核反应堆热工分析课程设计剖析

核反应堆热工分析课程设计剖析
核反应堆热工分析课程设计剖析

课程设计报告

名称:核反应堆热工分析课程设计

题目:利用单通道模型进行反应堆稳态热工设计院系:--------------------

班级:----------

学号:---------

学生姓名:-----------

指导教师:--------

设计周数:--------

成绩:

日期:2014年6 月25日

一、课程设计的目的与要求

反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设计,尤其是对动力堆,最基本的要求是安全。要求在整个寿期内能够长期稳定运行,并能适应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。

在进行反应堆热工设计之前,首先要了解并确定的前提为:

(1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用的核燃料、冷却剂、慢化剂和结构材料等的种类;

(2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化范围;

(3)燃料元件的形状、它在堆芯内的分布方式以及栅距允许变化的范围;

(4)二回路对一回路冷却剂热工参数的要求;

(5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。

在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点:

(1)燃料元件芯块内最高应低于其他相应燃耗下的熔化温度;

(2)燃料元件外表面不允许发生沸腾临界;

(3)必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热;

(4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。

在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。

热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和其它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的:

1、深入理解压水堆热工设计准则;

2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用;

3、掌握堆芯焓场的计算并求出体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR,燃料元件中心温度及其最高温度,包壳表面温度及其最高温度等;

4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等;

5、掌握压降的计算;

6、掌握单相及沸腾时的传热计算。

7、理解单通道模型的编程方法。 课程设计的考核方式:

1、 报告一份;

2、计算程序及说明一份;

3、答辩。

二、设计任务(设计题目) 已知压水反应堆的热功率

1933t N Mw =;燃料元件包壳外径9.5cs d mm =,包壳内径

8.36ci d mm =,芯块直径8.19u d mm =;燃料组件采用17x17正方形排列,共145组燃料组件;每

个组件内有24个控制棒套管和一个中子通量测量管;燃料棒中心间栅距P =13mm,组件间水隙1w mm δ=。

系统工作压力p =15.51MPa ,冷却剂平均温度300.3R t C =?,堆芯冷却剂平均温升24.3t C ?=?;冷

却剂旁流系数6%ζ

=;冷却剂设计总流量9194Kg/s , 2.6q F =, 1.65N H F ?=;DNBR=1.23;又设燃料

元件内释热份额占总释热量的97.4%;堆芯高度取L =3.6576 m ;并近似认为燃料元件表面最大热流密度、元件表面最高温度和元件中心最高温度都发生在元件半高度处;已知元件包壳的热导率

0.00547(1.832)13.8[/()]c cs k t W m C =++?。试用单通道模型求燃料元件中心温度。

三、设计正文(详细的计算过程、计算结果及分析) 1.基本参数的确定:

根据冷却剂的平均温度300.3R

t C =?,堆芯冷却剂平均温升24.3t C ?=?知:

R t =2t ,,f ex

f in t +=300.3℃

t ?=in ,f t +ex f ,t =24.3℃ (1) 求得出口温度为ex f ,t =312.45℃,入口温度为in ,f t =288.15℃。

系统工作压力p =15.51MPa ,入口比焓为in f h ,=1274.49kJ/kg,冷却剂平均温度300.3R

t C =?条件下,

比容s v =0.0013776m 3

/kg,密度

s ρ=1/s v =725.90kg/m 3,动力粘度s m /10*1218.026-=ν,普朗克数

8598.0=r p ,热导率)/(w 10*9127.5613-C m ??=κ。

2.计算最大热流密度

堆芯燃料棒数目:N=145*(17*17-20-1)=38280 (2)

平均热流密度为2

3

6/45.0382806576.3105.9%4.97101933q m W LN d F N cs u t =??????==-ππ (3)

2max /17.16.245.0q q m MW F q =?== 2max /44.123.117.1q q m MW DNBR DNB =?== 一般取临界热流密度上限为2

/80.2m MW ,显然满足要求。 3.求堆芯等效直径

ef

D

ef D =

4/1452

πT ? (5) 式中:T 为正方形组件每边长m 。

设燃料组件无盒壁,考虑到装卸料的要求,组件间的水隙取为1.0mm ,即相邻组件的燃料棒中心距为13+1=14mm,故得

T2=(17x13x10

3

-+2x0.5x10

3

-)2

=0.052

m

将T2代入式中得

ef

D

ef

D =3.016m

4.求热管半高处水的焓值)

2(L

h

查表并计算得

49

.1274h ,=in f kJ/kg ,则得到半高度处的焓值为

kg

kJ W F F N h h L h ef N

H

E H t in f 78.1473%619194208

.165.1101933101274.49249.12742)2(63

max ,=-?????+

?=+=?+=??)

(ρ

(6)

由工作压力的焓温转换关系得

)

2(t L f =323.36℃ 5.热管半高度处的冷却剂流速

热管内冷却剂流速(或质量流速)的精确计算可按教科书中介绍的方法求解,也可按热管与平均管压降相等的原则进行迭代求解。作为例子,为简化计算,取热管半高处冷却剂流速近似等于平均管半高处的流速,则

t

f ef

A W V ?=

ρ (7)

式中:

t A 为堆芯燃料元件周围的冷却剂总有效流通面积,单位为2m ,f ρ为冷却剂平均温度下的密度,

单位为3

m kg 。t A 应由两部分组成:一部分是组件内燃料元件棒之间冷却剂的流通面积;另一部

分是组件间水隙的横截面积,因为流过这个水隙的冷却剂是冷却燃料组件最外面 一排燃料元件的,所以它也属于有效冷却剂的流通面积。因此有

]

174[]4

[2

2δπ

P n d P N A cs t ?+-

=

式中组件的水隙宽度0.001m 。

])0095.0(4

)1013[(2641452

2

3?-

???=-π

t A +

]001.01013174[1453?????-=3.884m2 (8)

于是

t f ef

A W V ?=

ρ=s

m 06.311.726884.3%619194=?-?)

6.计算热管半高处燃料元件表面与冷却剂间的对流放热系数h

ρμe e VD L R =)2(

其中

e D 为当量直径

m

d d P D cs

cs e m 15.13105.9]

105.94

1013[4]

4

[43

2

32

32

2=????-

?=

-=

---ππ

ππ

)()( (9)

系统工作压力p =15.51MPa ,)2(t L

f =323.36℃,动力粘度s m /101178.02

6-?=ν,普朗克数9728.0=r p ,

热导率

)/(w 106847.5133

-C m ???=κ。 所以

ρμe e VD L

R =)2(5

6310416.3101178.01015.1306.3?=???=-- (10)

77

.6079728.010146.3023.0023.0)2(4.08

.054.0r 8.0u =???==)(P R L N e (11)

在所给的条件下,水的热导

C m W ?

?=547.0κ,则 )(1074.2315.13106847.51377.607)2(233

C m W

D Nu L h e ?-??=??==κ (12)

7.计算燃料元件表面的最高温度

max

,cs t

西安交大核反应堆热工分析复习详细

第一部分 名词解释 第二章 堆的热源及其分布 1、衰变热:对反应堆而言,衰变热是裂变产物和中子俘获产物的放射性衰变所产生的热量。 第三章 堆的传热过程 2、积分热导率:把u κ对温度t 的积分()dt t u ?κ作为一个整体看待,称之为积分热导率。 3、燃料元件的导热:指依靠热传导把燃料元件中由于核裂变产生的热量从温度较高的燃料芯块内部传递到温度较低的包壳外表面的这样一个过程。 4、换热过程:指燃料元件包壳外表面与冷却剂之间直接接触时的热交换,即热量由包壳的外表面传递给冷却剂的过程。 5、自然对流:指由流体内部密度梯度所引起的流体的运动,而密度梯度通常是由于流体本身的温度场所引起的。 6、大容积沸腾:指由浸没在(具有自由表面)(原来静止的)大容积液体内的受热面所产生的沸腾。 7、流动沸腾:也称为对流沸腾,通常是指流体流经加热通道时产生的沸腾。 8、沸腾曲线:壁面过热度(s w sat t t t -=?)和热流密度q 的关系曲线通常称为沸腾曲线。 9、ONB 点:即沸腾起始点,大容积沸腾中开始产生气泡的点。 10、CHF 点:即临界热流密度或烧毁热流密度,是热流密度上升达到最大的点。Critical heat flux 11、DNB 点:即偏离核态沸腾规律点,是在烧毁点附件表现为q 上升缓慢的核态沸腾的转折点H 。Departure from nuclear boiling 12、沸腾临界:特点是由于沸腾机理的变化引起的换热系数的陡增,导致受热面的温度骤升。达到沸腾临界时的热流密度称为临界热流密度。 13、快速烧毁:由于受热面上逸出的气泡数量太多,以至阻碍了液体的补充,于是在加热面上形成一个蒸汽隔热层,从而使传热性能恶化,加热面的温度骤升; 14、慢速烧毁:高含汽量下,当冷却剂的流型为环状流时,如果由于沸腾而产生过分强烈的汽化,液体层就会被破坏,从而导致沸腾临界。 15、过渡沸腾:是加热表面上任意位置随机存在的一种不稳定膜态沸腾和不稳定核态沸腾的结合,是一种中间传热方式,壁面温度高到不能维持稳定的核态沸腾,而又低得不足以维持稳定的膜态沸腾,传热率随温度而变化,其大小取决于该位置每种沸腾型式存在的时间份额。 16、膜态沸腾:指加热面上形成稳定的蒸汽膜层,q 随着t ?增加而增大。对流动沸腾来说,膜态沸腾又分为反环状流和弥散流。 17、“长大”:多发生在低于350°C 的环境下,它会使燃料芯块变形,表面粗糙化,强度降低,以至破坏。 18、“肿胀”:大于400℃时,由裂变气体氪和氙在晶格中形成小气泡引起的,随着燃耗的增加,气泡的压力增加,结果就是得金属铀块肿胀起来。肿胀是指材料因受辐照而发生体积增大的现象。 19、弥散体燃料:是用机械方法把燃料弥散在热导率高、高温稳定性好的基体金属中制成的材料。 20、输热过程:指当冷却剂流过堆芯时,将堆内裂变过程中所释放的热量带出堆外的过程。 21、易裂变核素:可以由任何能量的中子引起裂变的核素,如铀-235、铀-233、钚-239,只有铀-235是天然存在的,占0.714%;可裂变核素:能在快中子的轰击下引起裂变的核素,

反应堆热工基础试题(成理工)

反应堆热工基础卷子 2010级成都理工大学 一、填空 1、核反应堆中,裂变碎片的动能约占总能量的84%,裂变能的绝大部分在燃料元件内转换 为热能,少量在慢化剂内释放,通常取97.4%在燃料元件内转为热能。 2、影响堆芯功率分布的因素主要有燃料布置、控制棒、水隙及空泡。 3、进行瞬态分析的四类电厂工况是正常运行和运行瞬变、中等频率故障、稀有故障和极限 事故。 4、核电厂专设安全系统主要包括应急堆芯冷却系统、辅助给水系统、安全壳喷淋系统和其 他安全设施。 5、回路系统的压降一般包括:提升压降、加速压降、摩擦压降、形阻压降。 6、垂直加热通道中的主要流型包括:泡状流、环状流、滴状流。 二、问答 1、简述反应堆热工分析的内容包括哪5项? 答:分析燃料元件内的温度分布;冷却剂的流动和传热特性;预测在各种运行工况下反应堆的热力参数;预测各种瞬态工况下压力、温度、流量等热力参数随时间的变化工程;分析事故工况下压力、温度、流量等热力参数随时间的变化过程。 2、核反应堆停堆后为什么还要继续进行冷却? 答:核反应堆停堆后,虽然堆内自持的裂变反应随即终止,但还是有热量不断地从燃料芯块通过包壳传入冷却剂中。这些热量主要来自燃料棒内储存的显热、剩余中子引起的裂变和裂变产物和中子俘获产物的衰变,因此,反应堆停堆后,还必须继续进行冷却,以便排出这些热量,防止燃料元件损坏。 3、就压水堆而言,造成流量分配不均匀的主要原因有哪些? 答:就压水堆而言,造成流量分配不均匀的原因主要有:进入下腔室的冷却剂流,不可避免地会形成许多大大小小的涡流区,从而有可能造成各冷却剂通道进口处的静压力各不相同;各冷却通道在堆芯或燃料组件中所处的位置不同,其流通截面的几何形状和大小也就不可能完全一样,燃料元件和燃料组件的制造、安装的偏差,会引起冷却剂通道流通截面的几何形状和大小偏离设计值,各冷却剂通道中的释热量不同,引起冷却剂的温度、热物性以及含气量也各不相同,导致各通道中的流动阻力产生显著差别。 4、什么是流动不稳定性?在反应堆中蒸汽发生器以及其他存在两相流的设备中一般不允 许出现流动不稳定性,为什么? 答:流动不稳定性是指在一个质量流密度、压降和空泡之间存在着耦合的两相系统中,流体受到一个微小的扰动后所产生的流量漂移或者以某一种频率的恒定振幅或变振幅进行的流量振荡。流动不稳定性对反应堆系统的危害很大,主要表现在流量和压力振荡所引起的机械力会使部件产生有害的机械振荡,导致部件的疲劳损坏;流动振荡会干扰控制系统;流动振荡会使部件局部热应力产生周期性变化,从而导致部件的热疲劳破坏;流动振荡使系统内的换热性能变坏,极大地降低系统的输热能力,并可能造成沸腾临界过早出现。 5、简述压水堆涉及中所规定的稳态设计准则? 答:目前压水堆设计中所规定的稳态设计准则一般有以下几点:燃料元件芯块内最高温度低于其相应燃耗下的烙化温度,燃料元件外表面不允许发生沸腾临界,必须保证正行运行工况下燃料原件和对内构件能够得到充分冷却。在事故工况下能提供足够的冷却剂以排出堆芯余热,在稳态工况下和可预计的瞬态运行工况中,不发生流动不稳定。

核反应堆物理课程报告

核反应堆物理课程报告 罗晓 2014151214

有关反应堆反应性的研究报告 作者:罗晓 摘要:本学期我们进行了《反应堆物理》课程的学习,在学习之尾,为了检验学习成果,特在此做有关反应堆反应性的研究报告。在反应堆研究的各个方面,反应性的研究不可忽视,在反应堆运行期间,为了能在给定的功率条件下稳定地运行,且能满足紧急停堆、功率调节、补偿控制等要求,必须引入各种形式的反应性。而确定需要引入反应性的数量和采用何种方式进行高效与安全的控制,以及各种控制类型之间反应性的分配,是核反应堆堆芯设计的一个十分重要的方面。为了对立面的有关机理进行更加详细的了解,下面对各种反应性进行了综合分析,且对其稳定性进行了分析,得出了全面的控制机制和详细的动态特性。这对反应堆的堆芯设计、有效控制和安全运行具有重要的参考意义。 关键词:反应堆、反应性、控制 首先,我们在此解释反应性的概念。宏观上来说,反应性即为反映核反应堆状态的一种物理量。数学定义如下: 其中:k 为反应堆的有效增值系数 从上式来看,反应性表征了反应堆偏离临界状态的程度。在反应堆内引入反应性有很多种办法,而经常用到的有如下几种:(1)向堆内插入可移动的且具有较强中子吸收能力的控制棒,常采用由银 - 铟 - 镉合金组成的控制棒组件,他们通过控制棒驱动机构有效控制,我们将这部分反应性记为1ρ ;(2)向堆芯内装入对中子吸收截面较大的固体物质———可燃毒物,在堆芯运行期间,随着核燃料一起逐渐被消耗掉,我们将其记为2ρ ;(3)在轻水堆中,将对中子吸收截面较大的物质溶解在冷却剂中,将其称为可溶毒物,用 3ρ 表示。以上引入的这些反应性,无论是因操作需要而人为引入的,还是由于意外事故的发生而造成的(如控制棒被抛出或冷却剂泵损坏),他们都是通过改变外加中子吸收物质来实现的。 同时,反应堆内反应性的变化应该考虑一下三种情况: (1)温度效应 因反应堆温度效应变化而引起的ρ发生变化的效应,称为反应性的温度效应。温度效应可以用反应性温度系数来衡量。负的温度系数对于反应堆安全运行有重要意义。 1=K K ρ-

热工控制系统课程设计样本

热工控制系统课程设计 题目燃烧控制系统 专业班级: 能动1307 姓名: 毕腾 学号: 02400402 指导教师: 李建强 时间: .12.30— .01.12

目录 第一部分多容对象动态特性的求取 (1) 1.1、导前区 (1) 1.2、惰性区 (2) 第二部分单回路系统参数整定 (3) 2.1、广义频率特性法参数整定 (3) 2.2、广义频率特性法参数整定 (5) 2.3分析不同主调节器参数对调节过程的影响 (6) 第三部分串级控制系统参数整定....................... (10) 3.1 、蒸汽压力控制和燃料空气比值控制系统 (10) 3.2 、炉膛负压控制系统 (10) 3.3、系统分析 (12) 3.4有扰动仿真 (21) 第四部分四川万盛电厂燃烧控制系统SAMA图分析 (24) 4.1、送风控制系统SAMA图简化 (24) 4.2、燃料控制系统SAMA图简化 (25) 4.3、引风控制系统SAMA图简化 (27) 第五部分设计总结 (28)

第一部分 多容对象动态特性的求取 某主汽温对象不同负荷下导前区和惰性区对象动态如下: 导前区: 136324815.02++-S S 惰性区: 1 110507812459017193431265436538806720276 .123456++++++S S S S S S 对于上述特定负荷下主汽温导前区和惰性区对象传递函数, 能够用两点法求上述主汽温对象的传递函数, 传递函数形式为 w(s)= n TS K )1(+,再利用 Matlab 求取阶跃响应曲线, 然后利用两点法确 定对象传递函数。 1.1 导前区 利用MATLAB 搭建对象传递函数模型如图所示:

核反应堆物理分析课后习题参考答案

核反应堆物理分析答案 第一章 1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。 解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ= 以c 5表示富集铀内U-235与U 的核子数之比,ε表示富集度,则有: 5 55235235238(1) c c c ε=+- 151 (10.9874(1))0.0246c ε -=+-= 25528 3 222M(UO )235238(1)162269.91000()() 2.2310() M(UO ) A c c UO N N UO m ρ-=+-+?=?==? 所以,26 352(5)() 5.4910()N U c N UO m -==? 28352(8)(1)() 2.1810()N U c N UO m -=-=? 28 32()2() 4.4610()N O N UO m -==? 2112()(5)(5)(8)(8)()() 0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0() a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=?+?+?=∑==?= 1-2.某反应堆堆芯由U-235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。 解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ= 由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U = 33()19.0510/U kg m ρ=? 可得天然U 核子数密度28 3()1000()/() 4.8210()A N U U N M U m ρ-==? 则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=?=?= 总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑= 1-6 11 7172 1111 PV V 3.210P 2101.2510m 3.2105 3.210φφ---=∑???===?∑????

核反应堆热工水力课程设计

一、设计要求 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点: 1.燃料元件芯块内最高应低于其他相应燃耗下的熔化温度; 2.燃料元件外表面不允许发生沸腾临界; 3.必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下 能提供足够的冷却剂以排除堆芯余热; 4.在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 5.在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而 热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。 二、设计任务 某压水反应堆的冷却剂和慢化剂都是水,用二氧化铀作燃料,Zr-4作燃料包壳材料。燃料组件无盒壁,燃料元件为棒状,正方形排列,已知下列参数:系统压力P15.8M P a 堆芯输出热功率N t1820M W 冷却剂总流量W32500t/h 反应堆进口温度t f i n287℃堆芯高度L 3.60m 燃料组件数m121 燃料组件形式n0×n017×17 每个组件燃料棒数n265 燃料包壳外径d c s9.5m m 燃料包壳内径d c i8.6m m 燃料包壳厚度δc0.57m m 燃料芯块直径d u8.19m m 燃料棒间距(栅距)s12.6m m 两个组件间的水隙δ0.8m m UO2芯块密度ρUO2 95%理论密度旁流系数ζ5% 燃料元件发热占总发热份额F a97.4% 径向核热管因子 1.33 轴向核热管因子 1.520 热流量核热点因子= 2.022 热流量工程热点因子 1.03 焓升工程热点因子(未计入交混因子) 1.142 交混因子0.95 焓升核热管因子= 1.085

核反应堆热工分析课设

目录 一、设计任务 (1) 二、课程设计要求 (2) 三、计算过程 (2) 四、程序设计框图 (8) 五、代码说明书 (9) 六、热工设计准则和出错矫正 (10) 七、重要的核心程序代码 (11) 八、计算结果及分析 (17)

一、设计任务 某压水反应堆的冷却剂及慢化剂都是水,用二氧化铀作燃料,用Zr-4作包壳材料。燃料组件无盒壁,燃料元件为棒状,正方形排列。已知下列参数:系统压力 15.8MPa 堆芯输出功率 1820MW 冷却剂总流量 32100t/h 反应堆进口温度287℃ 堆芯高度 3.66m 燃料组件数 121 燃料组件形式17×17 每个组件燃料棒数 265 燃料包壳直径 9.5mm 燃料包壳内径 8.36mm 燃料包壳厚度 0.57mm 燃料芯块直径 8.19mm 燃料棒间距(栅距) 12.6mm 芯块密度 95% 理论密度旁流系数 5% 燃料元件发热占总发热的份额 97.4% 径向核热管因子 1.35 轴向核热管因子 1.528 局部峰核热管因子 1.11 交混因子 0.95 热流量工程热点因子 1.03 焓升工程热管因子 1.085 堆芯入口局部阻力系数 0.75 堆芯出口局部阻力系数 1.0 堆芯定位隔架局部阻力系数 1.05

若将堆芯自上而下划分为5个控制体,则其轴向归一化功率分布如下 表:堆芯轴向归一化功率分布(轴向等分5个控制体) 通过计算,得出 1. 堆芯出口温度; 2. 燃料棒表面平均热流及最大热流密度,平均线功率,最大线功率; 3. 热管的焓,包壳表面温度,芯块中心温度随轴向的分布; 4. 包壳表面最高温度,芯块中心最高温度; 5. DNBR在轴向上的变化; 6. 计算堆芯压降; 二、课程设计要求 1.设计时间为两周; 2.独立编制程序计算; 3.迭代误差为0.1%; 4.计算机绘图; 5.设计报告写作认真,条理清楚,页面整洁; 6.设计报告中要附源程序。 三、计算过程 目前,压水核反应堆的稳态热工设计准则有: (1)燃料元件芯块内最高温度应低于其相应燃耗下的熔化温度。 目前,压水堆大多采用UO2作为燃料。二氧化铀的熔点约为2805 ±15℃,经辐照后,其熔点会有所降低。燃耗每增加104兆瓦·日/吨铀,其熔点下降32℃。在通常所达到的燃耗深度下,熔点将降至2650℃左右。在稳态热工设计中,一般将燃料元件中心最高温度限制在2200~2450℃之间。 (2)燃料元件外表面不允许发生沸腾临界。

热工控制系统课程设计56223

热工控制系统课程设计 ----某直流锅炉给水控制系统设计 二○一○年十二月 目录 第一部分多容对象动态特性的求取 (2) 第二部分单回路系统参数整定 (4) 一、广义频率特性法参数整定 (5) 二、临界比例带法确定调节器参数 (6) 三、比例、积分、微分调节器的作用 (9) 第三部分串级控制系统参数整定 (10) 一、主蒸汽温度串级控制系统参数整定 (10) 二、给水串级控制系统参数整定 (13) 三、燃烧控制系统参数整定 (15)

第四部分 某电厂热工系统图分析 ........................................................ 16 参考文献: (19) 第一部分 多容对象动态特性的求取 选取某主汽温对象特定负荷下导前区和惰性区对象动态特性如下: 导前区: 1 40400657 .12++-s s 惰性区: 1 1891542269658718877531306948665277276960851073457948202 .1234567+++++++s s s s s s s 对于上述特定负荷下主汽温导前区和惰性区对象传递函数,可以用两点法求上述主汽温对象的传递

函数,传递函数形式为n Ts K s W )1()(+=,利用Matlab 求取阶跃响应曲线,然后利用两点法确定对象 传递函数。 导前区阶跃响应曲线: 图1-1 由曲线和两点法可得: 657.1=K 637.28,663.0657.14.0)(4.01==?=∞t y 165.61,326.1657.18.0)(8.02==?=∞t y 2092.25.0075.12 121≈=??? ? ??+-=t t t n ,8.2016.22 1≈+≈n t t T 即可根据阶跃响应曲线利用两点法确定其传递函数:2 ) 18.20(657 .1)(+-= s s W 惰性区阶跃响应曲线:

【精品】核反应堆物理分析习题答案第四章

第四章 1.试求边长为,,a b c (包括外推距离)的长方体裸堆的几何曲率和中子通量密度的分布.设有一边长0.5,0.6a b m c m ===(包括外推距离)的长方体裸堆, 0.043,L m =42610m τ-=?。 (1)求达到临界时所必须的k ∞;(2)如果功率为15000, 4.01f kW m -∑=,求中子通量密度分布. 解:长方体的几何中心为原点建立坐标系,则单群稳态扩散方程为: 222222()0a a D k x y z φφφφφ∞???++-∑+∑=???边界条件:(/2,,)(,/2,)(,,/2)0a y z x b z x y c φφφ=== (以下解题过程都不再强调外推距离,可认为所有外边界尺寸已包含了外推距离) 因为三个方向的通量拜年话是相互独立的,利用分离变量法: (,,)()()()x y z X x Y y Z z φ=将方程化为:22221k X Y Z X Y Z L ∞ -???++=- 设:222222,,x y z X Y Z B B B X Y Z ???=-=-=- 想考虑X 方向,利用通解:()cos sin x x X x A B x C B x =+

代入边界条件:1cos()0,1,3.5,...2x nx x a n A B B n B a a ππ=?==?= 同理可得:0(,,)cos()cos()cos()x y z x y z a a a πππφφ= 其中0φ是待定常数。 其几何曲率:22222()()()106.4g B m a b c πππ-=++= (1)应用修正单群理论,临界条件变为:221g k B M ∞-= 其中:2220.00248M L m τ=+= 1.264k ∞?=(2)只须求出通量表达式中的常系数0φ 322200222 2cos()cos()cos()()a b c a b c f f f f f f V P E dV E x dx y dy z dz E abc a b c πππφφφπ---=∑=∑=∑????3 182102() 1.00710f f P m s E abc π φ--?==?∑ 2.设一重水—铀反应堆的堆芯222221.28, 1.810, 1.2010k L m m τ--∞==?=?.试按单群理 论,修正单群理论的临界方程分别求出该芯部的材料曲率和达到临界时候的总的中子不泄露几率。 解:对于单群理论:

反应堆热工资料

第一章核能发电原理及反应堆概述 第1节核电厂工作基本原理 1.核反应堆 2. 热交换器 3. 蒸气涡轮机 4. 发电机 5. 冷凝器 第2节反应堆的分类 (1)按用途分:实验堆:用于实验研究;生产堆:专门用来生产易裂变物质或聚变物质;动力堆:用作动力源 (2)按引起堆内大部分裂变的中子能量分。热中子堆:En< 1eV;中能中子堆:1eV 1keV。 (3)按核燃料状态分。固体燃料堆;液体燃料堆 (压水堆、沸水堆);重水堆(D2O ); (4)按慢化剂和冷却剂种类分. 轻水堆(H2O) 石墨气冷堆;钠冷快中子堆。 动力核反应堆组成及功能 (1)堆芯——实现链式裂变反应堆区域。包括:核燃料元件、慢化剂、冷却剂、控制元件、中子源等。 (2)反应堆控制系统——保证反应堆能安全地实现启动、停堆、功率调节。包括:控制棒及其驱动系统等。

(3)回路冷却系统——提供足够的冷却剂流量以带走堆芯的裂变释热,并传递热动力产生系统。包括压力容器、主泵等。 (4屏蔽——吸收、减弱来自堆芯的辐射,保护周围人员和部件。 (5)动力产生系统——将一回路的热能转变为动力。如汽轮机。 (6)辅助系统——保证冷却剂系统及动力系统的正常运行。包括:余热导出系统、冷却剂净化系统、放射性废液处理系统、废气净化系统等。 (7)安全设施——保证事故情况下提供必要的冷却、密闭放射性物质,避免环境污染如安全壳。) 第3节压水堆 系统压力:15~16 Mpa 冷却剂入口温度:300℃,出口温度:330℃ 冷却剂流量:62000 t/h 燃料装量:90 t (电功率1000MWe) 最大燃料温度:1780 ℃ UO2燃料富集度:2.0~4.0% 转化比:0.5 第4节沸水堆 系统压力:7 Mpa 冷却剂入口温度:260~270℃,出口温度:280℃ 冷却剂流量:47000 t/h 燃料装量:140 t (电功率1000MWe) 最大燃料温度:1830 ℃ UO2燃料富集度:2.0~3.0% 转化比:0.5 沸水堆核电厂的特点(与压水堆相比): 比功率密度较低,燃料装载量较大,总投资略大; 压力容器厚度减少、尺寸变大,制造成本相当; 采用直接循环,系统比较简单,回路设备少,易于加工制造; 采用喷射泵循环系统,功率调节方便,且使压力容器开孔直径减小,降低了失水事故可能性及严

反应堆热工分析课程设计

《核反应堆热工分析》课程设计 学生:杨伟 学号:20094271 指导教师:陈德奇 专业:核工程与核技术 完成时间:2012年7月5日 重庆大学动力工程学院 二O一二年六月

通过本课程设计,达到以下目的: (1)深入理解压水堆热工设计准则; (2)深入理解单通道模型的基本概念、基本原理。包括了解平均通道(平均 管)、热通道(热管)、热点等在反应堆热工设计中的应用; (3)掌握堆芯焓场的计算并求出体现反应堆安全性的主要参数;烧毁比 DNBR,最小烧毁比MDNBR,燃料元件中心温度t0及其最高温度t0,max,包壳表面温度t cs及其最高温度t cs,max等; (4)求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度, 燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等; (5)通过本课程设计,掌握压水堆热工校核的具体工具; (6)掌握压降的计算; (7)掌握单相及沸腾时的传热计算。

某压水堆的冷却剂和慢化剂都是水,用UO2作燃料,用Zr-4作燃料包壳材料。燃料组件无盒壁,燃料元件为棒状,采用正方形排列。已知参数如表1所示: 将堆芯自下而上分为6个控制体,其轴向归一化功率分布如表2所示: 表2: 堆芯归一化功率分布

3 计算过程及结果分析 3.1流体堆芯出口温度(平均管) ) 1(***..ζ-+ =p t a in f out f C W N F t t 按15.5MPa 下流体平均温度 =(t f,out + t f,in )/2查表得。 假设出口温度为320,则=(292.4+320)/2=306.2,差得=5.836KJ/Kg 。 20.24633.6*) 05.01(*836.5*685003016000 974.0..=-?+ =in f out f t t 由于 |320 -320.246|<0.5 满足条件 3.2燃料棒表面平均热流密度 = W/ 式中为堆芯内燃料棒的总传热面积 = 燃料棒表面最大热流密度 = W/ 燃料棒平均线功率 == W/m 燃料棒最大线功率 = W/m 根据以上已知的公式查表可计算得: = =

核反应堆物理分析教学大纲

“核反应堆物理分析”课程教学大纲 英文名称:Analysis of Nuclear Reactor Physics 课程编码:NUCL0006 学时:64学分:4 适用对象:核能专业本科 先修课程:核辐射物理基础 使用教材及参考书: 谢仲生主编,《核反应堆物理分析》,西安交大出版社,2004年 一、课程性质、目的和任务 “核反应堆物理分析”是核能专业区别于常规能源动力类专业的核心课程,是核工程与核技术专业的专业基础理论课程。讲述的是中子核反应的基础理论和分析计算方法,讲述的内容主要包括中子与原子核的作用、中子慢化与扩散、核反应堆临界理论、反应性控制、核燃料循环与管理等。 “核反应堆物理分析”课程主要讲授核反应堆的基础理论知识,目的是培养学生具备从事核反应堆工程领域或相关工作的基础知识。任务是让学生掌握核反应堆基础理论知识和基本原理。 二、教学基本要求 1.注重讲解物理概念,帮助学生正确理解抽象的知识。 2.培养学生的分析问题理解问题的能力,切实掌握所学知识。 3.达到全部理解并接受基本知识的目的。 三、教学内容及要求 第一章核反应堆的核物理基础 本章主要介绍学习本课程所必须具备的基础知识和基本概念,主要包括:中子与原子核的相互作用,中子截面和核反应率,共振吸收,核裂变过程,热中子能谱和链式裂变反应等。 第二章中子慢化和慢化能谱

本章主要讲述中子在慢化过程中的规律和相关知识,主要有:中子的弹性散射过程,无限均匀介质中子的慢化能谱,均匀介质中的共振吸收,热中子反应堆内能谱的近似分布与热中子的平均截面等。 第三章中子扩散理论 本章主要讲述中子在扩散过程中的规律和相关知识,具体包括:单能中子扩散方程,非增殖介质内中子扩散方程的解,扩散长度,与能量相关的中子扩散方程和分群扩散理论,扩散-年龄近似等。 第四章均匀反应堆的临近理论 本章主要介绍均匀反应堆的临界理论,具体包括:均匀裸堆的单群理论,有反射层的反应堆的单群扩散理论,双群扩散理论,多群扩散方程的数值解法等。 第五章栅格的非均匀效应与均匀化群常数的计算 本章主要介绍非均匀反应堆的非均匀效应和均匀化方法,具体包括:栅格的非均匀效应,栅格的均匀化处理,栅元均匀化群常数的计算,燃料组件内中子通量密度分布及少群常数的计算,非均匀栅格的共振吸收,栅格几何参数的选择等。 第六章反应性随时间的变化 本章主要讲述反应堆的反应性随时间的变化规律,主要内容为:燃料中重同位素成分随时间的变化,裂变产物中毒,反应性随时间的变化与燃耗深度,核燃料的转换与增殖等。 第七章温度效应与反应性控制 本章主要讲反应堆的温度效应和反应性,主要包括:反应性温度系数,反应性控制的任务和方式,控制棒控制,可燃毒物控制,化学补偿控制。 第八章核反应堆动力学 本章主要介绍核反应堆的点堆动力学知识,主要包括:不考虑缓发中子的核反应堆动力学,考虑缓发中子的核反应堆动力学,阶跃扰动时点堆模型动态方程的解,反应堆周期等。 第九章核燃料管理简介 本章简介核电厂反应堆燃料管理基本知识,具体有:多循环燃料管理,单循环燃料管理,堆芯换料设计的优化等。 四、实践环节 无

核反应堆热工分析课程设计报告书详细过程版本

课程设计报告 ( 20 13 -- 2014 年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计院系:核科学与工程学院 班级:实践核1101班 学号:1111440306 学生:佳 指导教师:王胜飞 设计周数:1周 成绩:

日期:2014 年 6 月19 日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设计,尤其是对动力堆,最基本的要安全。要求在整个寿期能够长期稳定运行,并能适应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确定的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化围; (3)燃料元件的形状、它在堆芯的分布方式以及栅距允许变化的围; (4)二回路对一回路冷却剂热工参数的要求; (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点: (1)燃料元件芯块最高应低于其他相应燃耗下的熔化温度; (2)燃料元件外表面不允许发生沸腾临界; (3)必须保证正常运行工况下燃料元件和堆构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热; (4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和其它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设计准则; 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焓场的计算并求出体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR,燃料元件中心温度及其最高温度,包壳表面温度及其最高温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等; 5、掌握压降的计算;

核反应堆热工分析课程设计报告书详细过程版本

华扶#力*孑 课程设计报告 (20 13 一2014年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计 院系:核科学与工程学院______________________ 班级:实践核1101班______________________ 学号:06 _________________________ 学生姓名:M _____________________ 指导教师:王胜飞__________________ 设计周数:Ul _______________________ 成绩:_____________________ 日期:2014 年6月19日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设讣,尤其是对动力堆,最基本的要求是安全。要求在整个寿期内能够长期稳泄运行,并能适应启动、功率调和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确左的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选左堆型,确怎所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化范用: (3)燃料元件的形状、它在堆芯内的分布方式以及栅距允许变化的范H: <4)二回路对一回路冷却剂热工参数的要求: (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规立了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规左的稳态热工设计准则,一般有以下几点:< 1)燃料元件芯块内最高应低于英他相应燃耗下的熔化温度; (2)燃料元件外表而不允许发生沸腾临界: (3)必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热: <4)在稳态额泄工况和可预计的瞬态运行工况中,不发生流动不稳左性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确?DNBR?J 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和英它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设讣准则: 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焰场的计算并求岀体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR, 燃料元件中心温度及其最高温度,包壳表面温度及英最髙温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等: 5、掌握压降的计算: 6、掌握单相及沸腾时的传热计算。 7、理解单通道模型的编程方法。 课程设计要求: 1.设计时间为一周;

反应堆热工思考题

反应堆热工分析思考题(仅供参考) 第二章堆的热源及其分布 1.试述堆的热源的由来及其分布? 答:堆的热源来自于核裂变过程种释放的能量;其分布与堆的类型,堆芯的形状,以及堆内燃料,控制棒,慢化剂,冷却剂,反射层等的布置有关,也与时间有关。裂变碎片的动能约占84%,还有裂变中子,裂变产物衰变的r射线,β射线能,过剩中子引起的非裂变反应加反应产物的衰变能。 2.影响堆功率分布的因素有哪些?试以压水堆为例,简述他们各自对功率分布的影响。答:a)燃料;采用均匀装载方案,中心区域会出现一个高的功率峰值,降低平均燃耗。采用分区装载的方案,即最高富集度在最外区,最低富集度燃料在中心区,中等富集度燃料位于外区和中心区之间,这样有利与功率展平。 b) 控制棒;合理的布置控制棒能够使堆的径向功率得到展平,但是会给轴向功率分布带来不利影响。寿期末,由于控制棒的提出,并且堆芯顶部的燃耗较低,中子通量分布就向顶部歪斜。 c) 水隙和空泡;水隙附加的慢化作用,使该处的中子通量上升,因而水隙周围元件的功率升高,从而增大了功率的不均匀程度。空泡的存在会使反应堆反应性下降,这种效应在事故工况下尤为显著,因而空泡的存在能减轻某些事故的严重性。 3.如何计算控制棒,慢化剂和机构材料种的释热率? 答:A)控制棒;控制棒中的总的释热率是两项的总和,即吸收堆芯γ辐射以及吸收控制棒本身因(n,α),或(n,γ)反应所产生的热量的全部或一部分。 B)慢化剂;慢化剂中的主要热量是裂变中子的慢化,吸收裂变产物放出的β粒子的一

部分能量,吸收各种γ射线的能量。 C)结构材料;热量来源几乎完全是由于吸收来自堆芯的各种γ辐射。 4.核反应在停堆后为什么还要继续进行冷却?停堆后的热源主要由哪几部分组成,他们各自的特点和规律是怎样的? 答:A)反应堆由于事故或正常停堆后,堆内自持的链式反应虽然随即中止,但还是有热量不断的从芯块通过包壳传入冷却剂中,因此必须采取一定的措施将这些热量到处,防止破坏燃料元件;B)这些热量一部分来源于燃料棒内储藏的显热,还有两个来源是剩余中子引起的裂变和裂变产物的衰变及中子俘获产物的衰变。铀棒内的显热和剩余中子的衰变热大约在半分钟内传出,其后的冷却完全取决与衰变热。 5. 试以压水堆为例,说明停堆后的功率约占停堆前的百分数。大约在停堆后多久剩余裂变可以忽略,这时裂变功率占总功率份额是多少? 答:衰变热一开始约为停堆前功率的6%,而后迅速衰减。大约半分钟后,裂变热传出,这时裂变功率占总功率的0.747%(轻水堆). 6. 如何计算停堆后的功率,以大亚湾核电站为例,试问仅通过自然循环能否带出剩余反应热功率? 答:剩余裂变功率加衰变功率(裂变产物的衰变功率加中子俘获产物衰变之和)之和。7.压水堆换料时,从堆中取出的乏燃料元件一般如何处置,该乏燃料元件在运输途中是否需要冷却,为什么? 一般将其防止在储存水池中长期冷却,使短寿命核素衰变。在运输过程中需要冷却,因为一些长寿期的核素依旧在衰变放热。 第三章堆的传热过程 1. 热量从堆内输出需要经过哪几个过程,他们的具体表达式是怎样的?

《核反应堆热工分析》复习资料大全

第一章绪论(简答) 1. 核反应堆分类: 按中子能谱分快中子堆、热中子堆 按冷却剂分轻水堆(压水堆,沸水堆)、重水堆、气冷堆、钠冷堆 按用途分研究试验堆:研究中子特性、生产堆: 生产易裂变材料、动力堆:发电舰船推进动力2.各种反应堆的基本特征: 3.压水堆优缺点: 4.沸水堆与压水堆相比有两个优点:第一是省掉了一个回路,因而不再需要昂贵的蒸汽发生器。第二是工作压力可以降低。为了获得与压水堆同样的蒸汽温度,沸水堆只需加压到约72个大气压,比压水堆低了一倍。 5.沸水堆的优缺点: 6.重水堆优缺点:优点: ●中子利用率高(主要由于D吸收中子截面远低于H) ●废料中含235U极低,废料易处理 ●可将238U 转换成易裂变材料 238U + n →239Pu 239Pu + n →A+B+n+Q(占能量一半)

缺点: ●重水初装量大,价格昂贵 ●燃耗线(8000~10000兆瓦日/T(铀)为压水堆1/3) ●为减少一回路泄漏(因补D2O昂贵)对一回路设备要求高 7.高温气冷堆的优缺点:优点: ●高温,高效率(750~850℃,热效率40%) ●高转换比,高热耗值(由于堆芯中没有金属结构材料只有核燃料和石墨,而石墨吸收中子截面小。转换比0.85,燃耗10万兆瓦日/T(铀)) ●安全性高(反应堆负温度系数大,堆芯热容量大,温度上升缓慢,采取安全措施裕量大) ●环境污染小(采用氦气作冷却剂,一回路放射性剂量较低,由于热孝率高排出废热少)●有综合利用的广阔前景(如果进一步提高氦气温度~900℃时可直接推动气轮机;~1000℃时可直接推动气轮机热热效率大于50%;~1000-1200℃时可直接用于炼铁、化工及煤的气化) ●高温氦气技术可为将来发展气冷堆和聚变堆创造条件 8.钠冷快堆的优缺点:优点: ●充分利用铀资源 239Pu + n →A+B+2.6个n 238U + 1.6个n →1.6个239Pu (消耗一个中子使1.6个238U 转换成239Pu )●堆芯无慢化材料、结构材料,冷却剂用量少 ●液态金属钠沸点为895℃堆出口温度可高于560 ℃ 缺点: ●快中子裂变截面小,需用高浓铀(达~33%) ●对冷却剂要求苛刻,既要传热好又不能慢化中子,Na是首选材料,Na是活泼金属,遇水会发生剧烈化学反应,因此需要加隔水回路 9.各种堆型的特点、典型运行参数 第二章堆芯材料选择和热物性(简答) 1.固体核燃料的5点性能要求:教材14页 2.常见的核燃料:金属铀和铀合金、陶瓷燃料、弥散体燃料 3.选择包壳材料,必须综合考虑的7个因素:包壳材料的选择 ?中子吸收截面要小 ?热导率要大 ?材料相容性要好

热工检测技术课程设计

课程设计报告 学生姓名:学号:2012307010936 学院:自动化工程学院 班级: 自动卓越121 题目: 热工参数检测仪表 刘口 指导教师:职称: 实验师 201年月日

目录 第一章题目背景及意义 (1) 第二章第二章设计题目介绍 (1) 2.1设计目的 (1) 2.2设计内容及要求 (1) 2.3设计工作任务及工作量的要求 (1) 2.4设计成果形式及要求 (2) 第三章压力表的检定 (2) 3.1压力表的概述 (2) 3.2压力表简介 (2) 3.2.1压力表原理 (2) 3.2.2压力表构造 (3) 3.2.3性能分类 (3) 3.3压力表检定方法 (3) 3.4计量器具 (4) 3.5示值误差、回城误差和敲定位移的检定 (4) 3.6实验操作步骤 (4) 3.7结果处理 (4) 3.8误差分析 (5) 3.9测量结果 (6) 第四章热电阻的检定 (7) 4.1热电阻概述 (7) 4.2热电阻工作原理 (7) 4.3热电阻允差 (7) 4.4热电阻的检定方法 (8) 4.5检定设计方法 (8) 4.6实验操作步骤 (8)

4.7结果处理 (8) 4.8误差分析 (9) 4.9检定结果 (9) 第五章流量计的检定 (16) 5.1流量计概述 (16) 5.2转子流量计工作原理 (16) 5.3流量计检定方法 (17) 5.4测量工作原理和主要技术参数 (17) 5.5实验操作步骤 (17) 5.6数据处理 (18) 5.7误差分析 (18) 第六章总结 (19) 参看文献 (19)

第一章题目背景及意义 电厂热工检测技术及仪表是电厂热工自动化的重要内容之一,所要完成的任务就是为运行操作人员及时、准确和方便的反应生产过程运行情况的各种物理量、化学量以及生产设备的工作状态并自动的进行检查和测量,以便监督生产过程的进行情况和趋势,电厂热工过程自动化是随着火力发电事业的发展而发展起来的。在火电厂锅炉和汽轮机都装有大量的检测仪表,其中包括传感器、变送器、显示仪表和记录仪表等。他们随时显示、记录、累积和变送机组运行各种参数,以便进行必要的操作和控制,保障机组安全经济的运行。 总之,检测仪表是保障生产过程安全经济运行及实现自动化的前提条件和必要条件,配备完善的自动监测系统能够为操作人员提供操作数据,为自动化装备提供准确及时的测量信号,为宏观技术管理提供参考依据,可以改善运行和检修人员的劳动条件,提高劳动效率和设备可靠性。 第二章设计题目介绍 2.1设计目的 通过本课程的学习,学生应达到如下基本目标:使学生了解热工系统中常用的压力、温度及流量等热工参数的特性及检测的方法,熟练掌握这些测量仪表的使用方法,能对常用测量仪表的精度进行校验。 2.2设计内容及要求 (1)根据《压力控制器检定规程JJG 544-2011》及《弹簧管式一般压力表、压力真空表和真空表检定规程JJG 52-1999》的要求对压力控制器和压力表进行检验,并给出检定报告。 (2)根据热电偶及热电阻检定规程,使用热工检定系统对热电偶或热电阻进行校验,并给出检定报告,报告格式见指导书。 (3)根据《冷水水表检定规程JJG162-2009》,利用流量试验台对流量表进行检定并给出相应的检定报告。 (4)熟练使用磁翻柱式、差压式液位计的使用方法。 2.3设计工作任务及工作量的要求 (1)课程设计报告(题目介绍、背景意义、要求及实验过程等);

相关文档
最新文档