的解x 。由式(3)可知,若以)(k f 为神经网络输出,以k b 为神经网络训练样本,以x 为神经网络权值向量,[]kn k k a a a k ,,,:),(21Λ=A 为神经网络输入向量,则解线性方程组的神经网络模型如同1所示。 图1 神经网络模型 采用RLS 算法训练神经网络权值向量x ,其算法如下: (1)神经网络输出: x :A ),()(k k f = (4) (2)误差函数:

)()(k f b k e k -= (5) (3)性能指标: ∑==n k k e J 1 2)(21 (6) (4)使min =J 的权值向量x ,即为所求的神经网络权值向量x ,这是一个多变量线性优化问题,为此,由 0=??x J 可得最小二乘递推法(RLS ): ]),([1k k k k k k b x :A Q x x -+=+ (7) ),(),(1),(:A P :A :A P Q k k k T k T k k += (8) k k k k P :A Q I P )],([1-=+ (9) ()n k ,,2,1Λ= 随机产生初始权值向量)1,(0 n rand =x ,设n n ?∈=R I P α0(α是足够大的正数(一般取10610~10=α),n n ?∈R I 是单位矩阵),通过对样本数据训练,即可获得神经网络权值 向量x ,此即为线性方程组(1)的解。 二.具有遗忘因子的递推最小二乘估计公式为: ]),([1k k k k k k b x :A Q x x -+=+ (10) ),(),(),(:A P :A :A P Q k k k T k T k k +=λ (11) k k k k P :A Q I P )],([11-= +λ (12) 式中,1:)],(:),([)(-=k A k A k T W P ,W 为加权对角阵:

递推最小二乘法的应用

1 递推最小二乘法在电厂模型辨识中的应用 电厂中大多数热工对象可以用一阶或二阶有迟延和非迟延的模型来表示,对这些模型中参数的辨识,递推最小二乘法是一种较好的方法。本文以火电厂部分典型一阶模型为例子,借助于某电厂现场数据,分别对以下几种环节进行辨识。 1.1 一阶惯性环节 火电厂中,来自锅炉的过热蒸汽,经高压调节汽门和导汽管道进入高压缸膨胀做功,高压缸的排汽回到锅炉再热器被重新加热,加热后的蒸汽经中压调节汽门进入中低压缸进一步膨胀做功,做功后的乏汽最终排入凝汽器变成凝结水,一般中压调节汽门的开度是高压调节汽门的3倍,即在机组负荷大于额定的30%或者滑压运行时,汽轮机的中压调门是完全开启的。因此,在简化模型中,汽机侧调速器一级压力与机组有功功率可以简化为一阶惯性环节如下: 1 11()1 K G s T s = + 将以上环节离散化,并写成差分方程的形式 11111111 ()[(1)](1)(1)()/,/y k a y k b u k v k a T T T b K T T =--+-+-=-= 其中 u 为调速器一级压力,y 为机组有功功率,()v k 为零均值方差为1的高斯白噪 声。 该论文依据递推最小二乘法原理,借助 MATLAB 工具编写程序,设定合适 的初始值和加权因子进行参数辨识,辨识结果为11?? 2.7547,0.9193a b ==-,由11??,a b 可得到134.12K =,112.36s T =进而得到系统的传递函数为: 134.12 ()12.361 G s s = + 下面运用递推最小二乘法对所得结果进行仿真:假设134.12K =,112.36s T =已知,采样时间为1s T =,则计算可得

递推算法

递推算法 一、学习要点:(经典的五种递推关系) 1.fibonacci(斐波那契)数列 2.hanoi(汉诺)塔 3.平面分割 4.catalan数(卡特兰数) 5.第二类string数 二、重点提示 1.产生catalan数的参考程序: Const max=21; Var c:array[2..max] of longint; n,i,k:integer; total:longint; begin write(‘input n=’);readln(n); c[2]:=1; for i:=3 to n do begin c[i]:=0; for k:=2 to i-1 do c[i]:=c[i]+c[k]*c[i-k+1]; end; writeln(‘catalan=’,c[n]); end. Catalan数,从第二项开始为:1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012, 742900,2674440,9694545,35357670,129644790,477638700,1767263190 2.产生第二类的string数的参考程序: Var n,k:integer; Function s(n,k:integer):longint; Begin If (n

实用算法(基础算法-递推法)

实用算法(基础算法-递推法-01) 有一类试题,每相邻两项数之间的变化有一定的规律性,我们可将这种规律归纳成如下简捷的递推关系式: F n=g(F n-1) 这就在数的序列中,建立起后项和前项之间的关系,然后从初始条件(或最终结果)入手,一步步地按递推关系递推,直至求出最终结果(或初始值)。很多程序就是按这样的方法逐步求解的。如果对一个试题,我们要是能找到后一项与前一项的关系并清楚其起始条件(最终结果),问题就好解决,让计算机一步步算就是了,让高速的计算机做这种重复运算,可真正起到“物尽其用”的效果。 递推分倒推法和顺推法两种形式。一般分析思路: if求解条件F1 then begin{倒推} 由题意(或递推关系)确定最终结果Fa; 求出倒推关系式F i-1=g'(F i); i=n;{从最终结果Fn出发进行倒推} while 当前结果F i非初始值F1 do由F i-1=g(F1)倒推前项; 输出倒推结果F1和倒推过程; end {then} else begin{顺推} 由题意(或顺推关系)确定初始值F1(边界条件); 求出顺推关系式F1=g(Fi-1); i=1;{由边界条件F1出发进行顺推} while 当前结果Fi非最终结果Fn do由Fi=g(Fi-1)顺推后项; 输出顺推结果Fn和顺推过程; end; {else} 一、倒推法 所谓倒推法,就是在不知初始值的情况下,经某种递推关系而获知问题的解或目标,再倒推过来,推知它的初始条件。因为这类问题的运算过程是一一映射的,故可分析得其递推公式。然后再从这个解或目标出发,采用倒推手段,一步步地倒推到这个问题的初始陈述。 下面举例说明。 [例1] 贮油点 一辆重型卡车欲穿过1000公里的沙漠,卡车耗油为1升/公里,卡车总载油能力为500公升。显然卡车一次是过不了沙漠的。因此司机必须设法在沿途建立几个储油点,使卡车能顺利穿越沙漠,试问司机如何建立这些储油点?每一储油点应存多

递推算法解析集锦

递推算法集锦 一、编写程序求50以内的勾股弦数。即满足c*c=b*b+a*a的三个自然数,要求 b>a。将所有符合要求的a,b,c组合输出至屏幕。 解答: 采用穷举算法,在主函数中实现。 #include using namespace std; int main(){ int a,b,c,count=0; cout<<"勾股弦数有:"<

根据递推公式求数列通项公式的常用方法总结归纳(新)

求递推数列通项公式的常用方法归纳 目录 一、概述·································· 二、等差数列通项公式和前n项和公式·································· 1、等差数列通项公式的推导过程································ 2、等差数列前n项和公式的推导过程·································· 三、一般的递推数列通项公式的常用方法·································· 1、公式法·································· 2、归纳猜想法·································· 3、累加法·································· 4、累乘法·································· 5、构造新函数法(待定系数法)·································· 6、倒数变换法·································· 7、特征根法·································· 8、不动点法································· 9、换元法································· 10、取对数法·································· 11、周期法··································

相关文档
最新文档