焊接不良的原因分析

焊接不良的原因分析
焊接不良的原因分析

焊接不良的原因分析

吃锡不良其现象为线路的表面有部份未沾到锡,原因为:

1.表面附有油脂、杂质等,可以溶剂洗净。

2.基板制造过程时打磨粒子遗留在线路表面,此为印刷电路板制造厂家的问题。

3.硅油,一般脱模剂及润滑油中含有此种油类,很不容易被完全清洗干净。

所以在电子零件的制造过程中,应尽量避免化学品含有硅油者。

焊锡炉中所用的氧化防止油也须留意不是此类的油。

4.由于贮存时间、环境或制程不当,基板或零件的锡面氧化及铜面晦暗情形严重。

换用助焊剂通常无法解决此问题,重焊一次将有助于吃锡效果。

5.助焊剂使用条件调整不当,如发泡所需的空气压力及高度等。

比重亦是很重要的因素之一,因为线路表面助焊剂分布数量的多寡受比重所影响。

检查比重亦可排除因卷标贴错,贮存条件不良等原因而致误用不当助焊剂的可能性。

6.焊锡时间或温度不够。

一般焊锡的操作温度较其溶点温度高55~80℃

7.不适合之零件端子材料。

检查零件,使得端子清洁,浸沾良好。

8.预热温度不够。

可调整预热温度,使基板零件侧表面温度达到要求之温度约90℃~110℃。

9.焊锡中杂质成份太多,不符合要求。

可按时测量焊锡中之杂质,若不合规定超过标准,则更换合于标准之焊锡。

退锡多发生于镀锡铅基板,与吃锡不良的情形相似;但在欲焊接的锡路表面与锡波脱离时,大部份已沾在其上的焊锡又被拉回到锡炉中,所以情况较吃锡不良严重,重焊一次不一定能改善。

原因是基板制造工厂在渡锡铅前未将表面清洗干净。

此时可将不良之基板送回工厂重新处理。

冷焊或点不光滑此情况可被列为焊点不均匀的一种,发生于基板脱离锡波正在凝固时,零件受外力影响移动而形成的焊点。

保持基板在焊锡过后的传送动作平稳,例如加强零件的固定,注意零件线脚方向等;总之,待焊过的基板得到足够的冷却再移动,可避免此一问题的发生。

解决的办法为再过一次锡波。

至于冷焊,锡温太高或太低都有可能造成此情形。

焊点裂痕造成的原因为基板、贯穿孔及焊点中零件脚等热膨胀收缩系数方面配合不当,可以说实际上不算是焊锡的问题,而是牵涉到线路及零件设计时,材料及尺寸在热方面的配合..另,基板装配品的碰撞、得叠也是主因之

一。

因此,基板装配品皆不可碰撞、得叠、堆积。

又,用切断机剪切线脚更是主要杀手,对策采用自动插件机或事先剪脚或采购不必再剪脚的尺寸的零件。

锡量过多过大的焊点对电流的流通并无帮助,但对焊点的强度则有不影响,形成的原因为:

1.基板与焊锡的接触角度不当,改变角度(10~70),可使溶锡脱离线路滴下时有较大的拉力,而得到较薄的焊点。

2.焊锡温度过低或焊锡时间太短,使溶锡丰线路表面上未及完全滴下便已冷凝。

3.预热温度不够,使助焊剂未完全发挥清洁线路表面的作用。

4.调高助焊剂的比重,亦将有助于避免大焊点的发生;然而,亦须留意比重太高,焊锡过后基板上助焊剂残余物愈多。

锡尖在线路上零件脚步端形成,是另一种形状的焊锡过多。

再次焊锡可将此尖消除。

有时此情形亦与吃锡不良及不吃锡同时发生,原因如下:

1.基板的可焊性差,此项推断可以从线路接点边缘吃锡不良及不吃锡来确认。

在此情形下,再次过焊锡炉并不能解决问题,因为如前所述,线路表面的情况不佳,如此处理方法将无效。

2.基板上未插件的大孔。

焊锡进入孔中,冷凝时孔中的焊锡因数量太多,被重力拉下而成冰柱。

3.在手焊锡方面,烙铁头温度不够是主要原因,或是虽然温度够,但烙铁头上的焊锡太多,亦会有影响。

4.金属不纯物含量高,需加纯锡或更换焊锡。

焊锡沾附于基板材上

1.若有和助焊剂配方不兼容的化学品残留在基板上,将会造成如此情况。

在焊锡时,这些材料因高温变软发粘,而沾住一些焊锡。

用强的溶剂如酮等清洗基板上的此类化学品,将有助于改善情况。

如果仍然发生焊锡附于基材上,则可能是基板在烘烤过程时处理不当。

1.基板制造工厂在积层板烘干过程处理不当。

在基板装配前先放入箱中以80℃~100℃烘烤2~3小时,或可改善此问题。

2.焊锡中的杂质及氧化物与基板接触亦将造成此现象,此为一设备维护的问题。

白色残留物焊锡或清洗过后,有时会发现基板上有白色残留物,虽然并不影响表面电阻值,但因外观的因素而仍不能被接受。

造成的原因为:

1.基材本身已有残留物,吸收了助焊剂,再经焊锡及清洗,就形成白色残留物。

在焊锡前保持基板无残留物是很重要的。

2.积层板的烘干不当,偶尔会发现某一批基板,总是有白色残留物问题,而使用一下批基板时,问题又自动消失。

因为此种原因而造成的白色残留物一般可以溶剂清洗干净。

3.铜面氧化防止剂之配方不兼容。

在铜面板上一定有铜面氧化防止剂,此为基板制造厂涂抹。

以往铜面氧化防止都是松香为主要原料,但在焊锡过程却有使用水溶性助焊剂者。

因此在装配线上清洗后的基板就呈现白色的松香残留物。

若在清洗过程加一卤化剂便可解决此问题。

目前亦已有水溶剂铜面氧化防止剂。

4.基板制造时各项制程控制不当,使基板变质。

5.使用过旧的助焊剂,吸收了空气中水份,而在焊锡过程后形成白色残留的水渍。

6.基板在使用松香助焊剂时,焊锡过后时间停留太久才清洗,以致不易洗净,尽量缩短焊锡与清洗之间的延迟时间,将可改善此现象。

7.清洗基板的溶剂中水分含量过多,吸收了溶剂中的IPA成份局部积存,降低清洗能力。

解决方法为适当的去除溶剂中水份,如使用水分离器或置吸收水份的材料于分离器中等。

深色残留物及侵蚀痕迹在基板的线路及焊点表面,双层板的上下两面都有可能发现此情形,通常是因为助焊剂的使用及清除不当。

1.使用松香助焊剂时,焊锡后未在短时间内清洗。

时间拖延过长才清洗,造成基板上残留痕迹。

2.酸性助焊剂的遗留亦将造成焊点发暗及有腐蚀痕迹。

解决方法为在焊锡后立即清洗,或在清洗过程加入中和剂。

3.因焊锡温度过高而致焦黑的助焊剂残留物,解决方法为查出助焊剂制造厂所建议的焊锡温度。

使用可容许较高温度的助焊剂可免除此情况的发生。

4.焊锡杂质含量不符合要求,需加纯锡或更换焊锡。

针孔及气孔外表上,针孔及气孔的不同在针孔的直径较小,现于表面,可看到底部。

针孔及气孔都代表着焊点中有气泡,只是尚示扩大至表层,大部份都发生在基板底部,当底部的气泡完全扩散爆开前已冷凝时,即形成了针孔或气孔。

形成的原因如下:

1.在基板或零件的线脚上沾有机污染物。

此类污染材料来自自动插件机,零件成型机及贮存不良等因素。

用普通溶剂即可轻易的去除此类污染物,但遇硅油及类似含有硅产品则较困难。

如发现问题的造成是因为硅油,则须考虑改变润滑油或脱模剂的来源。

2.基板含有电镀溶液和类似材料所产生之木气,如果基板使用较廉价的材料,则有可能吸入此类水气,焊锡时产生足够的热,将溶液气化因而造成气孔。

装配前将基板在烤箱中烘烤,可以改善此问题。

3.基板储存太多或包装不当,吸收附近环境的水气,故装配前需先烘烤。

4.助焊剂槽中含有水份,需定期更换助焊剂。

5.发泡及空气刀用压缩空气中含有过多的水份,需加装滤水器,并定期排气。

6.预热温度过低,无法蒸发水气或溶剂,基板一旦进入锡炉,瞬间与高温接触,而产生爆裂,故需调高预热温度。

7.锡温过高,遇有水份或溶剂,立刻爆裂,故需调低锡炉温度。

短路

1.焊垫设计不当,可由圆形焊垫改为椭圆形,加大点与点之间的距离。

2.零件方向设计不当,如SOIC的脚如果与锡波平行,便易短路,修改零件方向,使其与锡波垂直。

3.自动插件弯脚所致,由于IPC规定线脚的长度在2mm以下(无知路危险时)及担心弯脚角度太大时零件会掉,故易因此而造成短路,需将焊点离开线路2mm以上。

4.基板孔太大,锡由孔中穿透至基板的上侧而造成短路,故需缩小孔径至不影响零件装插的程度。

5.自动插件时,余留的零件脚太长,需限制在2mm以下。

6.锡炉温度太低,锡无法迅速滴回,需调高锡炉温度。

7.输送带速度太慢,锡无法快速滴回,需调快输送带速度。

8.板面的可焊性不佳。

将板面清洁之。

9.基板中的玻璃材料溢出。

在焊接前检查板面是否有玻璃物突出。

1

0.阻焊膜失效。

检查适当的阻焊膜型式和使用方式。

1

1.板面污染,将板面清洁之。

暗色及粒状的接点

1.多肇因于焊锡被污染及溶锡中混入的氧化物过多,形成焊点结构太脆。

须注意勿与使用含锡成份低的焊锡造成的暗色混淆。

2.焊锡本身成份产生变化,杂质含量过多,需加纯锡或更换焊锡。

斑痕玻璃起纤维积层物理变化,如层与层之间发生分离现象。

但这种情形并非焊点不良。

原因是基板受热过高,需降低预热及焊锡温度或增加基板行进速度。

焊点呈金黄色焊锡温度过高所致,需调低锡炉温度。

焊接粗糙

1.不当的时间--温度关系,可在输送带速度上改正焊接预热温度以建立适当的关系。

2.焊锡成份不正确,检查焊锡之成份,以决定焊锡之型式和对某合金的适当焊接温度。

3.焊锡冷却前因机械上震动而造成,检查输送带,确保基板在焊接时与凝固时,不致碰撞或摇动。

4.焊锡被污染。

检查引起污染之不纯物型式及决定适当方法以减少或消除锡槽之污染焊锡(稀释或更换焊锡)。

焊接成块与焊接物突出

1.输送带速度太快,调慢输送带速度

2.焊接温度太低,调高锡炉温度。

3.二次焊接波形偏低,重新调整二次焊接波形。

4.波形不当或波形和板面角度不当及出端波形不当。

可重新调整波形及输送带角度。

5.板面污染及可焊性不佳。

须将板面清洁之改善其可焊性。

基板零件面过多的焊锡

1.锡炉太高或液面太高,以致溢过基板,调低锡波或锡炉。

2.基板夹具不适当,致锡面超过基板表面,重新设计或修改基板夹具。

3.导线径与基板焊孔不合。

重新设计基板焊孔之尺寸,必要时更换零件。

基板变形

1.夹具不适当,致使基板变形,重新设计夹具。

2.预热温度太高,降低预热温度。

3.锡温太高,降低锡温。

4.输送带速度太慢,致使基板表面温度太高,增加输送带速度。

5.基板各零件排列后之重量分布不平均,乃设计不妥,重新设计板面,消除热气集中于某一区域,以及重量集中于中心。

6.基板储存时或制程中发生堆积叠压而造成变形。

结论以上各项焊锡不良问题,除斑点及白色残留物外,都将影响电气特性或功能,甚至使整个线路故障。

尽早在生产过程中查出原因并适当地处置,以减少及避免昂贵的修理工作,经由适当的基板设计及良好的制程管制。

定可减少许多发生的缺点进而达到零缺点的目标。

使用高品质焊锡,选择适合应用的助焊剂,留意并改善零件的可焊性,焊锡过程中各项变量控制适当,定可保证达到高品质的焊锡效果。

焊接过程中容易出现的问题及产生原因

焊接过程中易出现的问题及原因分析; 焊接缺陷所谓焊接缺陷,就是使焊接接头金属性能变坏。手工电弧焊在压力容器的焊接过程中,容易出现的缺陷有有尺寸偏差、咬边、气孔、未焊透、夹渣、裂纹、焊瘤等。在知道其产生原因后,我们找出了相应的方法,尽量减少这些缺陷所带来的危害。 尺寸偏差 焊缝宽度、余高、焊脚尺寸等焊缝尺寸过大或过小。 产生原因:焊条直径及焊接规范选择不当;坡口设计不当;运条手势不良。 危害:尺寸过小,强度降低;尺寸过大,应力集中,疲劳强度降低 防止措施:正确选用焊接规范,良好运条。 咬边 由于焊接参数选择不当,或操作方法不正确,沿焊趾的母材部位产生的沟槽或凹陷。 产生咬边的原因:操作方法不当,焊接规范选择不正确,如焊接电流太大、电弧过长、运条方式和角度不当、坡口两侧停留时间太长或太短均有产生咬边的可能。 咬边的危害:咬边将减少母材的有效截面积、在咬边处可能引起应力集中、特别是低合金高强钢的焊接,咬边的边缘组织被淬硬,易引起裂纹。防止措施:正确选用焊接规范,不要使用过大的焊接电流,要采用短弧焊,坡口两边运条稍慢、焊缝中间稍快,焊条角度要正确。气孔 气孔产生原因:焊件表面氧化物、锈蚀、污染未清理;焊条吸潮;焊接电流过小,电弧过长,焊速太快;药皮保护效果不佳,操作手势不良。危害:减小焊缝有效截面,降低接头致密性,减小接头承载能力和疲劳强度。 防止措施1、清除焊丝,工作坡口及其附近表面的油污、铁锈、水分和杂物。2、采用碱性焊条、焊剂,并彻底烘干。3、采用直流反接并用短电弧施焊。4、焊前预热,减缓冷却速度。5、用偏强的规范施焊。 未焊透 产生原因:坡口、间隙设计不良;焊条角度不正确,操作手势不良;热输入不足,电流过小,焊速太快;坡口焊渣、氧化物未清除。 危害:形成尖锐的缺口,造成应力集中,严重影响接头的强度、疲劳强度等。 防止未焊透的措施:加大焊接电流,加焊盖面焊缝。 夹渣 产生原因:焊件表面氧化物,层间熔渣没有清除干净;焊接电流过小,焊速太快;坡口设计不当;焊道熔敷顺序不当;操作手势不良。 危害:减小焊缝有效截面,江都接头强度,冲击韧性等。 防止夹渣的措施1、极高焊接操作技术,焊接过程中始终要保持熔池清晰、熔渣与业态金属良好分离。2、彻底清理坡口及两侧的油污、氧化物等。3、按焊接工艺规程正确选择焊接规

助焊剂对焊接影响及常见的不良状况原因分析

助焊剂对焊接的影响及常见的不良状况原因分析: 助焊剂对焊接质量的影响很多,客户经常反映的由助焊剂引起的不良问题,主要有以下几个方面: (一)、焊后线路板板面残留多、板子脏。 从助焊剂本身来讲,主要原因可能是助焊剂固含量高、不挥发物太多,而这些物质焊后残留在了板面上,从而造成板面残留多,另外从客户工艺及其他方面来分析有以下几个原因: 1.走板速度太快,造成焊接面预热不充分,助焊剂中本来可以挥发的物质未能充分挥发; 2.锡炉温度不够,在经过焊接高温的瞬间助焊剂中相关物质未能充分分解、挥发或升华; 3.锡炉中加了防氧化剂或防氧化油,焊接过程中这些物质沾到焊接面而造成的残留; 4.助焊剂涂敷的量太多,从而不能完全挥发; 5.线路板元件孔太大,在预热和焊接过程中使助焊剂上升到零件面造成残留; 6.有时虽然是使用免清洗助焊剂,但焊完之后仍然会有较明显残留,这可能是因为线路板焊接面本身有预涂松香(树脂)的保护层,这个保护层本来的分布是均匀的,所以在焊接前看不出来板面很脏,但经过焊接区时,这个均匀的涂层被破坏,从而造成板面很脏的状况出现; 7.线路板在设计时,预留过孔太少,造成助焊剂在经过预热及锡液时,造成助焊剂中易挥发物挥发不畅;8.在使用过程中,较长时间未添加稀释剂,造成助焊剂本身的固含量升高; (二)、上锡效果不好,有焊点吃锡不饱满或部分焊点虚焊及连焊。出现这种状况的原因主要有以下几个方面: 1、助焊剂活性不够,不能充分去除焊盘或元件管脚的氧化物; 2、助焊剂的润湿性能不够,使锡液在焊接面及元件管脚不能完全浸润,造成上锡不好或连焊。 3、使用的是双波峰工艺,第一次过锡时助焊剂中的有效成分已完全分解,在过第二次波峰时助焊剂已起不到去除氧化及浸润的作用; 4、预热温度过高,使活化剂提前激发活性,待过锡波时已没活性,或活性已很弱,因此造成上锡不良; 5、发泡或喷雾不恰当,造成助焊剂的涂布量太少或涂布不均匀,使焊接面不能完全被活化或润湿; 6、焊接面部分位置未沾到助焊剂,造成不能上锡; 7、波峰不平或其他原因造成焊接面区域性没有沾锡。 8、部分焊盘或焊脚氧化特别严重,助焊剂本身的活性不足以去除其氧化膜。 9、线路板在波峰炉中走板方向不对,有较密的成排焊点与锡波方向垂直过锡,造成了连焊。(如图所示)图三,推荐的过板方向 10、锡含量不够,或铜等杂质元素超标,造成锡液熔点(液相线)升高,在同样的温度下流动性变差。 11、手浸锡时操作方法不当,如浸锡时间、浸锡方向把握不当等。 (三)、焊后有腐蚀现象造成元器件、焊盘发绿或焊点发黑。主要原因有以下几个方面: 1、助焊剂中活化物质的活性太强,在焊后未能充分分解,从而造成继续腐蚀。 2、预热不充分(预热温度低,或走板速度快)造成助焊剂残留多,活化物质残留太多。 3、助焊剂残留物或离子态残留本身不易腐蚀,而这些物质发生吸水现象以后所形成的物质会造成腐蚀现象。

管桩断裂原因分析及处理方法

高强预应力空心管桩断裂原因分析及处理方法 辽宁省营口市紧邻渤海,属辽河冲积平原,地下水位较浅,挖深0.9m即遇到丰富地下富存水。地表以下12m深度范围内的土质均是粉质粘土(淤泥),土体渗透系数低,土方开挖前需提前两周采取轻型井点降水才能使拟开挖基坑具备开挖条件。若场地条件具备,土方开挖一般均按1:1.5进行自然放坡。超过5层的建筑物,其基础形式基本上都是采用高强混凝土预应力空心管桩(PHC),有效桩长一般则在12~18m之间(太和小区、欢心小区),局部地区有效桩长能达到30m(营东大厦)。 高强混凝土预应力空心管桩(PHC)静压施工完成后,须进行低应变动测检验其桩身完整性;检测合格时,始准施工进行下一道工序。通常情况下,在低应变动测检验时其桩身接桩部位能测出存在质量缺陷,这一表象无妨。用肉眼尚不能识别的微裂缝在低应变动测时亦能测出缺陷存在,但裂缝宽度小于0.2mm的裂缝不会影响到桩体质量及结构安全。这种裂缝一般都分布在桩长中间1/3区段;这是由于桩节过长,若吊点选择不当或运输过程中受到较大震动而因自身重量过大导致的。现就我单位在施的部分工程管桩经低应变动测时检查出的质量问题及处理思路作以简要总结: 一、管桩断裂的原因分析及预防措施 1、预制管桩断裂的原因分析 (1)、堆放方式不合理导致断桩 在预制厂,从蒸养室出来的管桩需在堆放区实施分类堆放,若堆放支承点选择的不合理就极易导致管桩的桩身出现微裂缝。 (2)、出厂强度不足造成的断裂 高强预应力混凝土空心管桩(PHC)的混凝土设计强度为C80,管桩混凝土养护一般均采取蒸养方式进行。有时候,管桩出厂时的混凝土强度会与设计强度存在些许偏差,在场内堆放、出厂运输过程中可能会因存在的震动而导致管桩桩身出现微裂缝。 (3)、吊装过程中发生断裂 管桩在装卸车时需采取“二点吊法”,要求吊点距离桩端0.207L位置且吊绳与桩体的夹角不得小于45度。为节省运输成本,虽然装卸车时采取的也是二点吊法,但吊点是选在了桩端;当单根管桩较长时,受自重较大的影响就有可能在管桩桩身的中部产生微裂缝。 (4)、施工方法选择不当造成断裂

综述焊接接头断裂形式及断口特征

综述焊接接头断裂形式及 断口特征 姓名: XXXXXXXXX 学号: 03080222 系别:数控与材料工程系 专业:焊接技术及自动化 学制:三年制 指导教师: XXXXXXXXXXXX

综述焊接接头断裂形式及断口特征 摘要 焊接接头由焊缝、熔合区和热影响区三部分组成。熔池金属在经历一系列化学冶金反应后,随着热源远离温度迅速下降,凝固后成为牢固的焊缝,并在继续冷却中发生固态相变熔合区和热影响区在焊接热源的作用下,也将发生不同的组织变化。很多焊接缺陷如气孔、夹杂裂纹等都是在上述过程中产生,因此了解接头组织与性能变化的规律,对于控制焊接质量、防止焊接缺陷有重要的意义。 焊接结构在较低的温度下工作可能导致焊接结构的低温脆断。焊接接头中又不可避免的存在应力集中和残余应力,在反复的交变应力作用下会发生疲劳断裂。本文通过对焊接接头的分析分别从宏观和微观的角度阐述了焊接接头的断裂形式和断口特征。 关键词 残余应力、应力集中、断口特征、疲劳断裂、脆性断裂

目录 引言 (4) 第一章焊接接头的基本理论 (5) 第一节焊接接头的基础知识 (5) 1.1焊接接头的组成 (5) 1.2焊接接头的基本形式 (5) 第二节电弧焊接头的工作应力 (6) 2.1应力集中的概念 (6) 2.2产生应力集中的原因 (6) 第二章焊接结构的断裂控制与失效分析 (7) 第一节焊接接头的断裂形式 (7) 1.1断裂形式的分类 (7) 1.2焊接接头的疲劳断裂 (7) 1.3焊接接头的脆性断裂 (7) 第二节焊接结构断裂控制与失效分析 (8) 2.1焊接结构的完整性与不完整性 (8) 2.2焊接结构断裂的控制 (8) 2.3焊接结构断裂控制设计 (9) 2.4焊接结构断裂失效分析 (9) 第三章焊接接头的组织与性能 (14) 第一节焊接熔合区的特征 (14) 1.1熔合区形成的原因 (14) 第二节焊接热影响区 (14) 2.1焊接热影响区热循环的特点 (14) 2.2焊接热影响区的组织分布特征及性能 (15) 第四章焊接接头断口特征 (16) 第一节焊接接头疲劳断裂的断口分析 (16)

焊缝内部和外部常见的缺陷分析

焊缝内部和外部常见的缺陷分析 焊缝缺陷的种类很多,在焊缝内部和外部常见的缺陷可归纳为以下几种: 一、焊缝尺寸不合要求 焊波粗、外形高低不平、焊缝加强高度过低或过高、焊波宽度不一及角焊缝单边或下陷量过大等均为焊缝尺寸不合要求,其原因是: 焊件坡口角度不当或装配间隙不均匀。 焊接电流过大或过小,焊接规范选用不当。 运条速度不均匀,焊条(或焊把)角度不当。 二、裂纹 裂纹端部形状尖锐,应力集中严重,对承受交变和冲击载荷、静拉力影响较大,是焊缝中最危险的缺陷。按起产生的原因可分为冷裂纹、热裂纹和再热裂纹等。 (冷裂纹)指在200℃以下产生的裂纹,它与氢有密切的关系,其产生的主要原因是: 对大厚工件选用预热温度和焊后缓冷措施不合适。 焊材选用不合适。 焊接接头刚性大,工艺不合理。 焊缝及其附近产生脆硬组织。 焊接规范选择不当。 (热裂纹)指在300℃以上产生的裂纹(主要是凝固裂纹),其产生的主要原因是: 成分的影响。焊接纯奥氏体钢、某些高镍合金钢和有色金属时易出现。 焊缝中含有较多的硫等有害杂质元素。 焊接条件及接头形状选择不当。 (再热裂纹)即消除应力退火裂纹。指在高强度的焊接区,由于焊后热处理或高温下使用,在热影响区产生的晶间裂纹,其产生的主要原因是: 消除应力退火的热处理条件不当。 合金成分的影响。如铬钼钒硼等元素具有增大再热裂纹的倾向。 焊材、焊接规范选择不当。 结构设计不合理造成大的应力集中。 三、气孔 在焊接过程中,因气体来不及及时逸出而在焊缝金属内部或表面所形成的空穴,其产生的原因是: 焊条、焊剂烘干不够。 焊接工艺不够稳定,电弧电压偏高,电弧过长,焊速过快和电流过小。 填充金属和母材表面油、锈等未清除干净。 未采用后退法熔化引弧点。 预热温度过低。

焊接不良原因及处理方法

CO2气体保护焊的焊接缺陷产生的原因及防止方法 A、焊缝金属裂纹 1、焊缝深宽比太大;焊道太窄(特别是角焊缝和底层焊道) 1、增大电弧电压或减小焊接电流,以加宽焊道而减小熔深;减慢行走速度,以加大焊道的横截面。 2、焊缝末端处的弧坑冷却过快 2、采用衰减控制以减小冷却速度;适 当地填充弧坑;在完成焊缝的顶部采 用分段退焊技术,一直到焊缝结束。 3、焊丝或工件表面不清洁 (有油、锈、漆等) 3、焊前仔细清理 4、焊缝中含C、S量高而Mn量低 4、检查工件和焊丝的化学成分,更换合格材料 5、多层焊的第一道焊缝过薄 5、增加焊道厚度 B、夹渣 1、采用多道焊短路电弧(熔焊渣型夹杂物) 1、在焊接后续焊道之前,清除掉焊缝边上的渣壳 2、高的行走速度(氧化膜型夹杂物) 2、减小行走速度;采用含脱氧剂较高的焊丝;提高电弧电压 C、气孔 1、保护气体覆盖不足;有风 1、增加保护气体流量,排除焊缝区的全部空气;减小保护气体的流量,以防止卷入空气;清除气体喷嘴内的飞 溅;避免周边环境的空气流过大,破 坏气体保护;降低焊接速度;减小喷嘴到工件的距离;焊接结束时应在熔池凝固之后移开焊枪喷嘴。 2、焊丝的污染 2、采用清洁而干燥的焊丝;清除焊丝 在送丝装置中或导丝管中黏附上的润滑剂。 3、工件的污染 3、在焊接之前,清除工件表面上的全部油脂、锈、油漆和尘土;采用含脱氧剂的焊丝 4、电弧电压太高 4、减小电弧电压 5、 5、喷嘴与工件距离太大 5、减小焊丝的伸出长度 6、6、气体纯度不良 6、更换气体或采用脱水措施 7、气体减压阀冻结而不能供气 7、应串接气瓶加热器 8、喷嘴被焊接飞溅堵塞 8、仔细清除附着在喷嘴内壁的飞溅物 9、输气管路堵塞 9、检查气路有无堵塞和弯折处 D、咬边 1、焊接速度太高 1、减慢焊接速度 2、电弧电压太高 2、降低电压 3、电流过大 3、降低送丝速度 4、停留时间不足 4、增加在熔池边缘的停留时间 5、焊枪角度不正确 5、改变焊枪角度,使电弧力推动金属流动 E、未熔合 1、焊缝区表面有氧化膜或锈皮 1、在焊接之前,清理全部坡口面和焊缝区表面上的轧制氧化皮或杂质

自动焊接的不良原因及对策

自動焊接的不良原因及對策 第一節吃錫不良(POOR WETTING) 其現象為線路的表面有部份未沾到錫,原因為: 1.表面附有油脂、雜質等,可以溶劑洗淨 2.基板制造過程時的打磨粒子遺留在線路表面,此為印刷電路板制 造廠家的問題。 3.SILCON OIL,一般脫模劑及潤滑油中含有此種油類,很不容易被 完全清洗干淨,所以在電子零件的制造過程中,應盡量避免化學品含SILICON OIL者。焊錫爐中所用的氧化防止油也須留意不是此類的油。 4.由於貯存時間、環境或制造不當,基板或零件的錫面氧化及銅面 晦暗情形嚴重。換用助焊劑通常無法解決此問題,重焊一次將有助於吃錫效果。 5.助焊劑使用條件調整不當,如發泡所需的空氣壓力及高度等。比 重亦是很重要的因素之一,因為線路表面助焊劑分佈數量的多寡受比重所影響。檢查比重亦可排除因標簽貼錯,貯存條件不良等原因而致誤用不當助焊劑的可能性。 6.焊錫時間或溫度不夠。一般焊錫的操作溫度應較其溶點溫度高 55~80℃。 7.不適合之零件端子材料,檢查零件,使得端子清潔,浸沾良好。 8.預熱溫度不夠,可調整預熱溫度,使基板零件側表面溫度達到要 求之溫度約90℃~110℃。 9.焊錫中雜質成份太多,不符合要求,可按時測量焊旬錫中之雜質, 若不合規定超過標准,則更換合標准之焊錫。

第二節NG退錫(DE-WETTI) 多發生於鍍錫鉛基板,與吃錫不良的情形相似;但在於線路表面與錫波脫離時,大部份已沾附在其上的焊錫又拉回到錫爐中,所以情況較吃錫不良嚴重,重焊一次不一定能改善。原因是基板制造工廠在鍍錫鉛前未將表面清洗干淨,此時可將不良之基板送回工廠重新處理。 第三節冷焊或焊點不光滑(CCLD SOLDER OR DISTURBED SOLDERING) 此情況可被列為焊點不均勻的一種,發生於基板脫離錫波正在凝固時,零件受外力影響移動而形成的焊點。 保持基板在焊錫過後的傳送動作平穩,例如加強零件的固定,注意零件線腳方向等;總之,待焊錫的基板午到足夠的冷卻后再移動,可避免此一問題的發生,解決的辦法為再過一次錫波。 至於冷焊,錫溫太高或太低都有可能造成此情形。 第四節焊點裂痕(CRACK SOLDERING) 造成的原因為基板,貫穿孔及焊點中零件腳等熱膨脹收縮系數方面配合不當,可以說實際上不算是焊錫的問題,而是牽涉到線路及零件設計時,材料及尺寸在熱方面的配合。 另基板裝配品的碰撞、重疊也是主因之一。因此,基板裝配品皆不可碰撞、重疊、堆積;又,用切斷機剪切線腳更是主要殺手,對策是采用自動插件機或事先剪腳或購買不必再剪腳的的尺寸的零件。 第五節錫量過多(EXCESS SOLDER) 過大的焊點對電流的流通並無幫助,但對焊點的強度則有不良影響,形成的原因為:

焊接缺陷原因分析

常见焊接缺陷及防止措施 (一) 未焊透 【1】产生原因: (1)由于坡口角度小,钝边过大,装配间隙小或错口;所选用的焊条直径过大,使熔敷金属送不到根部。 (2)焊接电源小,远条角度不当或焊接电弧偏向坡口一侧;气焊时,火焰能率过小或焊速过快。 (3)由于操作不当,使熔敷金属未能送到预定位置,号者未能击穿形成尺寸一定的熔孔。(4)用碱性低氢型焊条作打底焊时,在平焊接头部位也容易产生未焊透。主要是由于接头时熔池溢度低,或采用一点法以及操作不当引起的。 【2】防止措施: (1)选择合适的坡口角度,装配间隙及钝边尺寸并防止错口。 (2)选择合适的焊接电源,焊条直径,运条角度应适当;气焊时选择合适的火焰能率。如果焊条药皮厚度不均产生偏弧时,应及时更换。 (3)掌握正确的焊接操作方法,对手工电弧焊的运条和气焊,氩弧焊丝的送进应稳,准确,熟练地击穿尺寸适宜的熔孔,应把熔敷金属送至坡口根部。 (4)用碱性低氢型焊条焊接16MN尺寸钢试板,在平焊接关时,应距离焊缝收尾弧?10~15MM的焊缝金属上引弧;便于使接头处得到预热。当焊到接头部位时,将焊条轻轻向下一压,听到击穿的声音之后再灭弧,这样可消除接头处的未焊透。如果将接头处铲成缓坡状,效果更好。 (二) 未熔合 【1】产生原因: (1)手工电弧焊时,由于运条角度不当或产生偏弧,电弧不能良好地加热坡口两侧金属,导致坡口面金属未能充分熔化。 (2)在焊接时由于上侧坡口金属熔化后产生下坠,影响下侧坡口面金属的加热熔化,造成“冷接”。 (3)横接操作时,在上、下坡口面击穿顺序不对,未能先击穿下坡口后击穿上坡口,或者在上、下坡口面上击穿熔孔位置未能错开一定的距离,使上坡口熔化金属下坠产生粘接,造成未熔合。 (4)气悍时火焰能率小,氩弧焊时电弧两侧坡口的加热不均,或者坡口面存在污物等。【2】防止措施: (1)选择适宜的运条角度,焊接电弧偏弧时应及时更换焊条。 (2)操作时注意观察坡口两侧金属熔化情况,使之熔合良好。 (3)横焊操作时,掌握好上、下坡口面的击穿顺序和保持适宜的熔孔位置和尺寸大小,气焊和氩弧悍时,焊丝的送进应熟练地从熔孔上坡口拉到下坡口。 (三) 焊瘤 【1】产生原因: (1)由于钝边薄,间隙大,击穿熔孔尺寸大。 (2)由于焊接电流过大击穿焊接时电弧燃烧,加热时间过长,造成熔池温度增高,溶池体积增大,液态金属因自身重力作用下坠而形成烛瘤,焊瘤大多存在于平焊、立焊速度过慢等。【2】防止措施: (1)选择适宜的钝边尺寸和装配间隙,控制熔孔大小并均匀一致,一般熔孔直径为0.8~1.25

波峰焊常见焊接缺陷原因分析及预防对策

波峰焊常见焊接缺陷原因分析及预防对策 A、焊料不足:焊点干瘪/不完整/有空洞,插装孔及导通孔焊料不饱满,焊料未爬到元件面的焊盘上 原因:a) P CB 预热和焊接温度过高,使焊料的黏度过低; b) 插装孔的孔径过大,焊料从孔中流岀; c) 插装元件细引线大焊盘,焊料被拉到焊盘上,使焊点干瘪; d) 金属化孔质量差或阻焊剂流入孔中; e) PCB 爬坡角度偏小,不利于焊剂排气。 对策:a) 预热温度90-130 C,元件较多时取上限,锡波温度250+/-5 C,焊接时间3?5S。 b) 插装孔的孔径比引脚直径大0.15?0.4m m,细引线取下限,粗引线取上线。 c) 焊盘尺寸与引脚直径应匹配,要有利于形成弯月面; d) 反映给PCB加工厂,提高加工质量; e) PCB的爬坡角度为3?7Co B、焊料过多:元件焊端和引脚有过多的焊料包围,润湿角大于90 原因:a) 焊接温度过低或传送带速度过快,使熔融焊料的黏度过大; b) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; c) 助焊剂的活性差或比重过小; d) 焊盘、插装孔或引脚可焊性差,不能充分浸润,产生的气泡裹在焊点中; e) 焊料中锡的比例减少,或焊料中杂质Cu的成份高,使焊料黏度增加、流动性变差。 f) 焊料残渣太多。 对策:a) 锡波温度250+/-5 C,焊接时间3?5S。 b) 根据PCB 尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB 底面温度在90-130o c) 更换焊剂或调整适当的比例; d) 提高PCB 板的加工质量,元器件先到先用,不要存放在潮湿的环境中; e) 锡的比例<61.4%时,可适量添加一些纯锡,杂质过高时应更换焊料; f) 每天结束工作时应清理残渣。 C、焊点桥接或短路 原因:a) PCB设计不合理,焊盘间距过窄; b) 插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经碰上; c) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; d) 焊接温度过低或传送带速度过快,使熔融焊料的黏度降低; e) 阻焊剂活性差。 对策:a) 按照PCB设计规范进行设计。两个端头Chip元件的长轴应尽量与焊接时PCB运行方向垂直,SOT、SOP的长轴应与PCB运行方向平行。将SOP最后一个引脚的焊盘加宽(设计一个窃锡焊盘)。 b) 插装元件引脚应根据PCB 的孔距及装配要求成型,如采用短插一次焊工艺,焊接面元件引 脚露岀PCB表面0.8?3mm,插装时要求元件体端正。 c) 根据PCB尺寸、板层、元件多少、有无 贴装元件等设置预热温度,PCB底面温度在90-130 o D、润湿不良、漏焊、虚焊 原因: a) 元件焊端、引脚、印制板基板的焊盘氧化或污染,或PCB受潮。 b) Chip元件端头金属电极附着力差或采用单层电极,在焊接温度下产生脱帽现象。 c) PCB设计不合理,波峰焊时阴影效应造成漏焊。 d) PCB翘曲,使PCB翘起位置与波峰焊接触不良。 e) 传送带两侧不平行(尤其使用PCB传输架时),使PCB与波峰接触不平行。 f) 波峰不平滑,波峰两侧高度不平行,尤其电磁泵波峰焊机的锡波喷口,如果被氧化物堵塞时,会使波峰岀现锯齿形,容 易造成漏焊、虚焊。 g) 助焊剂活性差,造成润湿不良。

焊接裂纹产生原因及防治措施

焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。 1.热裂纹 在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。 根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。 目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。 1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si 缝偏高)和单相奥氏体钢、镍基合金以及某些铝合金焊缝中。 这种裂纹是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。 防治措施:在冶金因素方面,适当调整焊缝金属成分,缩短脆性温度区的范围控制焊缝中硫、磷、碳等有害杂质的含量;细化焊缝金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。 2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。 它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。 这一种裂纹的防治措施与结晶裂纹基本上是一致的。 特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。 3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。 这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。 2、再热裂纹 通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。 再热裂纹产生在焊接热影响区的过热粗晶部位,其走向是沿熔合线的奥氏体粗晶晶界扩展。 防治再热裂纹从选材方面,可以选用细晶粒钢。

焊接容易疲劳断裂分析

焊接容易疲劳断裂分析 悬臂梁焊接件从底部断裂,从外观看,断裂位于底板的中间位置,靠近焊缝,断口呈纤维状,暗灰色,没有塑性变形,属于脆性断裂。 初步分析 1、从零件结构看,断裂位置位于零件的几何受力中心,此处受到的力矩最大,容易产生开裂。 2、断裂位置靠近焊缝,属于过热区(宽度约1~3mm);焊接时,它的温度在固相线至1100℃之间,该区域内奥氏体晶粒严重长大,冷却后得到晶粒粗大的过热组织,塑性和韧度明显下降,容易产生开裂。 3、零件在使用过程中,长期受到变化的外力作用,容易产生疲劳断裂。 <1>疲劳断裂是指金属件在变动应力和应变长期作用下,由于累积损伤而引起的断裂。 <2>疲劳断裂起源于引起应力集中的微裂纹,并沿特定的晶面扩展、劈开,最终形成宏观上的裂纹。这些特定的晶面称为解理面。 <3>Q235属于金属,微观上,晶胞与晶胞之间都会有,间距较大、键结合较弱而易于开裂的低指数面(解理面)。 <4>当外力作用下,晶粒内的位错沿滑移面运动,滑移面不平行时,在交叉位置会形成位错塞积,造成应力集中,如不能通过其他方式松弛,就会在易于开裂的低指数面形成初裂纹。 <5>初裂纹很容易在晶粒内部扩展至晶界,造成晶界附近产生很大的应力集中,使相邻晶粒形成新的裂纹源。 <6>当应力足够大的时候,裂纹突破晶界的阻碍,迅速扩展,形成宏观上的金属裂纹。 <7>当合金(Q235也属于合金,铁碳合金)沿晶界析出连续或不连续的脆性相时,或者是当偏析或杂质弱化晶界时,裂纹可能沿晶界扩展,造成沿晶界断裂。 <8>疲劳断裂,断裂前既无宏观塑性变形,又没有其他征兆,并且一断裂后,裂纹扩展迅速,造成整体断裂或很大的裂口。

焊接缺陷分析报告

焊接缺陷分析报告不合格焊口统计表: 序 号SN. 管线号 ISO NO. 焊口编 号 Weld joint NO. 焊工号 Welder NO. 焊接日期 Welding Date 制作方式 Fabrication mode 尺寸(NPS) Dimension RT委托单编号 RT Request No. RT委托单日 期RT Request Date 结果 Result 一次返修 Single repair 二次返修 不合格 焊工号 缺陷位 置 1 IOU-101-0010.081-01 56 C001 2012.08.06 F 10 CC7-C300-PC-2012-RT001 2 2012.08.10 REJ 2-3(密集气孔)C001 V 2 IOU-101-0010.017-01 14 C00 3 2012.09.02 F 16 CC7-C300-PC-2012-RT0038 2012.09.0 4 REJ 2-3(咬边、未熔)C003 V 3 IOU-101-0010.040-01 2 C005 2012.07.28 S 16 CC7-C200-PC-2012-RT0006 2012.07.30 REJ 7-0(接头未熔)C005 F 4 IOU-101-0010.081-01 54 C007 2012.08.06 F 10 CC7-C300-PC-2012-RT0012 2012.08.10 REJ 0-1、2-3、3-4 (密集气孔) C007 V 5 IOU-101-0010.106-01 1 C007 2012.08.2 6 F 12 CC7-C200-PC-2012-RT0046 2012.09.10 REJ 3-4(未焊透)C00 7 V、OH 6 IOU-101-0010.107-01 4 C008 2012.08.2 7 S 6 CC7-C200-PC-2012-RT0031 2012.08.31 REJ 2-3(密集气孔)C00 8 F 7 IOU-101-0010.012-01 14 C007/C008 2012.08.11 F 16 CC7-C200-PC-2012-RT0045 2012.09.10 REJ 4-5、5-6 (密集气孔) C008 V、OH 8 IOU-101-0010.015-01 2 C008/C005 2012.09.08 F 16 CC7-C200-PC-2012-RT0056 2012.09.18 REJ 4-5(根部凹陷)C008 OH 9 IOU-101-0010.020-01 13 C009 2012.09.01 F 16 CC7-B300E-PC-2012-RT0041 2012.09.04 REJ 2-3、4-5、5-6、 7-0(四张均为内 咬边) 3-4(密集气孔)C009 V、OH 10 IOU-101-0010.021-01 9 C007/C009 2012.09.05 F 16 CC7-B300E-PC-2012-RT0058 2012.09.18 REJ 7-0(蛀孔)C009 F

埋弧焊常见焊接缺陷的成因分析及对策

1. 影响焊接缺陷的因素 (1)材料因素: 所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂、 以及保护气体等。所有这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中母材本身的材质对热影双区好性能起音决定性的影响。显然所采用的焊接材料对焊缝金属的成份和性能也是关键的因素。好果焊接材料与母材匹配不当,则不仅可以引起焊接区内的至纹、气孔等各种缺陷,而且也可能可起脆化、软化或耐腐蚀等性能变化。所以,为保证获得良好的焊接接头,必须对材料因素予以充分的重视。 (2)工艺因素: 大量的实践证明,同一种母材在采用不同的焊接方法和工艺措施的条件下, 其焊接质量会表现出很大的差别。焊接方法对焊接质量的影响主要可能在两方面:首先是焊接热源的特点,也就是功率密度、加热最高温度、功率大小等,它们可 直接改变焊接热循环的各项参数,如线能量大小、高温停留时间、相变温度区间的冷却速度等。这些当然会影响接头的组织和性能;其次是对熔池和附近区域的保护方式,如熔渣保护、气体保护、气-渣联合保护或是在真空中焊接等,这些 都会影响焊接冶金过程。显然,焊接热过程和冶金过程必然对接头的质量和性能 会有决定性的影响。 2.常见焊接缺陷的原因分析 (1)结晶裂纹 从金属结晶理论知道,先结晶的金属纯度比较高,后结晶的金属杂质较多,

并富集在晶粒周界,而且这些杂质具有较低的熔点,例如,一般碳钢和低合金钢的焊缝含硫量较高时,能形成FeS,而FeS与Fe发生作用形成熔点只有988℃的低熔点共晶。在焊缝金属凝固过程中,低熔点共晶被排挤在晶界上,形成“液态 薄膜”由于液态薄膜的存在减弱了晶间之间的结合力,晶粒间界的液态薄膜便成了薄弱地带。又因为焊缝金属在结晶的同时,体积在减小,周围金属的约束引起它的收缩而引起焊缝金属受到拉伸应力的作用下,于是相应地产生了拉伸变形。 若此时产生的变形量超过了晶粒边界具有的变形塑性时,即可沿这个薄弱地带开裂而形成结晶裂纹。 可见,产生结晶裂纹的原因就在于焊缝中存在液态薄膜和在焊缝凝固过程中 受到拉伸应力共同作用的结果。因此,液态薄膜是产生结晶裂纹的根源,而拉伸应力是产生结晶裂纹的必要条件。 至于近缝区的结晶裂纹,原则上与焊缝上的结晶裂纹时一致的。在焊接条件下, 近缝区金属被加热到很高的温度,在熔合区附近达到半熔化状态。当母材金属含有易熔杂质时,那么在近缝区金属的晶界上,同样也会有低熔共晶存在。这时在焊接热的作用下,将会发生熔化,相当于晶粒间的液态薄膜,与此同时,在拉伸 应力的作用下就会开裂。 焊缝上的结晶裂纹和近缝区的结晶有着相互依赖和相互影响的关系。近缝区的结晶裂纹可能是焊缝结晶裂纹的起源。 结晶裂纹的影响因素:通过以上分析可知,结晶裂纹的产生取决于焊缝金属在脆性温度区间的塑性和应变,前者取决于冶金因素,后者取决于力的因素。力的主作用是产生结晶裂纹的的必要条件,只有在力的作用下产生的应变超过材料的最大变形能力时,才会开裂。首先需要分析冶金因素。

焊接芯轴断裂失效分析

焊接芯轴断裂失效分析 一、背景资料 1.1 失效件断口形貌 某公司送来断裂失效芯轴样品,据该公司相关人员介绍断裂失效发生在焊缝位置。送检断裂芯轴样品宏观形貌如图1和图2所示。要求分析套筒与芯轴焊缝在使用过程中发生断裂的原因。限于断裂后失效件的采集受限,厂方仅送检一半失效件(芯轴);另外从已焊接完成而未断的实际产品上线切割制取了含完整焊缝的试样,如图3所示。 图1 送检样品宏观形貌图2 送检样品图1中的局部放大 (a)焊缝正面(b)含完整焊缝试样的侧面 图3 含完整焊缝的试样 1.2 失效件成分及性能 套筒材料为27SiMn钢,芯轴材料为20#钢,其化学成分以及力学性能由该公司提供,具体数值见下表。 表1 27SiMn钢的化学成分(质量分数)(%) 试验项 目 C Mn Si S P Cr Ni Cu 保证值 0.24 ~0.32 1.1 ~1.4 1.1 ~1.4 ≤ 0.03 5 ≤ 0.03 5 ≤ 0.25 ≤ 0.30 ≤ 0.25 表2 27SiMn钢的力学性能 试验项目σ b (MPa)σ s (MPa)A(%)Z 一般值980 835 40 12 表3 20#钢化学成分(质量分数)(%) 试验项 目C Mn Si S P Cr Ni Cu A B A B

保证值 0.17 ~0.24 0.35 ~0.65 0.17 ~0.37 ≤ 0.03 5 ≤ 0.03 5 ≤ 0.25 ≤ 0.25 ≤ 0.25 表4 20#钢的力学性能 试验项目 σb (MPa ) σs (MPa ) A (%) Z 一般值 370-520 215 27 24 1.3 失效件的结构 套筒与芯轴的焊接结构如图所示,坡口形式见图。焊接采用Φ1.2焊丝JM-58,焊接时适宜的焊接参数为I=235~300A ,U=28~32V ,Q=15~20L/min 。 图4 芯轴套筒焊接结构形式剖面图 二、断裂失效分析的思路[1] 1.现场基本情况调查,调查了解断裂失效件的有关情况和使用历史情况。 2.失效分析的初步判断,根据失效件的使用情况、工作环境、宏观特征等进行初步的判断,为后续的实验分析做准备。 3.建立具体的分析思路并实施工作程序,主要包括化学成分分析、力学性能分析、显微硬度分析、显微金相组织分析、断口分析等。 4.断裂失效机理综合分析阶段,根据基本分析结论的提示,研究断裂失效件的设计、生产和工作过程中与失效相关的内外因素以及失效机理。 5.排除断裂失效措施研究阶段,根据其产生的断裂失效机理,研究出切实、有效、可行的方案,减少或防止类似事故的再次发生。 三、现有资料分析 3.1 材料检验 利用GP1000光谱分析仪器对送检的完整焊缝及两边母材进行化学成分分析,测试结果见表5。 表5 送检样品焊缝及母材的化学成分测定结果(%) 通过对比表1、表3与表5可以明显发现:芯轴化学成分与厂方所提供的标准材质(20#钢)不符,标准材质的碳含量上限是0.24,但是实际采用的材质碳含量高达0.478,严重超标。如此高 试样 C Si Mn P S Cr Ni Cu 20#钢 0.478 0.238 0.72 0.016 0.013 0.064 <0.001 0.005 27SiMn 0.304 1.146 1.337 0.013 0.011 0.095 0.02 0.108 焊缝 0.207 0.647 1.113 0.015 0.011 0.065 0.002 0.065

波峰焊过程中十五种常见不良分析

波峰焊过程中十五种常见不良分析概要一、焊后PCB 板面残留多板子脏: 1. FLUX 固含量高,不挥发物太多。 2. 焊接前未预热或预热温度过低(浸焊时,时间太短)。 3. 走板速度太快(FLUX 未能充分挥发)。 4. 锡炉温度不够。 5. 锡炉中杂质太多或锡的度数低。 6. 加了防氧化剂或防氧化油造成的。 7. 助焊剂涂布太多。 8. PCB 上扦座或开放性元件太多,没有上预热。 9. 元件脚和板孔不成比例(孔太大)使助焊剂上升。 10. PCB 本身有预涂松香。 11. 在搪锡工艺中,FLUX 润湿性过强。 12. PCB 工艺问题,过孔太少,造成FLUX 挥发不畅。 13. 手浸时PCB 入锡液角度不对。 14.FLUX 使用过程中,较长时间未添加稀释剂。 二、着火: 1. 助焊剂闪点太低未加阻燃剂。 2. 没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。 3. 风刀的角度不对(使助焊剂在PCB 上涂布不均匀)。 4. PCB 上胶条太多,把胶条引燃了。 5. PCB 上助焊剂太多,往下滴到加热管上。 6. 走板速度太快(FLUX 未完全挥发,FLUX 滴下)或太慢(造成板面热温 度太高)。 7. 预热温度太高。 8. 工艺问题(PCB 板材不好, 发热管与PCB 距离太近)。 三、腐蚀(元器件发绿,焊点发黑) 1. 铜与FLUX 起化学反应,形成绿色的铜的化合物。 2. 铅锡与FLUX 起化学反应,形成黑色的铅锡的化合物。 3. 预热不充分(预热温度低,走板速度快)造成FLUX 残留多,有害物残留太多)。 4.残留物发生吸水现象,(水溶物电导率未达标) 5.用了需要清洗的FLUX ,焊完后未清洗或未及时清洗。 6.FLUX 活性太强。 7.电子元器件与FLUX 中活性物质反应。 四、连电,漏电(绝缘性不好) 1. FLUX 在板上成离子残留;或FLUX 残留吸水,吸水导电。 2. PCB 设计不合理,布线太近等。 3. PCB 阻焊膜质量不好,容易导电。

焊接不良的原因分析

焊接不良的原因分析 吃锡不良 其现象为线路的表面有部份未沾到锡,原因为: 1.表面附有油脂、杂质等,可以溶剂洗净。 2.基板制造过程时打磨粒子遗留在线路表面,此为印刷电路板制造厂家的问题。 3.硅油,一般脱模剂及润滑油中含有此种油类,很不容易被完全清洗干净。所以在电子零件的制造过程中,应尽量避免化学品含有硅油者。焊锡炉中所用的氧化防止油也须留意不是此类的油。 4.由于贮存时间、环境或制程不当,基板或零件的锡面氧化及铜面晦暗情形严重。换用助焊剂通常无法解决此问题,重焊一次将有助于吃锡效果。 5.助焊剂使用条件调整不当,如发泡所需的空气压力及高度等。比重亦是很重要的因素之一,因为线路表面助焊剂分布数量的多寡受比重所影响。检查比重亦可排除因卷标贴错,贮存条件不良等原因而致误用不当助焊剂的可能性。 6.焊锡时间或温度不够。一般焊锡的操作温度较其溶点温度高55~80℃ 7.不适合之零件端子材料。检查零件,使得端子清洁,浸沾良好。 8.预热温度不够。可调整预热温度,使基板零件侧表面温度达到要求之温度约90℃~110℃。 9.焊锡中杂质成份太多,不符合要求。可按时测量焊锡中之杂质,若不合规定超过标准,则更换合于标准之焊锡。 退锡 多发生于镀锡铅基板,与吃锡不良的情形相似;但在欲焊接的锡路表面与锡波脱离时,大部份已沾在其上的焊锡又被拉回到锡炉中,所以情况较吃锡不良严重,重焊一次不一定能改善。原因是基板制造工厂在渡锡铅前未将表面清洗干净。此时可将不良之基板送回工厂重新处理。 冷焊或点不光滑 此情况可被列为焊点不均匀的一种,发生于基板脱离锡波正在凝固时,零件受外力影响移动而形成的焊点。 保持基板在焊锡过后的传送动作平稳,例如加强零件的固定,注意零件线脚方向等;总之,待焊过的基板得到足够的冷却再移动,可避免此一问题的发生。解决的办法为再过一次锡波。至于冷焊,锡温太高或太低都有可能造成此情形。

GMAW焊接缺陷原因分析

GMAW (CO2) 焊接缺陷发生原因及防止措施 1.焊道气孔 1.母材不洁,有油脂、锈与水分等存在焊线——1.注意焊前母材的清洁 2.有锈或潮湿,附油脂——2.选用干燥清洁的焊线 3.电弧太长CO2气体保护不周密——3.选用正确电压,保持适当的电弧长度 4.风速太强、气体遮护不良——4.加装挡风装置 5.焊接速度太快、冷却过速——5.减低焊接速度,使熔池凝固较慢,使气体有足够时间逸出 6.火花飞溅物附着于焊嘴上造成气体乱流、保护不完全——6.使用前清洁焊嘴,并喷涂焊渣防止剂 7.气体纯度不良含水份或空气——7.选用JIS第三级规格气体(CO2 99.5%以上,水分0.005%以下 8.焊嘴内径太小——8.换用正确尺寸焊嘴 9.焊嘴与母材间距离过大——9.缩短至适当距离 10.气体减压阀冻结无法流出——10.使用加热器,并检查减压阀 11.气体流量不足或用尽——11.检查气体流量、电磁阀或换气瓶 12.焊枪角度过大,空气卷入——12.依规定保持焊枪在正确的角度 2焊道外观不良 1.焊嘴内TIP磨损,焊线输出产生摆动——1.换新TIP 2.焊接操作不熟练——2.采用前进法练习,运行速度保持稳定 3.焊接条件配合不当——3.电压及电流稍做调整 4.保护气体所产生的问题——4.气体流量稍增加 5.行进间焊线之伸出长度一直变动——5.练习稳定手之操作高度 3.烧穿 1.开槽对接焊接时,电流过大——1.降低电流 2.开槽不良间隙过大——2.减少间隙,或先补焊后再对接 4.焊道曲折 1.焊线导直系统运作不良/滚轮压力不适当——1.调整矫正器,适当调整滚轮压力 2.伸线长度过长——2.选用焊线径10倍以上,15倍以下之距离长度 3.TIP损坏——3.换新TIP 4.焊线架轴心设置不当——4.调整焊线架位置及角度使焊线能直线送入导线滚轮 5.焊线弯曲——5.矫直焊线 5.夹渣 1.母材倾斜使焊渣超前——1. 尽可能将焊件放置水平位置或增加焊接速度 2.前一道焊接,焊渣未清楚——2. 注意每道焊道之完全清洁 3.电流过小,速度慢——3. 增加电流和焊速,使焊渣容易浮起 4.前进法焊接时,开槽内焊渣超前甚多——4. 增加焊接速度 5.焊枪操作不良——5. 熟习操作稳定 6.开槽过窄——6.增加开槽角度

中空轴断裂的原因分析与焊接处理

中空轴断裂的原因分析与焊接处理 1、引言 中空轴是磨机非常关键的部件,它承受着整个磨体及研磨体的运转载荷,在交变应力作用下连续运行,是磨机机体最薄弱的环节,也是最难控制制造质量的机件。同时还是容易发生问题的磨体部件,特别是进、出料端的中空轴发生故障的相当多,磨机中空轴断裂是非常严重的设备故障。必须停机检修,以免造成“落磨”的重大设备事故。处理磨机中空轴断裂的技术难度比较大,检修周期长,劳动强度大,费工费时。处理不好还影响磨机的安全运行,容易继续引发各类设备故障,严重影响生产。我公司磨机进、出料端中空轴的断裂,经过严格细致的处理后,磨机一直安全稳定运行,没有发生任何不正常的问题,说明我们的处理是成功的。现就结合我公司的处理情况,对磨机进、出料端中空轴断裂的原因与处理作一分析总结、与各位同仁一起探讨。 2、磨机进、出料端中空轴断裂的基本情况 我公司由φ3×11m水泥磨自2000年7月投入运行以来,设备运行状况一直较好,该磨机的技术参数见表l;2005年5月31日白班停机检修时,发现右边磨尾中空轴靠内圈螺栓处大R角处环向有裂纹,刮开油污后发现裂纹长度为1250mm;吊开磨机后瓦盖后,又发现左边靠内圈螺栓处大R角处环向也有裂纹,刮开油污后发现长度为1060mm。左边裂纹在中空轴内圈法兰螺栓处,长度经过内圈法兰螺栓4个。右边裂纹在中空轴内圈法兰螺栓处,长度经过内圈法兰螺栓5个半。两个裂纹间距为内圈法兰螺栓3个半。两个裂纹为八字型,在中空轴内圈法兰螺栓和大R角外端处。 2005年6月2日白班11:00对磨头中空轴检查发现右边靠内圈螺栓处大R 角处环向有裂纹,清除油污后发现裂纹长度为770mm,此裂纹在大R角中下部环

相关文档
最新文档