FDS1010光电探测器

FDS1010光电探测器
FDS1010光电探测器

光电探测器原理

光电探测器原理

光电探测器原理及应用 光电探测器种类繁多,原则上讲,只要受到光照后其物理性质发生变化的任何材料都可以用来制作光电探测器。现在广泛使用的光电探测器是利用光电效应工作的,是变光信号为电信号的元件。 光电效应分两类,内光电效应和外光电效应。他们的区别在于,内光电效应的入射光子并不直接将光电子从光电材料 内部轰击出来,而只是将光电材料内部的光 电子从低能态激发到高能态。于是在低能态 留下一个空位——空穴,而高能态产生一个 自由移动的电子,如图二所示。 硅光电探测器是利用内光电效应的。 由入射光子所激发产生的电子空穴对,称为光生电子空穴对,光生电子空穴对虽然仍在材料内部,但它改变了半导体光电材料的导电性能,如果设法检测出这种性能的改变,就可以探测出光信号的变化。 无论外光电效应或是内光电效应,它们的产生并不取决于入射光强,而取决于入射光波的波长λ或频率ν,这是因为光子能量E只和ν有关: E=hν(1) 式中h为普朗克常数,要产生光电效应,每个光子的能量必须足够大,光波波长越短,频率越高,每个光子所具有的能量hν也就越大。光强只反映了光子数量的多少,并不反映每个光子的能量大小。 目前普遍使用的光电探测器有耗尽层光电二极管和雪崩光电二极管,是由半导体材料制作的。 半导体光电探测器是很好的固体元件,主要有光导型,热电型和P—N结型。但在许多应用中,特别是在近几年发展的光纤系统中,光导型探测器处理弱信号时噪声性能很差;热电型探测器不能获得很高的灵敏度。而硅光电探测器在从可见光到近红外光区能有效地满足上述条件,是该波长区理想的光接收器件。 一、耗尽层光电二极管 在半导体中,电子并不处于单个的分裂 能级中,而是处于能带中,一个能带有许多

-光电探测器原理

上海大学2014 ~2015学年春季学期本科生课程考试 小论文 课程名称:电子科学与技术新探索(专题研讨课) 课程编号: 10426056 论文题目: 光电探测器原理 本科生生姓名: 陆申阳学号: 12121765 论文评语: 成绩: 任课教师: 徐闰 评阅日期:

光电探测器原理原理 姓名:陆申阳 学号:12121765 摘要:光电探测器的原理主要是利用光电效应和光热效应。对于不同类型的光电探测器,他们的工作原理也不尽相同。本文以雪崩光电二极管、光电二极管、光热探测器为例具体介绍了它们们的工作原理。 Abstract:The primary principle of photodetector are photoelectric effect and photothermal effect.But,there are some distinctions of different photodetectors.The principles of photodiode,avalanche photodiode and optothermal detector are as follows. 关键词:雪崩光电二极管,光电二极管,热敏电阻,光电效应 Key words:avalanche photodiode,photodiode,photoelectric effect 简介:近年来,光电子系统已经运用到各个行业、各个领域。对于光电子系统,其最最重要的一部分光电探测器一直作为光电子系统的眼睛而存在。对于光电探测器,按照其辐射作用方式的不同,整体上可以分为光子探测器和光热探测器。按照具体的工作机理,光子探测器又可以分为光电导探测器、光敏电阻、雪崩光电二极管、光电二极管、光电发射探测器、光电管等;光热探测器可以分为热敏电阻、热电偶等。以下分别以光电二极管、雪崩光电二极管、热敏电阻为例具体介绍其工作原理。 一、光电二极管(PD) (一)、原理 光电效应可以分为内光电效应和外光电效应,内光电效应又可以分为光电导效应和光生伏特效应。 光电二极管的基本原理就是利用了光生伏特效应。光辐射照射半导体结上时,光子降价电子激发到导带,形成光生电子——空穴对,光生电子——空穴对在自建电场的作用下被分别扫向两端,形成光生电动势。即光生伏特效应。

光电探测器 入门详细解析

光电探测器 摘要 本文研究了近期崛起的高科技新秀:光电探测器。本文从光电探测器的分类、原理、主要参数、典型产品与应用、前景市场等方面简单介绍了光电探测器,使大家对光电探测器有一个初步的理解。了解光电探测材料的原理不仅有利于选择正确适宜的光电探测材料,而且对研发新的光电探测器有所帮助 一、简单介绍引入 光电探测器是指一类当有辐射照射在表面时,性质会发生各种变化的材料。光电探测器能把辐射信号转换为电信号。辐射信号所携带的信息有:光强分布、温度分布、光谱能量分布、辐射通量等,其进过电子线路处理后可供分析、记录、储存和显示,从而进行探测。 光电探测器的发展历史: 1826年,热电偶探测器→1880,金属薄膜测辐射计→1946,热敏电阻→20世纪50年代,热释电探测器→20世纪60年代,三元合金光探测器→20世纪70年代,光子牵引探测器→20世纪80年代,量子阱探测器→近年来,阵列光电探测器、电荷耦合器件(CCD) 这个被誉为“现代火眼金睛”的光电探测材料无论在经济、生活还是军事方面,都有着不可或缺的作用。 二、光电探测材料的分类。 由于器件对辐射响应的方式不一样,以此可将光电探测器分为两大类,分别是光 1

子探测器和热探测器。 ○1光子探测器:光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。光子计数也就是光电子计数,是微弱光(低于10-14W)信号探测中的一种新技术。 ○2利用光热效应制作的元件叫做热探测器,同时也叫热电探测器。(光热效应指的是当材料受光照射后,光子能量会同晶格相互作用,振动变得剧烈,温度逐渐升高,由于温度的变化,而逐渐造成物质的电学特性变化)。 若将光电探测器按其他种类分类,则 按应用分类:金属探测器,非成像探测器(多为四成像探测器),成像探测器(摄像管等)。 按波段分类:红外光探测器(硫化铅光电探测器),可见光探测器(硫化镉、硒化镉光敏电阻),紫外光探测器。 2

光电探测器

光电子技术论文报告 题 光电探测器 目 班级: 姓名: 学号: 成绩: 指导教师: 完成日期:

本文主要对光电探测器进行探究,重点介绍光电二极管和光电倍增管,光电二极管中主要介绍PIN光电二极管和雪崩光电二极管。对相应的光电探测器的结构、原理、特性参数及应用范围等展开探讨,以进一步了解光电探测器。 关键词:PIN光电二极管雪崩光电二极管光电倍增管

第一章引言 (1) 第二章光电二极管 (2) 2.1 PIN光电二极管 (2) 2.1.1工作原理 (2) 2.1.2结构 (2) 2.1.3影响因素 (3) 2.2 雪崩光电二极管 (3) 2.2.1工作原理 (3) 2.2.2 影响响应速度的因素 (4) 2.2.3 优点 (4) 第三章光电倍增管 (5) 3.1结构 (5) 3.2使用特性 (5) 第四章结论与讨论 (9) 第五章参考文献 (10)

第一章引言 光电探测器是指在光辐射作用下将其非传导电荷变为传导电荷的一类器件。广义的光电探测器包括所有将光辐射能转变为电信号的一类器件。光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。本文着重介绍光子探测器中的光电二极管和光电倍增管。

第二章光电二极管 光电二极管和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。光电二极管是在反向电压作用之下工作的,在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。 2.1 PIN光电二极管 PIN型光电二极管也称PIN结二极管、PIN二极管,在两种半导体之间的 PN 结,或者半导体与金属之间的结的邻近区域,在P区与N区之间生成I型层,吸收光辐射而产生光电流的一种光检测器。具有结电容小、渡越时间短、灵敏度高等优点。 2.1.1工作原理 在上述的光电二极管的PN结中间掺入一层浓度很低的N型半导体,就可以增大耗尽区的宽度,达到减小扩散运动的影响,提高响应速度的目的。由于这一掺入层的掺杂浓度低,近乎本征(Intrinsic)半导体,故称I层,因此这种结构成为PIN光电二极管。I层较厚,几乎占据了整个耗尽区。绝大部分的入射光在I层内被吸收并产生大量的电子-空穴对。在I层两侧是掺杂浓度很高的P型和N 型半导体,P层和N层很薄,吸收入射光的比例很小。因而光产生电流中漂移分量占了主导地位,这就大大加快了响应速度。 2.1.2结构 在P型半导体和N型半导体之间夹着一层本征半导体。因为本征层相对于P 区和N区是高阻区这样,PN结的内电场就基本上全集中于I 层中。如图所示:

光电探测器原理

光电探测器原理及应用 光电探测器种类繁多,原则上讲,只要受到光照后其物理性质发生变化的任何材料都可以用来制作光电探测器。现在广泛使用的光电探测器是利用光电效应工作的,是变光信号为电信号的元件。 光电效应分两类,内光电效应和外光电效应。他们的区别在于,内光电效应 的入射光子并不直接将光电子从光电材料内 部轰击出来,而只是将光电材料内部的光电 子从低能态激发到高能态。于是在低能态留 下一个空位——空穴,而高能态产生一个自 由移动的电子,如图二所示。 硅光电探测器是利用内光电效应的。 由入射光子所激发产生的电子空穴对,称为光生电子空穴对,光生电子空穴对虽然仍在材料内部,但它改变了半导体光电材料的导电性能,如果设法检测出这种性能的改变,就可以探测出光信号的变化。 无论外光电效应或是内光电效应,它们的产生并不取决于入射光强,而取决于入射光波的波长λ或频率ν,这是因为光子能量E只和ν有关: E=hν(1) 式中h为普朗克常数,要产生光电效应,每个光子的能量必须足够大,光波波长越短,频率越高,每个光子所具有的能量hν也就越大。光强只反映了光子数量的多少,并不反映每个光子的能量大小。 目前普遍使用的光电探测器有耗尽层光电二极管和雪崩光电二极管,是由半导体材料制作的。 半导体光电探测器是很好的固体元件,主要有光导型,热电型和P—N结型。但在许多应用中,特别是在近几年发展的光纤系统中,光导型探测器处理弱信号时噪声性能很差;热电型探测器不能获得很高的灵敏度。而硅光电探测器在从可见光到近红外光区能有效地满足上述条件,是该波长区理想的光接收器件。一、耗尽层光电二极管 在半导体中,电子并不处于单个的分裂 能级中,而是处于能带中,一个能带有许多

光电探测器及应用

要正确选择光电探测器,首先要对探测器的原理和参数有所了解。 1.光电探测器 光电二极管和普通二极管一样,也是由PN结构成的半导体,也具有单方向导电性,但是在电路中它不作为整流元件,而是把光信号转变为电信号的光电传感器件。 普通二极管在反向电压工作时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积相较大,以便接收入射光。光电二极管在反向电压工作下的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增加到几十微安,称为光电流。光的强度越大,反向电流也越大。光的变化引起光电二极管电流变化,这就可以把光信号转换为电信号,称为光电传感器件。 2.红外探测器 光电探测器的应用大多集中在红外波段,关于选择红外波段的原因在这里就不再冗余了,需要特别指出的是60年代激光的出现极大地影响了红外技术的发展,很多重要的激光器件都在红外波段,其相干性便于移用电子技术中的外差接收技术,使雷达和通信都可以在红外波段实现,并可获得更高的分辨率和更大的信息容量。在此之前,红外技术仅仅能探测非相干红外辐射,外差接收技术用于红外探测,使探测性能比功率探测高好几个数量级。另外,由于这类应用的需要,促使出现新的探测器件和新的辐射传输方式,推动红外技术向更先进的方向发展。 红外线根据波长可以分为近红外,中红外和远红外。近红外指波长为0.75—3微米的光波,中红是指3—20微米的光波,远红外是指20—1000微米的波段。但是由于大气对红外线的吸收,只留下三个重要的窗口区,即1—3,3—5和8—14可以让红外辐射通过。因为有这三个窗口,所以可以被应用到很多方面,比如红外夜视,热红外成像等方面。 红外探测器的分类: 按照工作原理可以分为:红外红外探测器,微波红外探测器,玻璃破碎红外测器,振动 红外探测器,激光红外探测器,超声波红外探测器,磁控开关红外探测器,开关红外探测器,视频运动检测报警器,声音探测器等。 按照工作方式可以分为:主动式红外探测器和被动式红外探测器。 被动红外探测器是感应人体自身或外界发出的红外线的。主动式红外探测器一般为对射,红外栅栏等,是探测器本身发射红外线。 按照探测范围可以分为:点控红外探测器,线控红外探测器,面控红外探测器,空间防范红外探测器。 点源是探测元是一个点。用于测试温度,气体分析和光谱分析等 线阵是几个点排成一条线。用于光谱分析等 面阵是把很多个点源放在仪器上形成一个面。主要用于成像。 四象限是把一个点源分成四个象限。用于定位和跟踪。

光电探测技术

第一章: 1,光电检测系统的基本组成及各部分的主要作用? 光源——光学系统——被测对象——光学变换——光电转换——电信号放大与处理[存储,显示,控制] 作用:光学变换:将被测量转换为光参量,有时需要光信号的匹配处理,目的是更好的获得待测量的信息。 电信号放大与处理的作用:存储,显示,控制。 第二章: 1、精密度、准确度、精确度、误差、不确定度的意义、区别。 答:精密度高指偶然误差较小,测量数据比较集中,但系统误差大小不明确; 准确度高指系统误差较小,测量数据的平均值偏离真值较少; 精确度高指偶然误差和系统误差都比较小,测量数值集中在真值附近; 误差=测量结果-真值;不确定度用标准偏差表示。 2、朗伯辐射体的定义?有哪些主要特性? 答:定义:辐射源各方向的辐亮度不变的辐射源。特性:自然界大多数物体的辐射特性,辐亮度与观察角度无关。 3、光谱响应度、积分响应度、量子效率、NEP、比探测率的定义、单位及物理意义。 答:灵敏度又叫响应度,定义为单位辐射度量产生的电信号量,记作R,电信号可以是电流,称为电流响应度;也可以是电压,称为电压响应度。对应不同辐射度量的响应度用下标来表示。辐射度量测量中,测不同的辐射度量,应当用不同的响应度。 对辐射通量的电流响应度(AW-1 ) 对辐照度的电流响应度(AW-1 m 2 ) E 对辐亮度的电流响应度(AW-1 m 2 Sr)L 量子效率:在单色辐射作用于光电器件时,单位时间产生的的光电子数与入射的光子数之比,为光电器件的量子效率。 NEP:信噪比等于1时所需要的最小输入光信号的功率。单位:W。物理意义:反映探测器理论探测能力的重要指标。 比探测率:定义;物理意义:用单位探测系统带宽和单位探测器面积的噪声电流来衡量探测器的探测能力。 第三章: 1、光源的分类及各种光源的典型例子;相干光源和非相关光源包括哪些? 答:按照光波在时间、空间上的相位特征,一般将光源分成相干光源和非相干光源;按发光机理可分为:热辐射光源,常用的有:太阳、黑体源、白炽灯,典型军事目标辐射;气体辐射光源,广泛用作摄影光源;固体辐射光源,用于数码、字符和矩阵的显示;激光光源,应用:激光器。相干光源:激光;非相关光源:普通光源。 2、对一个光电检测系统的光源通常都有哪方面要求? 答:1.波长(光谱)特性2.发光强度(光功率)3.光源稳定性(强度、波长) 3、辐射效率和发光效率的概念及意义 答:在给定λ1~λ2波长范围内,某一辐射源发出的辐射通量与产生这些辐射通量所需比,称为该辐射源在规定光谱范围内的辐射效率;某一光源所发射的光通量与产生这些光通量所需的电功/率之比,就是该光源的发光效率。 4、色温,配光曲线的概念及意义 答:色温:如果辐射源发出的光的颜色与黑体在某一温度下辐射出的光的颜色相同,则黑体的

光谱用光电探测器介绍_百度文库解析

光谱用光电探测器介绍(卓立汉光 光探测器按照工作原理和结构,通常分为光电探测器和热电探测器,其中光电探测器包括真空光电器件(光电倍增管等和固体光电探测器(光电二极管、光导探测器、CCD 等。 ● 光电倍增管(PHOTOMULTIPLIER TUBES,PMT 光电倍增管(PMT是一种具有极高灵敏度的光探测器件,同时还有快速响应、低噪声、大面积阴极(光敏面等特点。 典型的光电倍增管,在其真空管中,包括光电发射阴极(光阴极和聚焦电极、电子倍增极和电子收集极(阳极的器件。当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大;放大后的电子被阳极收集作为信号输出(模拟信号输出。因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。 从接受入射光方式上来分,光电倍增管有侧窗型(Side-on和端窗型(Head-on两种结构。 侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极,使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点还包括它拥有从更大面积的光敏面(几十平方毫米到几百平方厘米的光阴极。端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。

光电探测器

光电子技术论文报告 班级: 姓名: 学号: 成绩: 指导教 师: 完成日 期

本文主要对光电探测器进行探究,重点介绍光电二极管和光电倍增管,光电二极管中主要介绍PIN 光电二极管和雪崩光电二极管。对相应的光电探测器的结构、原理、特性参数及应用范围等展开探讨,以进一步了解光电探测器。 关键词:PIN 光电二极管雪崩光电二极管光电倍增管

第一章引言 (1) 第二章光电二极管 (2) 2.1P IN 光电二极管 . (2) 2.1.1工作原理 (2) 2.1.2结构 (2) 2.1.3影响因素 (3) 2.2雪崩光电二极管 (3) 2.2.1工作原理 (3) 2.2.2影响响应速度的因素 (4) 2.2.3优点 (4) 第三章光电倍增管 (5) 3.1结构 (5) 3.2使用特性 (5) 第四章结论与讨论 (9) 第五章参考文献 (10)

第一章引言光电探测器是指在光辐射作用下将其非传导电荷变为传导电荷的一类器件。广义的光电探测器包括所有将光辐射能转变为电信号的一类器件。光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。本文着重介绍光子探测器中的光电二极管和光电倍增管。

第二章光电二极管 光电二极管和普通二极管一样,也是由一个PN 结组成的半导体器件,也具有单方向导电特性。但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。光电二极管是在反向电压作用之下工作的,在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。 2.1P IN 光电二极管 PIN型光电二极管也称PIN 结二极管、PIN 二极管,在两种半导体之间的PN 结,或者半导体与金属之间的结的邻近区域,在P区与N区之间生成I型层,吸收光辐射而产生光电流的一种光检测器。具有结电容小、渡越时间短、灵敏度高等优点 2.1.1工作原理 在上述的光电二极管的PN 结中间掺入一层浓度很低的N 型半导体,就可以增大耗尽区的宽度,达到减小扩散运动的影响,提高响应速度的目的。由于这一掺入层的掺杂浓度低,近乎本征( Intrinsic)半导体,故称I 层,因此这种结构成为PIN 光电二极管。I 层较厚,几乎占据了整个耗尽区。绝大部分的入射光在I 层内被吸收并产生大量的电子-空穴对。在I 层两侧是掺杂浓度很高的P 型和N 型半导体,P层和N层很薄,吸收入射光的比例很小。因而光产生电流中漂移分量占了主导地位,这就大大加快了响应速度。 2.1.2结构 在P 型半导体和N 型半导体之间夹着一层本征半导体。因为本征层相对于P 区和N 区是高阻区这样,PN 结的内电场就基本上全集中于I 层中。如 图所示:

文献检索 光电探测器的研究及应用

文献检索报告单 课题名称:光电探测器的研究及应用 院系:光电工程学院 班级: 学生姓名: 学号: 成绩: 年月日

姓名:_ _ 学号:_ _ 班级:_ _ 成绩:__________ 课题:光电探测器的研究及应用 检索工具一: 名称:光电探测器的研究及应用 网址:http://202.119.208.220:8002/kns50/detail.aspx?dbname=CDFD2007&filename=2007078661.nh 类型:文献 检索途径:中国知网 检索词:光电、探测 检索结果记录: 引言 光电探测器的发展历史比较悠久,已有上百年的研究历史。由于这种器件在军事和民用中的重要性,发展非常迅速。随着激光与红外技术的发展,材料性能的改进和制造工艺的不断完善,光电探测器朝这集成化的方向发展。这大大缩小体积、改善性能、降低成本。此外将光辐射探测器阵列与CCD器件结合起来,可以实现信息的传输也可用于热成像领域。

因此,进一步研究光电探测器是一项重要课题,本文章就从原理及国内外最新的研究状况探索光电探测器领先应用。 光电探测器入门 光电探测器的发展历史 最早用来探测可见光辐射和红外辐射的光辐射探测器是热探测器。其中,热电偶早在1826年就已发明出来【1】。1880年又发明了金属薄膜测辐射计。1947年制成了金属氧化物热敏电阻测辐射热计。1947年又发明了气动探测器。经过多年的改进和发展,这些光辐射探测器日趋完善,性能也有了较大的改进和提高。但是,与光子探测器相比,这些光辐射探测器的探测率仍较低,时间常数也较大。从五十年代开始人们对热释电探测器进行了一系列研究工作,发现它具有许多独特的优点,因此近年来有关热释电探测器的研究工作特别活跃,发展异常迅速。热释电探测器的发展以使得热探测器这个领域大为改观,以致有人估计热释电技术将成为发展电子——光学工业的先导。 应用广泛的光子探测器,除了发展最早、技术上也最成熟、响应波长从紫光到近红外的光电倍增管以外,硅和锗材料制作的光电二极管、铅锡、Ⅲ~Ⅴ族化合物、锗掺杂等光辐射探测器,目前均已达到相当成熟的阶段,器主要性能已接近理论极限。 1970年以后又出现了一种利用光子牵引效应制成的光子牵引探测器。其主要用于CO2激光的探测。八十年代中期,出现了利用掺杂的GaAs/AlGaAs材料、基于导带跃迁的新型光探测器——量子阱探测器。这种器件工作于8~12μm波段,工作温度为77K。 2.2 光电探测的分类及原理 光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。 光电探测器的工作原理是基于光电效应【2】。热探测器是用探测元件吸收入射辐射而产生热、造成温升,并借助各种物理效应把温升转换成电量的原理而制成的器件。最常用的有温差电偶、测辐射热计、高莱管、热电探测器。一般来说,热探测器的接收元由于表面涂黑它的光谱响应是无选择性的,它只受透光窗口光谱透射特性的限制,因此主要应用于红外区和紫外区,但它的响应率较低、响应速度慢、机械强度低,近来由于热电探测器和薄膜器件的发展,上述缺点已有所改进。 光子型探测器,利用外光电效应制成的光子型探测器是真空电子器件,如光电管、光电倍增管和红外变像管等。这些器件都包含一个对光子敏感的光电阴极,

探测器如何选

Thorlabs探测器的选择 光电探测器是指由辐射引起被照射材料电导率改变的一种物理现象。光电探测器在军事和国民经济的各个领域有广泛用途。我们在选择器件必须考虑到它的光谱相应度、响应时间、探测度(所能探测到的最小能量,或称灵敏度)。Thorlabs提供一系列光学探测器产品,能够探测整个紫外、可见、近红外、红外以及太赫兹光谱区域内的光源。根据所选择的传感器可以测量不同参数,如强度、功率、强度分布、波前形状、能量和波长。 (1)光谱相应度 光谱相应度是光电探测器的基本性能之一,它表征光电探测器对不同长入射辐射的响应。光电探测器的光谱响应特性有明显的选择性。不同的半导体材料有不同的响应曲线,如Si,Ge,InGaAs,Gap,InAs,Inp等,不同的本征半导体又可以有不同的掺杂,例如掺杂Si既可以做成200-1100纳米的响应波段,也可以有400-1100纳米的波段等等。 (2)响应时间 光电探测器输出的电信号在时间上落后于作用在其上的光信号,即光电探测器的输出相对于输入的光信号要发生时间轴上的扩展。这种扩展可以用时间响应来描述。响应落后于作用信号的现象称为弛豫,对于信号开始作用时的弛豫称为起始弛豫:信号停止作用时的弛豫称为衰减弛豫。对于光电池、光敏电阻这一类探测器件,起始弛豫为探测器响应从零上升到稳定值的63%时所需要的时间,衰减弛豫为响应下降到稳定值的37%所需要的时间。对于雪崩二极管、光电二极管这一类响应速度快的探侧器件,起始弛豫为响应从稳定值的10%上升到稳定值的90%所需要的时间。

Thorlabs公司的上升时间最快的要数PDA8GS,该款适用于有关快速光学信号测试和测量等应用领域,光谱响应:700-1650 nm,带宽:9.5 GHz,数据速率:10.7 Gb/s,增益转换:275 V/W @ 850 nm,450 V/W @ 1310 nm,上升沿时间:50 ps,相对其该超高宽带9.5 GHz灵敏度必然下调(带宽与灵敏度往往成反比),但也能达到10e-6W /√Hz, 该款价格相对较高大约在3万多人民币。 图1 响应速率相对较慢的,如DET系列中的DET02AFC和DET04CFC是面向光纤的光学探测器,带宽为1.2 GHz。FC/PC接头光纤输入。DET02AFC使用一个硅探头,可探测波长范围从400到1100 nm;DET01CFC为InGaAs探头,探测波长范围从800到1700 nm,价格在2000多元。 图2 响应速率还要慢的,上升时间纳秒级别,如DET其他系列,PDA系列,该两类比较通用,价格较便宜,PDA系列相对DET系列多集成了放大电路(多了个放大电路增益数据约10e+3V/A),并且探测面积较大,增益可调。两者带宽大约都为几百兆赫兹,灵敏度较高(NEP系数约10e-14W/√Hz)。

半导体光电探测器的原理及其应用(精)

半导体光电探测器 摘要:本文介绍了光电与系统的组成、一些半导体光电探测器的工作原理及其特性,最后阐述了光电导探测器与光伏探测器的区别。 关键词:半导体光电探测器,光电系统,光电导探测器,光伏探测器 引言 光电探测器是一种受光器件,具有光电变换功能。光敏器件的种类繁多,有光敏电阻、光电二极管、光电三极管、光晶闸管、集成光敏器件等;有雪崩型的及非雪崩型的;有PN结型、PIN结型及异质结型的等。由于光电探测器的响应速度快,体积小,暗电流小,使之在光纤通讯系统、光纤测试系统、光纤传感器、光隔离器、彩电光纤传输、电视图象传输、快速光源的光探测器、微弱光信号的探测、激光测距仪的接收器件、高压电路中的光电测量及光电互感器、计算机数据传输、光电自动控制及光测量等方面得到了广泛应用。 半导体光电探测器是用半导体材料制作的能接收和探测光辐射的器件。光照射到器件的光敏区时,它就能将光信号转变成电信号,是一种光电转换功能的测光元件。它在国防和工农业生产中有着重要和广泛的应用。 半导体光电探测器可分为光电导型和光伏型两种。光电导型是指各种半导体光电导管,即光敏电阻;光伏型包括光电池、P-N结光电二极管、PIN光电二级管、雪崩光电二极管、光电三级管等。本文首先介绍了光电系统的组成,然后分别介绍其工作原理及其特性,最后将这两类探测器进行比较。 一、光电子系统的组成 现代光电子系统非常复杂,但它的基本组成可用图l来说明:待传送信号经过编码器编码后加到调制器上去调制光源发出的光,被调制后的光由发射光学系统发送出去.发射光学系统又称为发射天线,因为光波是一种电磁波,发射光学系统所起的作用和无线电发射天线所起的作用完全相同.发送出去的光信号经过传输介质,如大气等,到达接收端.由接收光学系统或接收天线将光聚焦到光电探测器上,光电过长距离传输后会衰减,使接收到的信号一般很弱,因此需要用前置放大器将其放大,然后进行解码,还原成发送端原始的待传送信号,最后由终端显示器显示出来. 图1-1光电子系统图 二、半导体探测器的原理 1、光电导探测器 光电导探测器主要是通过电阴值的变化来检测,以下我将以光敏电阻为例介绍其工作原理。光敏电阻又称光导管, 它没有极性, 纯粹是一个电阻器件, 使用时既可加直流电压, 也

光电探测器综述(PD)分解

光电探测器综述 摘要:近年来,围绕着光电系统开展了各种关键技术研究,以实现具有高集成 度、高性能、低功耗和低成本的光电探测器(Photodetector)及光电 集成电路(OEIC)已成为新的重大挑战。尤其是具有高响应速度,高量 子效率和低暗电流的高性能光电探测器,不仅是光通信技术发展的需 要,也是实现硅基光电集成的需要,具有很高的研究价值。本文综述了 近十年来光电探测器在不同特性方向的研究进展及未来几年的发展方 向,对其的结构、相关工艺和制造的研究具有很重要的现实意义。 关键词:光电探测器,Si ,CMOS Abstrac t: In recent years, around the photoelectric system to carry out the study of all kinds of key technologies, in order to realize high integration, high performance, low power consumption and low cost of photoelectric detector (Photodetector) and optoelectronic integrated circuit (OEIC) has become a major new challenge. Especially high response speed ,high quantum efficiency, and low dark current high-performance photodetector, is not only the needs for development of optical communication technology, but also realize the needs for silicon-based optoelectronic integrated,has the very high research value.This paper reviews the development of different characteristics and results of photodetector for the past decade, and discusses the photodetector development direction in the next few years,the study of high performance photoelectric detector, the structure, and related technology, manufacturing, has very important practical significance. Key Word: photodetector, Si ,CMOS 一、光电探测器 概念 光电探测器在光通信系统中实现将光转变成电的作用,这主要是基于半导体材料的光生伏特效应,所谓的光生伏特效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。(光电导效应是指在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化的象。即当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大

光电探测器噪声分析小结

光电探测器噪声分析 姓名: 学号:

光电探测器噪声分析 光电探测器它是一种通过将光辐射信号转变为电信号的光学器件,其原理是基于光辐射与物质的相互作用所产生的光电效应。在完成光电转换过程中,不仅给出表征被测对象的有用信号,同伴随着无用的噪声信号。从噪声源着手,对光电探测器的常见输出噪声分析。光电探测器存在许多内部噪声,主要噪声来源是热噪声和散粒噪声,其中热噪声对探测能力影响最大。也可细分为以下几类。 1.散粒噪声 散粒噪声是由照射在光电探测器上的光子起伏及光生载流子流动的不连续性和随机性而形成载流子起伏变化引起的。散粒噪声频谱与频率无关,是白噪声。散粒噪声一般包括:①信号光的光子噪声②背景光的光子噪声③暗电流散粒噪声。考虑到信号光、背景光和暗电流的共同作用,光电探测器输出端的总散粒噪声可表示为: 2.多电极倍增噪声 光电倍增管中倍增极噪声与电子的二次发射有关。倍增过程对噪声的贡献系数F为 3.产生—复合噪声 产生—复合噪声与载流子的产生随机性、复合时间和载流子寿命有关 4.等效负载阻抗的热噪声 热噪声存在于任何导体和半导体中,它来源电阻内部自由电子或电荷载流子的不规则热运动,它对探测能力影响最大。 具有如下特点: 1.热噪声与温度T成正比,降低探测器的工作温度可减少热噪声。 2.热噪声与测量仪器的电子带宽成正比,而与频率无关,表明热噪声的频谱无限宽, 3.热噪声电压随R增大而增大,热噪声电流随R增大而减小,可知一个电阻所能输出的最大噪声功率与电阻无关。 4.热噪声与电阻中是否有电流流过无关。 小结 影响探测噪声的因素为温度和检测电路的带宽,所以,可以通过降低探测器工作温度和检测电路带宽来增加探测器的探测性能和系统的信噪比。具有多倍增极的光电探测器,必须考虑倍增过程对噪声的贡献其中,降低温度可通过低温装置来实现,还可通过硬件电路的优化设计减小带宽,从而降低噪声,增强探测器的探测性能。

光电检测电路的噪声

10.2.2 光电检测电路的噪声 光电检测电路的噪声主要来自探测器本身的噪声、偏置电路的噪声和前置放大器的附加噪声。 1.光电检测电路的E n -I n 噪声模型 在光电检测电路中,信号源为光电探测器,其信号源噪声除了源内阻的热噪声外,还应包括探测器本身的其他噪声,如光伏探测器的散粒噪声、光敏电阻的产生-复合噪声等。 光电检测电路中信号源总噪声增大时,放大器的噪声使系统信噪比变坏的程度相对降低;其噪声匹配 电阻 向增大的方向偏离最佳源电阻R sopt 值。 2.光电探测器与前置放大器的噪声匹配 首先,根据使用要求,如光谱响应范围、响应频率、使用温度、最小可探测功率等,选定探测器。一旦探测器类型选定后,其内阻也就确定了。再根据最佳源电阻匹配原则,选择低噪声有源器件作前置放大器,以得到最大的输出信噪比。 3.偏置电路和负反馈电路的噪声影响 偏置电路的噪声影响:探测器的偏置电路,如光电倍增管、光电二极管、光敏电阻的偏置电阻,对检测电路的噪声贡献等效于偏置电阻与探测器的并联。 负反馈电路的噪声影响:串联负反馈的噪声贡献等效于负反馈合成电阻与探测器的串联;并联负反馈的噪声贡献等效于负反馈合成电阻与探测器的并联。 阻抗元件参数选择准则: y 与探测器串联的阻抗元件,应满足: y 与探测器并联的阻抗元件,应满足: y 接口电路电阻两端的直流电压应尽量减小,以减小电阻元件的1/f 噪声。 4.检测电路的低噪声设计要点 y 选择低噪声放大器; y 减小偏置电路和反馈电路的噪声影响; y 降低前置放大器的附加噪声影响; y 选择工作频率和带宽。 sopt R ′图10-10 常用器件最佳源电阻分布示意图 ???<<<>>>n n cp n n cp //I E X I E R 页码,1/1 第10章 光电检测电路与信号处理2011-8-26https://www.360docs.net/doc/f110255593.html,/2010jpkc/nudt/gdjs/kechengjingjiang/1022.htm

光电探测器的应用

光电探测器的应用 摘要:光电探测技术利用光源在目标和背景上的反射或目标、背景本身辐射电磁波的差异来探测、识别目标并对它们进行跟踪、瞄准。光电探测设备与电子、雷达、声、磁等探测装备相辅相成,互为补充,各有特点,共同组成一个完整的战略、战术侦察探测体系。 目前,光电探测主要分为可见光探测、微光探测、红外探测、激光侦察、光电综合探测、卫星光电探测、机载光电探测、舰载光电探测和车载光电探测等多种。 1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。60年代初,中远红外波段灵敏的Ge、Si掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au(锗掺金)和Ge:Hg光电导探测器。60年代末以后,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。 所谓光电导探测器就是利用半导体材料的光电导效应制成的一种光探测器件。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导效应是内光电效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。 光电导探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。光电导体的另一应用是用它做摄像管靶面。为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。 目前世界上发展比较快的光电探测技术有红外探测技术、激光探测技术以及光电综合探测技术。 红外探测系统中包括红外夜视仪和热像仪两大类。热像仪又称前视红外装置。主动红外夜视仪容易暴露自己,作用距离远,目前基本上被热像仪取代。热像仪是夜视装备中的新秀,目前国外200多种型号的第一代热成像仪装备卫星、车辆、飞机、直升机、舰艇、固定阵地、反坦克武器、防空武器,用于远距离侦察、监视、跟踪和探测伪装、地雷、化学战剂等。 70年代以后,激光测距机、激光目标指示器、激光雷达等激光侦察设备相继在各国三军中使用。第一代激光测距机以红宝石激光器和光电倍增管探测器为基础,在70年代末以后被性能更先进的第二代和第三代激光测距机取代。第二代激光测距主要采用掺铝钇钕石榴石激光器和硅光电二极管或雪崩光电二极管探测器.

光电探测器

光电探测器 作者:小白你可以的 摘要 本文研究了近期崛起的高科技新秀:光电探测器。本文从光电探测器的分类、原理、主要参数、典型产品与应用、前景市场等方面简单介绍了光电探测器,使大家对光电探测器有一个初步的理解。了解光电探测材料的原理不仅有利于选择正确适宜的光电探测材料,而且对研发新的光电探测器有所帮助 一、简单介绍引入 光电探测器是指一类当有辐射照射在表面时,性质会发生各种变化的材料。光电探测器能把辐射信号转换为电信号。辐射信号所携带的信息有:光强分布、温度分布、光谱能量分布、辐射通量等,其进过电子线路处理后可供分析、记录、储存和显示,从而进行探测。 光电探测器的发展历史: 1826年,热电偶探测器→1880,金属薄膜测辐射计→1946,热敏电阻→20世纪50年代,热释电探测器→20世纪60年代,三元合金光探测器→20世纪70年代,光子牵引探测器→20世纪80年代,量子阱探测器→近年来,阵列光电探测器、电荷耦合器件(CCD) 这个被誉为“现代火眼金睛”的光电探测材料无论在经济、生活还是军事方面,都有着不可或缺的作用。 二、光电探测材料的分类。 由于器件对辐射响应的方式不一样,以此可将光电探测器分为两大类,分别是光子探测器和热探测器。 光子探测器 光电子发射探测器光电导探测 器 光伏探测器 热探测器 热敏电阻热电偶 热释电探测 器

○1光子探测器:光子,是光的最小能量量子。单光子探测技术,是近些年刚刚起步的一种新式光电探测技术,其原理是利用新式光电效应,可对入射的单个光子进行计数,以实现对极微弱目标信号的探测。光子计数也就是光电子计数,是微弱光(低于10-14W)信号探测中的一种新技术。 ○2利用光热效应制作的元件叫做热探测器,同时也叫热电探测器。(光热效应指的是当材料受光照射后,光子能量会同晶格相互作用,振动变得剧烈,温度逐渐升高,由于温度的变化,而逐渐造成物质的电学特性变化)。 若将光电探测器按其他种类分类,则 按应用分类:金属探测器,非成像探测器(多为四成像探测器),成像探测器(摄像管等)。 按波段分类:红外光探测器(硫化铅光电探测器),可见光探测器(硫化镉、硒化镉光敏电阻),紫外光探测器。

光谱用光电探测器介绍解析

光谱用光电探测器介绍(卓立汉光) 光探测器按照工作原理和结构,通常分为光电探测器和热电探测器,其中光电探测器包括真空光电器件(光电倍增管等)和固体光电探测器(光电二极管、光导探测器、CCD等)。 ● 光电倍增管(PHOTOMULTIPLIER TUBES,PMT) 光电倍增管(PMT)是一种具有极高灵敏度的光探测器件,同时还有快速响应、低噪声、大面积阴极(光敏面)等特点。 典型的光电倍增管,在其真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大;放大后的电子被阳极收集作为信号输出(模拟信号输出)。因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。 从接受入射光方式上来分,光电倍增管有侧窗型(Side-on)和端窗型(Head-on)两种结构。 侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点还包括它拥有从更大面积的光敏面(几十平方毫米到几百平方厘米的光阴极)。端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。 由于外加电压的变化会引起光电倍增管增益的变化,对输出的影响很大,因此对供给光电倍增管的工作电源电压要求较高,必须有极好的稳定性。卓立汉光的HVC系列高压稳压电源,其稳定性能达到±0.03%/h,非常适合作为光电倍增管高压电源。 同时需要注意的是,由于光电倍增管增益很大,一般情况不允许加高压时暴露在日光下测量可见光,以免造成损坏,作为光探测器使用时,需要将光电倍增管进行密封。卓立汉光所提供的光电倍增管封装严格按照要求进行封装,保证客户的正常安全使用。 另外,光电倍增管受温度影响很大,降低光电倍增管的使用环境温度可以减少热电子发射,从而降低暗电流。特别是在使用长波(近红外波段,俗称红敏)光

相关文档
最新文档