电力电子器件的种类

电力电子器件的种类
电力电子器件的种类

电力电子器件的种类

电力电子器件的种类很多,按照不同方法可以分成不同类型。

一、按照能够被控制电路信号所控制的程度

1.半控型器件

通过控制信号只能控制其导通,不能控制其关断的电力电子器件。主要是指晶闸管及其大部分派生器件。

2.全控型器件

通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。目前最常用的是IGBT和Power MOSFET。

3.不可控器件

器件本身没有没有导通、关断控制功能,而是需要根据外电路条件决定其导通、关断状态的器件称为不可控器件。电力二极管就是典型的不可控器件。

二、按照驱动信号的性质

1.电流驱动型

通过从控制端注入或者抽出电流来实现导通或者关断的控制。代表性器件有晶闸管、门极可关断晶闸管、功率晶体管、IGBT等。

2.电压驱动型

仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。代表性器件为MOSFET管和IGBT管。

3.脉冲触发型

通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。

4.电平控制型

必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通。

电力电子技术复习要点 --电力电子器件的分类:(各有哪些器件) (1)全

电力电子技术复习要点 --电力电子器件的分类:(各有哪些器件) (1)全控、半控; (2)电流驱动型、电压驱动型; (3)脉冲驱动型、电平驱动型; (4)单极性器件、双极性器件、复合型器件 --晶闸管的静态特性: (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 --过电压分为内因过电压(换相过电压、关断过电压),外因过电压(操作过电压和雷击过电压) --过电压、过电流保护措施; --缓冲电路又称为吸收电路,其作用是抑制电力电子器件的内因过电压、du/dt或者过电流和di/dt,减小器件的开关损耗。 --关断缓冲电路:又称为du/dt抑制电路,用于吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗。 --开通缓冲电路:又称为di/dt抑制电路,用于抑制器件开通时的电流过冲和di/dt,减小器件的开通损耗。 --复合缓冲电路:关断缓冲电路和开通缓冲电路结合在一起。

--通常将缓冲电路专指关断缓冲电路,而将开通缓冲电路区别叫做di/dt 抑制电路。 --晶闸管串联分压不均和并联分流不均的原因是什么?解决的措施是什么? --晶闸管触发电路应满足的要求。 --晶闸管串联使用是为了均压;并联使用是为了均流; --晶闸管额定电压,额定电流的概念(已知有效电流如何得到额定电流,) --不同整流电路触发脉冲的相位; --不同整流电路,在纯电阻负载和阻感性负载时,晶闸管所承受的最大正反向电压; --带平衡电抗器的双反星整流电路串联平衡电抗器的原因:使两个直流电源的电压瞬时值,平均值均相等,从而使并联的三相半波整流电路能够同时导通,给负载供电。 --带平衡电抗器的双反星整流电路与三相全控桥整流电路相对比的特点; --变压器漏感对整流电路影响的一些结论:(P63) --换相重叠角随其他参数变化的规律(P62) --电容滤波的不可控整流电路(单相不可控整流和三相不可控整流电路)主要数量关系。 --无功功率及谐波对公用电网的影响(P69) --三相电容不可控整流电路电流连续和断续的临界条件; --有源逆变与无源逆变的区别,有源逆变的两个条件; --什么是逆变失败?逆变失败的原因是什么?解决的措施有哪些?

第一章电力电子器件

电力电子技术试题(第一章) 一、填空题 1、普通晶闸管内部有 PN结,,外部有三个电极,分别是极极和极。 1、三个、阳极A、阴极K、门极G。 2、晶闸管在其阳极与阴极之间加上电压的同时,门极上加上电压,晶闸管就导通。 2、正向、触发。 3、、晶闸管的工作状态有正向状态,正向状态和反向状态。 3、阻断、导通、阻断。 4、某半导体器件的型号为KP50—7的,其中KP表示该器件的名称为,50表示,7表示。 4、普通晶闸管、额定电流50A、额定电压700V。 5、只有当阳极电流小于电流时,晶闸管才会由导通转为截止。 5、维持电流。 6、当增大晶闸管可控整流的控制角α,负载上得到的直流电压平均值会。 6、减小。 7、按负载的性质不同,晶闸管可控整流电路的负载分为性负载,性负载和负载三大类。 7、电阻、电感、反电动势。 8、当晶闸管可控整流的负载为大电感负载时,负载两端的直流电压平均值会,解决的办法就是在负载的两端接一个。 8、减小、并接、续流二极管。 9、工作于反电动势负载的晶闸管在每一个周期中的导通角、电流波形不连续、呈状、电流的平均值。要求管子的额定电流值要些。 9、小、脉冲、小、大。 10、单结晶体管的内部一共有个PN结,外部一共有3个电极,它们分别是极、极和极。 10、一个、发射极E、第一基极B1、第二基极B2。 11、当单结晶体管的发射极电压高于电压时就导通;低于电 压时就截止。 11、峰点、谷点。 12、触发电路送出的触发脉冲信号必须与晶闸管阳极电压,保证在管子阳极电压每个正半周内以相同的被触发,才能得到稳定的直流电压。 12、同步、时刻。 13、晶体管触发电路的同步电压一般有同步电压和电压。 13、正弦波、锯齿波。 14、正弦波触发电路的同步移相一般都是采用与一个或几个的叠加,利用改变的大小,来实现移相控制。 14、正弦波同步电压、控制电压、控制电压。 15、在晶闸管两端并联的RC回路是用来防止损坏晶闸管的。 15、关断过电压。 16、为了防止雷电对晶闸管的损坏,可在整流变压器的一次线圈两端并接一个或。 16、硒堆、压敏电阻。 16、用来保护晶闸管过电流的熔断器叫。 16、快速熔断器。 二、判断题对的用√表示、错的用×表示(每小题1分、共10分) 1、普通晶闸管内部有两个PN结。(×) 2、普通晶闸管外部有三个电极,分别是基极、发射极和集电极。(×) 3、型号为KP50—7的半导体器件,是一个额定电流为50A的普通晶闸管。() 4、只要让加在晶闸管两端的电压减小为零,晶闸管就会关断。(×) 5、只要给门极加上触发电压,晶闸管就导通。(×) 6、晶闸管加上阳极电压后,不给门极加触发电压,晶闸管也会导通。(√) 7、加在晶闸管门极上的触发电压,最高不得超过100V。(×) 8、单向半控桥可控整流电路中,两只晶闸管采用的是“共阳”接法。(×) 9、晶闸管采用“共阴”接法或“共阳”接法都一样。(×) 10、增大晶闸管整流装置的控制角α,输出直流电压的平均值会增大。(×) 11、在触发电路中采用脉冲变压器可保障人员和设备的安全。(√) 12、为防止“关断过电压”损坏晶闸管,可在管子两端并接压敏电阻。(×) 13、雷击过电压可以用RC吸收回路来抑制。(×) 14、硒堆发生过电压击穿后就不能再使用了。(×) 15、晶闸管串联使用须采取“均压措施”。(√)

电力电子器件的概念

电力电子器件的概念: 直接承担电能的变换或控制的电路称为主电路。 可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件称为电力电子器件。 电力电子器件的特征: (1)、电力电子器件所能处理电功率的大小,所能承受的电压、电流的能力是其重要参数,一般都大于信息电子器件。 (2)、电力电子器件为减小自身损耗,提高效率,一般都工作在开关状态,通态阻搞接近于短路,电流由外电路决定;断态阻搞接近于断路,电流几乎为零,电压决定于外电路。 (3)、电力电子器件往往需要由信息电子电路来控制。 (4)、自由功率损耗远大于信息电子电路,需要良好的散热导热设计。 电力电子器件的系统组成: 一般由控制电路、驱动电路和以电力电子器件为核心的主电路组成。 电力电子器件的分类: 1、按能够被控制信号所控制的程度来分类: 全控型:既可控制其导通,又可控制其关断(绝缘栅

双极晶体管,电力MOSFET) 半控型:可以控制其导通,不能控制其关断(晶闸管、其大部分派生器件) 不可控型:导通与关断取决于所承受的电流、电压(电 力二极管) 2、按照驱动电路加在器件控制端的信号性质分类:电压 驱动型、电流驱动型 3、根据驱动电路加在器件控制端有效信号的波形分类: 脉冲触发型、电平控制型 4、按照器件内部电子的空穴参与导电的情况:单极型、 双极型、复合型 电力二极管 特征:能承受高电压和大电流(垂直导电结构、低掺杂N区)静态特征:伏安特征 动态特征:零偏、正偏、反偏时的过滤过程(图)

主要参数: 1、正向平均电流I F(AV),正向压降VF,反向重复峰值电 压V RRM,最高工作结温T JM,反向恢复时间,浪涌电流。 主要类型:普通二极管(整流二极管)、快恢复二极管、有特基二极管 电导调制效应:PN结通过大电流,大量空穴被注入基区,它们来不及和基区中的电子中和就到达负极,使基区电子浓度大幅增加。——使原始基片的电阻率下降。 晶闸管: 正常导通条件:晶闸管承受正向阳极电压,向门极施加触发电流。 关断条件:

电力电子技术器件的分类

1.1不可控器件电力二极管 功率二极管是开通与关断均不可控的半导体开关器件,其电压、电流定额较大,也称为半导体电力二极管。 1.2功率二极管的结构和工作原理 与普通二极管相比,工作原理和特性相似,具有单向导电性。在面积较大的PN 结上加装引线以及封装形成,主要有螺栓式和平板式。 1.3功率二极管的基本特征 1) 静态特性 主要指其伏安特性 1.门槛电压U TO,正向电流I F开始明显增加所对应的电压。 2.与I F对应的电力二极管两端的电压即为其正向电压降U F。 3.承受反向电压时,只有微小而数值恒定的反向漏电流。 2) 动态特性 功率二极管通态和断态之间转换过程的开关特性。 1.二极管正向偏置形成内部PN结的扩散电容。此时突加反向电压,二极管并不能立即关断。当结电容上的电荷复合掉以后,二极管才能恢复反向阻断能力,进入截止状态。 2.二极管处于反向偏置状态突加正向电压时,也需要一定的时间,才会有正向电流流过,称为正向恢复时间。 1.4功率二极管的主要参数 1.额定正向平均电流I F(AV)——在规定的管壳温度和散热条件下,功率二极管长期运行时允许流过的最大工频正弦半波电流的平均值。 2.反向重复峰值电压U RRM——功率二极管反向所能承受的重复施加的最高峰值电压。 3.正向管压降U F——功率二极管在规定的壳温和正向电流下工作对应的正向导通压降。 4.最高允许结温T jM——结温(T j)是管芯PN结的平均温度,最高允许结温(T jM)是PN结正常工作时所能承受的最高平均温度。 1.5功率二极管的主要类型

1) 普通二极管(General Purpose Diode ) 又称整流二极管(Rectifier Diode )多用于开关频率不高(1kHz 以下)的整流电路其反向恢复时间较长正向电流定额和反向电压定额可以达到很高 2) 快恢复二极管(Fast Recovery Diode ——FRD )简称快速二极管 快恢复外延二极管(Fast Recovery Epitaxial Diodes ——FRED ),其t rr 更短(可低于50ns ), U F 也很低(0.9V 左右),但其反向耐压多在1200V 以下。 从性能上可分为快速恢复和超快速恢复两个等级。前者t rr 为数百纳秒或更长,后者则在100ns 以下,甚至达到20~30ns 。 3. 肖特基二极管以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode ——SBD )。反向恢复时间很短(10~40ns )多用于200V 以下。 2.1半控型器件晶闸管 普通晶闸管也称做硅可控整流器(Silicon Controlled Rectifer ,SCR )。它是一种半控型开关器件,工作频率较低,是目前电压、电流定额最大的电力电子开关器件。 2.2晶闸管的结构与工作原理 外形有螺栓型和平板型两种封装。有三个连接端。螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便。平板型晶闸管可由两个散热器将其夹在中间。 晶闸管导通的原理可用晶体管模型解释,由图得: 式中α1和α2分别是晶体管V 1和V 2的共基极电流增益;I CBO1和I CBO2分别是V 1和V 2的共基极漏电流。由以上式可得 : 在低发射极电流下α 是很小的,而当发射极电流建立起来之后,α 会迅速增大(形成强烈正反馈所致)。阻断状态:I G =0,(α1+α2)很小,I A ≈I C0,晶闸管处于正向阻断状态。开通状态:随I G 增加,晶体管的发射极电流增大,以致(α1+α2)趋近于1的话,阳极电流I A 将趋近于无穷大,实现饱和导通。I A 实际由外电路决定。 111CBO A c I I I +=α222CBO K c I I I +=α21c c A I I I +=G A K I I I +=)(121CBO2CBO1G 2A ααα+-++=I I I I

电力电子器件分类与应用思考

电力电子器件分类与应用思考 电力电子技术是以电力电子器件为基础对电能进行控制、转换和传输的一门技术,是现代电子学的一个重要分支,包括电力电子器件、变流电路和控制电路三大部分,其中以电力电子器件的制造、应用技术为最基本的技术。 电力电子技术是以电力电子器件为基础对电能进行控制、转换和传输的一门技术,是现代电子学的一个重要分支,包括电力电子器件、变流电路和控制电路三大部分,其中以电力电子器件的制造、应用技术为最基本的技术。因此,了解电力电子器件的基本工作原理、结构和电气参数,正确安全使用电力电子器件是完成一部电力电子装置最关键的一步。电力电子器件种类繁多,各种器件具有自身的特点并对驱动、保护和缓冲电路有一定的要求。一个完善的驱动、保护和缓冲电路是器件安全、成功使用的关键,也是本讲座重点讲述的部分。电力电子变换电路常用的半导体电力器件有快速功率二极管、大功率双极型晶体管(GTR)、晶闸管(Thyristor或SCR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)以及功率集成电路PIC等。在这些器件中,二极管属于不控型器件,晶闸管属于半控型器件,其他均属于全控型器件。SCR、GTO及GTR属电流驱动型器件,功率MOSFET、 IGBT及PIC为电压驱动型器件。在直接用于处理电能的主电路中,实现电能变换和控制的电子器件称为电力电子器件。电力电子器件之所以和“电力”二字相连,是因为它主要应用于电气工程和电力系统,其作用是根据负载的特殊要求,对市电、强电进行各种形式的变换,使电气设备得到最佳的电能供给,从而使电气设备和电力系统实现高效、安全、经济的运行。目前的电力电子器件主要指的是电力半导体器件,与普通半导体器件一样,电力半导体器件所采用的主要材料仍然是硅。 1电力电子器件的一般特征 (1)处理电功率的能力大 (2)工作在开关状态 (3)需要由信息电子电路来控制 (4)需要安装散热器 2电力电子器件的分类 2.1按器件被控程度分类 按照器件控制信号的控制程度,电力电子器件可分为以下三类: (1)不可控器件。这类器件一般为两端器件,一端是阳极,另一端是阴极。与电子电路中的二极管一样,具有单向导电性。其开关操作仅取决于其在主电路中施加在阳、阴极间的电压和流过它的电流,正向电压使其导通,负向电压使其关断,流过它的电流是单方向的。不可控器件不能用控制信号来控制电流的通断,因此不需要驱动电路。这类器件就是功率二极管(PowerDiode)。 (2)半控型器件。这类器件是三端器件,除阳极和阴极外,还增加了一个控制门极。半控型器件也具有单向导电性,但开通不仅需在其阳、阴极间施加正向电压,而且还必须在门极和阴极间施加正向控制电压。门极和阴极间的控制电压仅控制其开通而不能控制其关断,器件的关断是由其在主电路中承受的电压和电流决定的。这类半控型器件是指晶闸管(Thyris-tor)及其大部分派生器件。

1-1-电力电子器件特征与分类

电力电子器件特征与分类 ◆电力电子技术的概念:使用电力电子器件对电能进行变换和 电力电子技术的概念使用电力电子器件对电能进行变换和控制的技术。 ◆电力电子器件的地位:又称功率半导体器件,是电力电子电 电力电子器件的地位又称功率半导体器件是电力电子电路(变流技术)的基础。 ◆电力电子器件概念:可直接用于主电路中,实现电能的变换 电力电子件概念直接用主电路中实电能的变换或控制的电子器件。 问题:为什么要对电能进行变换和控制?

()特征半导体功率开关与普通半导体器件有何区别? (一)特征 问题:半导体功率开关与普通半导体器件有何区别?电力电子器件能处理电功率的能力,一般远大于处理信息的电子器件 的电子器件。?电力电子器件一般都工作在开关状态。 ?电力电子器件往往需要由信息电子电路来控制,需要驱动电路。 ?电力电子器件自身的功率损耗远大于信息电子器件,一般都要安装散热器。

i i ;(2)开关处于导通状态时能流过大电流端电压为零;(3)导通、关断切换时所需;(4)长期反复地开关也不损坏()。 )长期反复地开关也不损坏(寿命长 ◆电力电子开关的特点---近似理想开关

◆电力电子开关的主要损耗 ?通态损耗是器件功率损耗的主要成因。 器件开关频率较高时的可行性?器件开关频率较高时,开关损耗可能成为器件功率损耗的主要因素。 ◆在分析变换器电路时采用理想化器件模型的可行性:?由于能量转换的效率通常设计得很高,所以器件的通态电压与工作电压相比一定比较小所以在电路分析中可以电压与工作电压相比一定比较小,所以在电路分析中可以忽略。 ?器件的开关时间一定远小于电路的工作周期因此可近器件的开关时间定远小于电路的工作周期,因此可近似为瞬时通断。 采用理想化器件模型可大大简化变换器工作原理的分析,但是在设计实际变流装置时,必须考虑器件的具体特性。

常用电力电子器件

第5章 常用电力电子器件 在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。为降低器件的功率损耗,提高效率,电力电子器件通常工作于开关状态,因此又常称为开关器件。电力电子器件种类很多,按照器件能够被控制电路信号所控制的程度,可以将电力电子器件分为①不可控器件,即二极管;②半控型器件,主要包括晶闸管(SCR)及其派生器件;③全控型器件,主要包括绝缘栅双极型晶体管(IGBT)、电力晶体管(GTR)、电力场效应晶体管(电力MOSFET)等。半控型及全控型器件按照驱动方式又可以分为电压驱动型、电流驱动型两类,上述分类见图5-1。 电力电子器件 不可控器件 二极管半控型器件 SCR 全控型器件 IGBT 电力MOSFET GTR GTO 晶闸管 电力电子器件 电压驱动型 电流驱动型 电力MOSFET IGBT SCR GTO 晶闸管GTR 图5-1电力电子器件的分类 随着半导体材料及技术的发展,新型电力电子器件不断推出,传统电力电子器件的性能也不断提高,这成为包括开关电源在内的各种电力电子装置的体积、效率等性能指标不断提高的重要因素。了解和掌握各种电力电子器件的特性和使用方法是正确设计开关电源的基础。 在开关电源中应用的电力电子器件主要为二极管、IGBT 和MOSFET 。SCR 在开关电源的输入整流电路及其软起动中有少量应用,GTR 由于驱动较为困难、开关频率较低,也逐渐被IGBT 和MOSFET 所取代。因此这里将主要介绍二极管、IGBT 和MOSFET 的工作原理,主要参数及驱动方法。 5. 1二极管 二极管是最为简单但又是十分重要的一种电力电子器件,在开关电源的输入整流电路、逆变电路、输出高频整流电路以及缓冲电路中均有使用。 1、二极管的基本结构及工作原理 开关电源中应用的二极管除电压、电流等参数与电子电路中的二极管有较大差别外,其基本结构和工作原理是相同的,都是由半导体PN 结构成,即P 型半导体与N 型半导体结合构成,其结构见图5-2。 P 型半导体是在半导体中添加三价元素,因此硅原子外层缺少一个电子形成稳定结构,即形成空穴。N 型半导体是在半导体中添加五价元素,因此它在形成稳定结构后,半导体晶体中能给出一个多余的电子。在纯净的半导体中,空穴和电子成对出现,数量极少,所以导电能力很差。而P 型或N 型半导体中的空穴或自由电子数量大大增加,导电能力大大增强。在P 型半导体中空穴数远远大于自由电子数,因此空穴称为多子,自由电子称为少子。在N 型半导体中则相反,空穴为少子,自由电子为多子。

4.1 典型全控型电力电子器件

典型全控型电力电子器件 教学目的和要求:掌握门极可关断晶闸管的工作原理及特性、电力晶体管的工作 原理,了解电力场控晶体管的特性与参数及安全工作区。掌握电力场控晶体管的 工作原理。掌握绝缘栅双极型晶体管的工作原理、参数特点。了解静电感应晶体 管静电感应晶闸管的工作原理。 重点与难点:掌握电力晶体管、电力场控晶体管、绝缘栅双极型晶体管的工作原 理、参数特点。 教学方法: 借助PPT演示、板书等多种形式启发式教学 预复习任务:复习上节课学的半控型器件晶闸管的相关知识,对比理解掌握本节课程。内容导入: 门极可关断晶闸管——在晶闸管问世后不久出现。 全控型电力电子器件的典型代表:门极可关断晶闸管、电力晶体管、 电力场效应晶体管、绝缘栅双极晶体管。 一、门极可关断晶闸管 晶闸管的一种派生器件。可以通过在门极施加负的脉冲电流使其关断。 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大 功率场合仍有较多的应用。 1. GTO的结构和工作原理 与普通晶闸管的相同点: PNPN四层半导体结构,外部引出阳极、阴极和门 极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。 工作原理:与普通晶闸管一样,可以用图所示的双晶体管模型来分析。

由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益α1 和α2 。α1+α2=1是器件临界导通的条件。 GTO的关断过程与普通晶闸管不同。关断时,给门极加负脉冲,产生门极电流-I G,此电流使得V1管的集电极电流I Cl被分流,V2管的基极电流I B2减小,从而使I C2和I K减小,I C2的减小进一步引起I A和I C1减小,又进一步使V2的基极电流减小,形成内部强烈的正反馈,最终导致GTO阳极电流减小到维持电流以下,GTO由通态转入断态。 结论: ?GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。 ?GTO关断过程中有强烈正反馈使器件退出饱和而关断。 ?多元集成结构还使GTO比普通晶闸管开通过程快,承受d i/d t能力强。 2. GTO的动态特性 开通过程:与普通晶闸管相同 关断过程:与普通晶闸管有所不同 3. GTO的主要参数 (a)开通时间t on (b)关断时间t off (c)最大可关断阳极电流I ATO (d)电流关断增益βoff ——最大可关断阳极电流与门极负脉冲电流最大值I GM之比称为电流关断增益。 βoff一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断

相关文档
最新文档