供电系统电压偏差知识

供电系统电压偏差知识
供电系统电压偏差知识

供电系统中,电压偏差的意思是是什么。

70、供电系统中,电压偏差的意思是是什么。

A.系统各点电压与系统标称电压(额定电压)的差值

B.变压器电压与系统标称电压(额定电压)的比值

C.系统电压始端值与末端值的差

D.系统电压末端值与始端值的差

试题答案:A

考点:

考点7:电压偏差的产生原因;

当地区电网和企业供配电系统的运行方式改变或所供负荷缓慢变化时,供配电系统各点电随之变化,此电压与系统标称电压之差为电压偏差。

引起电压偏差的根本原因是由于网络中变化的负荷电流流过阻抗元件而造成的电压损失的化,主要是线路和变压器电压损失的变化,其计算电路见下图。电压损失△U是指串联电路中阻抗元件两端电压的代数差,即在工程上作近似计算时,电压损失只取电压降的横向分量DE,略去EF,故可写成下列公

用相对于系统标称电压的百分数表示,为

式中:Un--系统标称电压,kV;I--负荷电流,A;--负荷功率因数;R、X--元件的电阻和Ω。

(1)线路电压损失。

(2)变压器电压损失。变压器的电压损失(%)可按下式计算

式中:SrT--变压器额定容量,KVA;ua--变压器阻抗电压的有功分量,%;ur--变压器电压的无功分量,%;uT--变压器阻抗电压,%;△PT--变压器的短路损耗,kW;β--

变压器的负荷率;--负荷的功率因数;P--三相负荷的有功功率,kW;Q--三相负荷的无功kvar。

电压偏差计算公式及充许值

供电系统在正常运行时,某一节点的运行电压与系统额定电压之差对系统额定电压的百分数称为该节点的电压偏差。其数学表达式为

△U=(Ure-Un)/(Un)*100%

式中△u是电压偏差;U re、U N分别为运行电压和额定电压。

供电系统正常运行是指系统中所有电气元件均按预定工况运行的方式。供电系统正常运行时,负荷时刻发生着变化,系统的运行方式也经常改变,系统中各节点的电压将随之改变,会偏离系统的额定电压。电压的这种变化是缓慢的,其每秒的变化率小于额定值的1%。

电压允许值详见表15.1-5。

供配电系统基本知识

供配电系统基本知识

课题1:供配电系统基础知识 课型:讲解、参观 教学目的: (1)了解电力系统基本概念和组成 (2)了解用电负荷的分类 (3)掌握常用低压供配电系统基础知识 教学重点:低压供配电系统基础知识 教学难点:中线、零线、地线的区别 教学分析: 授课时主要通过参观学院配电室,让学生对供配电有个感性认识。再讲解电力系统的组成、电力的产生、传输、分配等基本概念,重点分析常用的几种低压供配电系统。 复习、提问: (1)家里的电是怎么来的呢? (2)一般家里用的电是多少伏特的? 教学过程: 一、课程绪论 先向学生介绍课程主干内容、地位及学习方法、考试考核手段(根据教学大纲要求)等。再引入本次课的内容,电力系统及低压供配电系统基础知识。 二、电力系统概述 1、电力的产生、传输、分配过程: 电力的产生、传输、分配过程如参考书上第2页图1-2所示,从发电厂(水力、火力、核能、风力、太阳能、垃圾发电等)先发电,发出的电压一般为10.5KV,13.8KV或13.75KV。为了能将电能输送远些,并减少输电损耗,需通过升压变压器将电压升高到110KV,220KV或500KV。然后经过远距离高压输送后,再经过降

压变压器降压至负载所需电量,如35KV,10KV,最后经配电线路分配到用电单位和住宅区基层用户,或者再降压至380/220V供电给普通用户。因此这个由发电、送电、变电、配电和用电组成的整体就是电力系统。 提问:为什么要升压供电? 答案:电流↑,传输距离↑,热能消耗↑,电能损失↑ 所以,在传输容量一定的条件下,输电电压↑,输电电流↓,电能消耗↓ 我国常用的输电电压等级:有35kV、110kV、220kV、330kV、500kV等多种 提问:目前我们常用的电力传输线路有哪 几种? 答案:架空线路、电缆线路 2、电力系统:由发电、送电、变电、配电和 用电组成的“整体”。 3、电力网:输送、变换和分配电能的网络。 由输电线路和变配电所组成,分为输电网 和配电网。 (1)输电网:由35KV以上的输电线路和与其连接的变电所组成,其作用是将电能输 送到各个地区的配电网或直接送给大型企业用户。 (2)配电网:由10KV及以下的配电线路和配电变压器组成,其作用是将电能送给各类用户。一般将3KV、6KV、10KV的电压称为配电电压。 4、电力网的电压等级: 低压:1KV以下;中压:(1-10)KV; 高压:(10-330)KV;超高压:(330-1000)

电能质量主要控制参数

电能质量主要控制参数 电网频率 我国电力系统的标称频率为50Hz ,GB/T15945-2008 电能质量分析仪(3张) 《电能质量电力系统频率偏差》中规定:电力系统正常运行条件下频率偏差限值为±0.2Hz,当系统容量较小时,偏差限值可以放宽到±0.5Hz,标准中没有说明系统容量大小的界限。在《全国供用电规则》中规定"供电局供电频率的允许偏差:电网容量在300万千瓦及以上者为±0.2HZ;电网容量在300万千瓦以下者,为±0.5HZ。实际运行中,从全国各大电力系统运行看都保持在不大于±0.1HZ范围内。 电压偏差 GB/T 12325-2008 《电能质量供电电压偏差》中规定:35kV及以上供电电压正、负偏差绝对值之和不超过标称电压的10%;20kV及以下三相供电电压允许偏差为标称电压的土7%;220V单相供电电压允许偏差为标称电压的+7%,-10%。 三相电压不平衡 GB/T15543-2008《电能质量三相电压不平衡》中规定:电力系统公共连接点电压不平衡度限值为:电网正常运行时,负序电压不平衡度不超过2%,短时不得超过4%;低压系统零序电压限值暂不做规定,但各相电压必须满足GB/T 12325的要求。接于公共连接点的每个用户引起该点负序电压不平衡度允许值一般为1.3%,短时不超过2.6%。 公用电网谐波 GB/T14549--93《电能质量-公用电网谐波》中规定:6~220kV各级公用电网电压(相电压)总谐波畸变率是0.38kV为5.0%,6~10kV为4.0%,35~66kV 为3.0%,110kV为2.0%;用户注入电网的谐波电流允许值应保证各级电网谐波电压在限值范围内,所以国标规定各级电网谐波源产生的电压总谐波畸变率是:0.38kV为2.6% , 6~10kV为2.2%,35~66kV为1.9%,110kV为1.5%。对220kV 电网及其供电的电力用户参照本标准110kV执行。 波动和闪变

电力系统题库

第一章电力系统基本知识 一、单项选择题(每题的备选项中,只有一项最符合题意) 1.电力系统是由(B)、配电和用电组成的整体。 A.输电、变电 B.发电、输电、变电 C.发电、输电 2.电力系统中的输电、变电、(B)三个部分称为电力网。 A.发电 B.配电 C.用电 3.直接将电能送到用户的网络称为(C)。 A.发电网 B.输电网 C.配电网 4.以高压甚至超高压将发电厂、变电所或变电所之间连接起来的送电网络称为(B)。 A.发电网 B.输电网 C.配电网 5.电力生产的特点是(A)、集中性、适用性、先行性。 A.同时性 B.广泛性 C.统一性 6.线损是指电能从发电厂到用户的输送过程中不可避免地发生的(C)损失。 A.电压 B.电流 C.功率和能量 7.在分析用户的负荷率时,选(A)中负荷最高的一个小时的平均负荷作为高峰负荷。 A.一天24小时 B.一个月720小时C一年8760小时 8.对于电力系统来说,峰、谷负荷差越(B),用电越趋于合理。 A.大 B.小 C.稳定 D.不稳定 9.为了分析负荷率,常采用(C)。 A.年平均负荷 B.月平均负荷 C.日平均负荷 10.突然中断供电会造成经济较大损失、社会秩序混乱或在政治上产生较大影响的

负荷属(B)类负荷。 A.一类 B.二类 C.三类 11.高压断路器具有开断正常负荷和(B)的能力。 A.过载 B.过载、短路故障 C.短路故障 12.供电质量指电能质量与(A) A.供电可靠性 B.供电经济性 C.供电服务质量 13.电压质量分为电压允许偏差、三相电压允许不平衡度、(C)、电压允许波动与闪变。 A.频率允许偏差 B.供电可靠性 C.公网谐波 14.10kV三相供电电压允许偏差为额定电压的(A) A.±7% B. ±10% C.+7%-10% 15.当电压上升时,白炽灯的(C)将下降。 A.发光效率 B.光通量 C.寿命 16.当电压过高时,电动机可能(B)。 A.不能起动 B.绝缘老化加快 C.反转 17.我国国标对35~110kV系统规定的电压波动允许值是(B)。 A.1.6% B.2% C.2.5% 18.(B)的电压急剧波动引起灯光闪烁、光通量急剧波动,而造成人眼视觉不舒适的现象,称为闪变。 A.连续性 B.周期性 C.间断性 19.电网谐波的产生,主要在于电力系统中存在(C)。 A.电感和电容元件 B.三相参数不对称 C.非线性元件 20.在并联运行的同一电力系统中,任一瞬间的(B)在全系统都是统一的。 A.电压 B.频率 C.波形

电力系统的基本知识

电力系统的基本知识 1、什么叫电力系统的稳定和振荡?答:电力系统正常运行时,原动机供给发电机的功率总是等于发电机送给系统供负荷消耗的功率,当电力系统受到扰动,使上述功率平衡关系受到破坏时,电力系统应能自动地恢复到原来的运行状态,或者凭借控制设备的作用过度到新的功率平衡状态运行,即谓电力系统稳定。这是电力系统维持稳定运行的能力,是电力系统同步稳定研究的课题。电力系统稳定分为静态稳定和暂态稳定。静态稳定是指电力系统受到微小的扰动后,能自动地恢复到原来运行状态的能力。暂态稳定对应的是电网受到大扰动的情况。系统的各点电压和电流均作往复摆动,系统的任何一点电流与电压之间的相位角都随功角δ的变化而改变、频率下降等我们通常把这种现象叫电力系统振荡。 2、电力系统振荡和短路的区别是什么?答:电力系统振荡和短路的主要区别是:振荡时系统各点电压和电流值均作往复摆动,而短路时电流、电压值是突变的。此外,振荡时电流、电压值的变化速度较慢,而短路时的电流、电压值突变量很大。振荡时系统任何一点电流与电压之间的相位角随功角δ的变化而改变;而短路时,电流与电压之间的相位是基本不变的。振荡时无零序和负序分量,短路时有零序和负序分量。 3、电力系统振荡时,对继电保护装置有那些影响?那些保护装置不受影响?答:电力系统振荡时,对继电保护装置的电流继电器、阻抗继电器有影响。对电流继电器的影响。当保护装置的时限大于1.5-2秒时,就可能躲过振荡不误动作。对阻抗继电器的影响。I↑U↓保护动作,I↓U↑保护返回。距离ⅠⅡ段采用振荡闭锁原理躲开系统振荡,以防止阻抗继电器误动作。原理上不受振荡影响的的保护有相差动保护,和电流差动纵联保护,零序电流保护等。 4、我国电力系统中性点接地有几种方式?它们对继电保护的要求是什么?答:我国电力系统中性点接地有三种方式:①中性点直接接地方式;②中性点经过消弧线圈接地方式;③中性点不接地方式。110KV以上电网的中性点均采用第①种接地方式。在这种系统中,发生单相接地故障时接地短路电流很大,故称大接地电流系统。在大接地系统中,发生单相接地故障的几率较高,可占短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速、

主板常见供电电压分布详解

主板常见供电电压分布详解 12V主要是给CPU供电,通过电压调整模块,调节成1.15-1.75V核心电压,供CPU、Vtt FSB、CPU-I/O。12V除了CPU外,还提供给AGP、PCI、CNRCommunicationNetwork Riser)。其中负电压-12V主要为AC’97、串口以及PCI接口提供。2n5[.['S%t#G-k5H9N6 I 5V被分成了四路,第一路经过VID(VoltageIdentificationDefinition)调整模块调整成1.2V供CPU,主板会根据Pentium4处理器上5根VID引脚的0/1相位来判别这块处理器所需要的VCC电压(也就是我们常说的CPU核心电压)第二路经过2.5V电压调整模块调整成2.5V供内存,并经过二次调整,从2.5V调整到1.5V供北桥核心电压、VccAGP、VccHI。第三路直接给USB设备供电。第四路供给AGP、PCI、CNR供电。;k9k8p'm9i/r7 k(u2b!a$D.m 3.3V主要是为AGP、PCI供电,这两个接口占了3.3V的绝大部分。除此之外,南桥部分的Vcc3_3以及时钟发生器、LPCSuperI/O、FWH即主板BIOS)也是由3.3V供电。. k0L3m5s,T3s6X J)/ 5VSB一直被我们忽视,这一路电压与开关机、唤醒等关联紧密;5VSB在INTEL84 5GE/PE芯片组中至少需要1A的电流,目前绝大部分电源9b%的5VSB都是2A。其中一路调整成2.5V电压供内存;第二路调整成1.5V,在系统挂起时为南桥提供电压;第三路调整成3.3V供南桥5R0~2o0X)N6h

电力系统基础知识

电力系统的基础知识 一、电力系统的构成 一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用。 二.电力网、电力系统和动力系统的划分 电力网:由输电设备、变电设备和配电设备组成的网络。 电力系统:在电力网的基础上加上发电设备。 动力系统:在电力系统的基础上,把发电厂的动力部分(例如火力发电厂的锅炉、汽轮机和水力发电厂的水库、水轮机以及核动力发电厂的反应堆等)包含在内的系统。 三.电力系统运行的特点 一是经济总量大。目前,我国电力行业的资产规模已超过2万多亿,占整个国有资产总量的四分之一,电力生产直接影响着国民经济的健康发展。 二是同时性,电能不能大量存储,各环节组成的统一整体不可分割,过渡过程非常迅速,瞬间生产的电力必须等于瞬间取用的电力,所以电力生产的的发电、输电、配电到用户的每一环节都非常重要。 三是集中性,电力生产是高度集中、统一的,无论多少个发电厂、供电公司,电网必须统一调度、统一管理标准,统一管理办法;安全生产,组织纪律,职业品德等都有严格的要求。 四是适用性,电力行业的服务对象是全方位的,涉及到全社会所有人群,电能质量、电价水平与广大电力用户的利益密切相关。 五是先行性,国民经济发展电力必须先行。 四、电力系统的额定电压 电网电压是有等级的,电网的额定电压等级是根据国民经济发展的需要、技术经济的合理性以及电气设备的制造水平等因素,经全面分析论证,由国家统一制定和颁布的。 我们国家电力系统的电压等级有220/380V、3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。随着标准化的要求越来越高,3 kV、6 kV、20 kV、66 kV也很少使用。供电系统以10 kV、35 kV、为主。输配电系统以110 kV以上为主。发电机过去有6 kV与10 kV两种,现在以10 kV为主,低压用户均是220/380V。 用电设备的额定电压和电网的额定电压一致。实际上,由于电网中有电压损失,致使各点实际电压偏离额定值,为了保证用电设备的良好运行,显然,用电设备应具有比电网电压允许偏差更宽的正常工作电压范围。发电机的额定电压一般比同级电网额定电压要高出5%,用于补偿电网上的电压损失。 变压器的额定电压分为一次和二次绕组。对于一次绕组,当变压器接于电网末端时,性质上等同于电网上的一个负荷(如工厂降压变压器),故其额定电压与电网一致,当变压器接于发电机引出端时(如发电厂升压变压器),则其额定电压应与发电机额定电压相同。对于二次绕组,考虑到变压器承载时自身电压损失(按5%计),变压器二次绕组额定电压应比电网额定电压高5%,当二次侧输电距离较长时,还应考虑到线路电压损失(按5%计),此时,二次绕组额定电压应比电网额定电压高10%。 五、电力系统的中性点运行方式

电能质量培训试题

电能质量培训考核试题 姓名 分数 一、 填空题,每空4分。 1.测量的谐波次数一般为第( )到第( )次,根据谐波源的特点或测试分析结果。可以适当变动谐波次数测量的范围。 2.对于负荷变化快的谐波源例如:炼钢电弧炉,晶闸管变流设备供电的轧机、电力机车等、测量的间隔时间不大于( ) min 晶量次数应满足数理统计的要求一般不少于( )次。 3.谐波测量的数据应取测量时段内各相实测量值的( )%概率值中最大的一相值作为判断谐波是否超过允许值的依据。 4.对负荷变化慢的谐波源可选五个接近的实测值取其 ( )。 5.为了区别暂态现象和谐波对负荷变化快的谐波,每次测量结果可为 ( )s 内所测值的平均值。 6.在测量的频率范围内仪用互感器、电容式分压器等谐波传感设备应有良好的频率特性其引入的幅值误差不应大( )%。相角误差不大于( )。 。在没有确切的频率响应误差特性时,电流互感器和低压电 压互感器用于( )Hz 及以下频率的谐波测量。 7.电网正常运行时,负序电压不平衡度不超过2%,短时不能超过( )%。 8.对于电力系统的公共连接点,供电电压负序不平衡度测量值的10min 方根均值的 ( )%。

9.对于日波动不平衡负荷时间取值:日累计大于()% 的时间不超过()min.且每30min中大于间不超过()min。 二、选择题,每题4分 1.平均额定电压的应用场合为() A.受供电设备 B.线路 C.变压器 D.以上全部 2.电能的质量标准是() A.电压、频率、波形 B.电压、电流、频率 C.电压、电流、波形 D.电压、电流、功率因数 3.国家标准GB12325-2008《电能质量?供电电压允许偏差》规定:10kV 及以下三相供电电压允许偏差为() A.±10% B.±7% C.±5%,+7% D.-10% 4.人们俗称的“地线”实际上是() A.中性线 B.保护线 C.保护中性线 D.相线 5.我们通常以()为界线来划分高压和低压。 A.1000V B.220V C.380V D.1000KV 三、计算题, 20分。 1.已知220V单项供电电压,电压测量值为225V,计算电压偏差,

配电可靠性准则及规定

配电系统可靠性准则及规定 一、电力系统可靠性准则的一般概念 所谓电力系统可靠性准则,就是在电力系统规划、设计或运行中,为使发电和输配电系统达到所要求的可靠度满足的指标、条件或规定,它是电力系统进行可靠性评估所依据的行为原则和标准。 电力系统可靠性准则的应用范围为发电系统、输电系统、发输电合成系统和配电系统的规划、设计、运行和维修工作。 电力系统可靠性准则考虑的因素一般有:①电力系统发、输、变、配设备容量的大小;②承担突然失去设备元件的能力和预想系统故障的能力;③对系统的控制、运行及维护;④系统各元件的可靠运行;⑤用户对供电质量和连续性的要求;⑥能源的充足程度,包括燃料的供应和水库的调度;⑦天气对系统、设备和用户电能需求的影响等。其中①、②、⑥等因素可由规划、设计来控制,其余各因素则反映在生产运行过程之中。 电力系统可靠性准则按其所要求的可靠度获取的方法、考虑的系统状态过程及研究问题的性质不同,有以下几种不同的分类方法: 1.1. 概率性准则和确定性准则 电力系统可靠性准则按其要求的可靠度获取的方法,分为概率性准则和确定性准则。 (1)概率性准则。它是以概率法求得数字或参量来表示提供或规定可靠度的目标水平或不可靠度的上限值,如电力(电量)不足期望值或事故次数期望值。因此,概率性准则又称为指标或参数准则。此类准则又被构成概率性或可靠性评价的基础。 (2)确定性准则。它采取一组系统应能承受的事件如发电或输电系统的某些事故情况为考核条件,采用的考核或检验条件往往选择运行中最严重的情况。考虑的前提是如果电力系统能承受这些情况并保证可靠运行,则在其余较不严重的情况下也能够保证系统的可靠运行。因此,确定性准则又称为性质或性能的检验准则。此类准则是构成确定性偶发事件评价的基础。

最新各国供电电压参数

各国供电电压参数

各国供电电压参数 我国的标准是相电压380伏,线电压220伏,频率50赫之。 日本的标准是相电压190伏,线电压110伏,频率60赫之。 世界各国的用电频率,各国电压等级及频率 阿根廷:电压:220V (单相) ,380V (三相),频率:50Hz 巴西:电压:110/220V(单相) ,380/460V(三相),频率:60Hz 加拿大:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 墨西哥:电压:127/220V (单相) ,220V (三相);频率:60Hz 美国:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 澳大利亚 / 新西兰:电压:240/415V (单相) ,415V (三相);频率:50Hz 香港:电压:120/220V (单相) ,220V (三相);频率:50Hz 印度:电压:230V;频率:50Hz 印尼:电压:230V (单相) ,380V (三相) ;频率:50Hz 日本:电压:100/200V (單相) ,200V (三相);频率:50Hz 韩国:电压:220 (单相) ,380 (三相);频率:60Hz 马来西亚:电压:220-240V;频率:50Hz 菲律宾:电压:220V 频率:60Hz 新加坡:电压:230V (单相) 400V (三相) 频率:50Hz 台湾:电压:110/220V (单相) 220V (三相)频率:60Hz 泰国:电压:220V (单相) 380V (三相)频率:50Hz 越南:电压:120/220V (单相) 220V (三相)频率:50Hz 丹麦:电压:230V (单相) 380V (三相) 频率:50Hz

电压等级及供电距离

电力是以电能作为动力的能源。发明于19世纪70 年代,电力的发明和应用掀起了第二次工业化高潮。成为人类历史18世纪以来,世界发生的三次科技革命之一,从此科技改变了人们的生活。 既是是当今的互联网时代我们仍然对电力有着持续增长的需求,因为我们发明了电脑、家电等更多使用电力的产品。不可否认新技术的不断出现使得电力成为人们的必需品。 20世纪出现的大规模电力系统是人类工程科学史上最重要的成就之一,是由发电、输电、变电、配电和用电等环节组成的电力生产与消费系统。它将自然界的一次能源通过发电动力装置转化成电力,再经输电、变电和配电将电力供应到各用户。 产生的方式:火力发电(煤)、太阳能发电、大容量风力发电技术、核能发电、氢能发电、水利发电等,21世纪能源科学将为人类文明再创辉煌。燃料电池燃料电池是将氢、天然气、煤气、甲醇、肼等燃料的化学能直接转换成电能的一类化学电源。生物质能的高效和清洁利用技术生物质能是以生物质为载体的能量。 输电 electric power transmission 电能的传输,它和变电、配电、用电一起,构成电力系统的整体功能。通过输电,把相距甚远的(可达数千千米)发电厂和负荷中心联系起来,使电能的开发和利用超越地域的限制。和其他能源的传输(如输煤、输油等)相比,输电的损耗小、效益高、灵活方便、易于调控、环境污染少;输电还可以将不同地点的发电厂连接起来,实行峰谷调节。输电是电能利用优越性的重要体现,在现代化社会中,它是重要的能源动脉。 输电线路按结构形式可分为架空输电线路和地下输电线路。前者由线路杆塔、导线、绝缘子等构成,架设在地面上;后者主要用电缆,敷设在地下(或水下)。输电按所送电流性质可分为直流输电和交流输电。19世纪80年代首先成功地实现了直流输电,后因受电压提不高的限制(输电容量大体与输电电压的平方成比例)19世纪末为交流输电所取代。交流输电的成功,迎来了20世纪电气化时代。20世纪60年代以来,由于电力电子技术的发展,直流输电又有新发展,与交流输电相配合,形成交直流混合的电力系统。 输电电压的高低是输电技术发展水平的主要标志。到20世纪90年代,世界各国常用输电电压有220千伏及以下的高压输电330~765千伏的超高压输电,1000千伏及以上的特高压输电。 变电 电力系统中,发电厂将天然的一次能源转变成电能,向远方的电力用户送电,为了减小输电线路上的电能损耗及线路阻抗压降,需要将电压升高;为了满足电力用户安全的需要,又要将电压降低,并分配给各个用户,这就需要能升高和降低电压,并能分配电能的变电所。所以变电所是电力系统中通过其变换电压、接受和分配电能的电工装置,它是联系发电厂和电力用户的中间环节,同时通过变电所将各电压等级的电网联系起来,变电所的作用是变换电压,传输和分配电能。变电所由电力变压器、配电装置、二次系统及必要的附属设备组成。 变压器是变电所的中心设备,变压器利用的是电磁感应原理。 配电装置是变电所中所有的开关电器、载流导体辅助设备连接在一起的装置。其作用是接受和分配电能。配电装置主要由母线、高压断路器开关、电抗器线圈、互感器、电力电容器、避雷器、高压熔断器、二次设备及必要的其他辅助设备所组成。 二次设备是指一次系统状态测量、控制、监察和保护的设备装置。由这些设备构成的回路叫二次回路,总称二次系统。 二次系统的设备包含测量装置、控制装置、继电保护装置、自动控制装置、直流系统及必要的附属设备。 配电

电能质量限值计算汇总

第3章供配电网电能质量限值计算 3.1供配电网电能质量限值的定义 对供配电电网特定供电点的供电指标限值和用电质量指标限值称之为该供电点的电能质量限值。 供配电网电能质量限值不包括设备定型试验时对无条件接入公用低压供电系统的设备的电磁兼容限值(谐波电流发射限值和电压波动和闪烁的限制)。 供配电网供电质量指标限值包括供电电压偏差限值、电力系统频率偏差限值、三相电压不平衡度限值、电压波动和闪变限值、谐波电压限值、间谐波电压限值、电压暂降限值等。 供配电网用电质量指标限值包括负序电流限值、波动负荷产生的电压闪变限值、谐波电流限值、单个用户引起的间谐波电压限值、功率因数限值、有功冲击限值等、。 用电质量恶化是使供电质量变差的主要因素,因此用户对电网电能质量的干扰水平常用用电质量指标衡量。 3.2供配电网电能质量限值计算的必要性 严格地控制用户或电力设备对电网的干扰水平和提高电网供电的电压质量需要较高的电网控制和管理成本,但是可以降低电网损耗,净化电网和电力设备的运行环境,使电网和电力设备更加安全高效运行,降低电力设备的设计制造费用。反之,如果放宽用户或电力设备对电网的干扰和降低电网供电的电压质量则会降低电网控制和管理成本,但是将使电网损耗增大,电网和电力设备运行环境恶化,增加电网和电力设备的运行故障,增大电力设备的设计制造难度和费用。 为了协调维护电力公司、用户和电力设备制造商三者之间的利益,以在整体社会成本最小的条件下,把电能质量控制在允许的范围内,需要一套统一而且完整的电能质量标准。电能质量限值计算实际上就是在相关各方的权利和利益平衡的基础上,按照标准为相关各方提供一个共同的遵守规范,进而在整个社会成本最小的条件下,通过相关各方的合作,在电力公司、电力用户和电力设备三者之间实现最大的兼容。 3.3供配电网电能质量考核 3.3.1公用电网公共连接点的电能质量考核(电网公司内部管理考核) (1)考核点

电能质量限值计算

第3章 供配电网电能质量限值计算 3.1供配电网电能质量限值的定义 对供配电电网特定供电点的供电指标限值和用电质量指标限值称之为该供电点的电能质量限值。 供配电网电能质量限值不包括设备定型试验时对无条件接入公用低压供电系统的设备的电磁兼容限值(谐波电流发射限值和电压波动和闪烁的限制)。 供配电网供电质量指标限值包括供电电压偏差限值、电力系统频率偏差限值、三相电压不平衡度限值、电压波动和闪变限值、谐波电压限值、间谐波电压限值、电压暂降限值等。 供配电网用电质量指标限值包括负序电流限值、波动负荷产生的电压闪变限值、谐波电流限值、单个用户引起的间谐波电压限值、功率因数限值、有功冲击限值等、。 用电质量恶化是使供电质量变差的主要因素,因此用户对电网电能质量的干扰水平常用用电质量指标衡量。 3.2供配电网电能质量限值计算的必要性 严格地控制用户或电力设备对电网的干扰水平和提高电网供电的电压质量需要较高的电网控制和管理成本,但是可以降低电网损耗,净化电网和电力设备的运行环境,使电网和电力设备更加安全高效运行,降低电力设备的设计制造费用。反之,如果放宽用户或电力设备对电网的干扰和降低电网供电的电压质量则会降低电网控制和管理成本,但是将使电网损耗增大,电网和电力设备运行环境恶化,增加电网和电力设备的运行故障,增大电力设备的设计制造难度和费用。 为了协调维护电力公司、用户和电力设备制造商三者之间的利益,以在整体社会成本最小的条件下,把电能质量控制在允许的范围内,需要一套统一而且完整的电能质量标准。电能质量限值计算实际上就是在相关各方的权利和利益平衡的基础上,按照标准为相关各方提供

一个共同的遵守规范,进而在整个社会成本最小的条件下,通过相关各方的合作,在电力公司、电力用户和电力设备三者之间实现最大的兼容。 3.3供配电网电能质量考核 3.3.1公用电网公共连接点的电能质量考核(电网公司内部管理考核) (1)考核点 公用电网公共连接点PCC,如图3.1中的A点。 (2)供电质量考核 考核对象:电网公司; 考核内容 考核PCC的供电电压偏差、电力系统频率偏差、三相电压不平衡度、电压波动和闪变、谐波电压、间谐波电压是否在公用电网电能质量标准规定的限值以内。 (3)用电质量考核 考核对象:电网公司。 考核内容: 考核全部用户注入PCC的负序电流和谐波电流、波动负荷产生的电压波动与闪变是否在公用电网电能质量标准规定的限值以内,考核PCC的功率因数、有功冲击是否在企业标准或相关规定或供用电合同规定的限值以内。 图3.1 电能质量考核点分布图 (4)公用电网电能质量标准 GB/T 14549 电能质量 公用电网谐波; GB/T 12325 电能质量 供电电压偏差; GB/T 15945 电能质量 电力系统频率偏差; GB/T 12326 电能质量 电压波动和闪变;

电能质量供电电压偏差

供电电压偏差 1.基本定义 1.1 系统标称电压用一标志或识别系统电压的给定值。 1.2 供电点供电部门配电系统与用户电气系统的联接点。 1.3 供电电压供电点处的线电压或相电压。 1.4 电压偏差实际运行电压对系统标称电压的偏差相对值以百分数表示 1.5 电压合格率实际运行电压偏差在限值范围内累计运行时间与对应的总运行时间的百分比。 2.电压偏差 根据电工学理论,两电势点之间的电势差称为电压,用U表示,单位为V(伏),分为直流电压与交流电压。电压偏差即为实际供电电压与额定供电电压之间的差值。引起电压偏差的因素有无功功率不足、无功补偿过量、传输距离过长、电力负荷过重和过轻等,其中无功功率不足是造成电压偏差的主要原因。 供电电压偏差是电能质量的一项基本指标。合理确定该偏差对电气设备的制造和运行,对电力系统的安全性和经济性都有重要意义。 2.1 供电电压偏差的限值 35kv及以上供电电压正、负偏差绝对值之和不超过标称电压的10%;注:如供电电压上下偏差同号(均为正或负)时,按较大的偏差绝对值作为衡量标准。 20kv及以下三相供电电压偏差为标称电压的±7%。 220kv单相供电电压偏差为标称电压的+7%,-10%。 对供电点短路容量较小、供电距离较长以及对供电电压有特殊要求的用户,由供、用点双方协议确定。 2.2 供电电压偏差的测量 2.2.1 测量仪器性能的分类 测量仪器性能分两类,分别定义如下: A级性能----用来进行需要精确测量的地方,例如合同的仲裁、解决

争议等。 B 级性能----可以用来进行调查统、排除故障以及其他的不需要较高精确度的应用场合。 注:应该根据每个具体应用场合来选择测量仪器性能的级别。 2.2.2 供电电压偏差的测量方法 获得电压有效值的基本测量时间窗口应为10周波,并且每个测量时间窗口应该与紧邻的测量时间窗口接近而不重叠,连续测量并计算电压有效值的平均值,最终计算获得供电电压偏差值,计算如下: 电压偏差(%)=系统标称电压 系统标称电压—电压测量值×100% 对A 级性能电压监测仪,可以根据具体情况选择四个不同类型的时间长度计算供电电压偏差:3s 、1min 、10min 、2h 。对B 级性能电压监测仪制造商应该表明测量时间窗口、计算供电电压偏差的时间长度。时间长度推荐采用1min 或10min 。 2.2.3 仪器准确度 A 级性能电压检测仪的测量误差不应超过±0.2%; B 级性能一起的测量误差不应该超过±0.5% 2.2.4 电压合格率统计 被监测的供电点称为监测点,通过供电电压偏差的统计计算获得电压合格率。供电电压偏差监测统计的时间单位为min ,通常每次以月(或周、季、年)的时间为电压监测的总时间,供电电压偏差超限的时间累计之和为电压超限时间,监测点电压合格率计算公式如下: %100-1%?=)总运行统计时间 电压超限时间()电压合格率( 2.2.5 电网电压检测 电网电压监测分为A 、B 、C 、D 四类监测点: (1)A 类为带地区供电负荷的变电站和发电厂的20kV 、10(6)kV 母线电压。 (2)B 类为20 kV 、35 kV 、66 kV 专线供电的和110 kV 及以上

电力系统的基本知识 答案

10 标出图1-10 中发电机和变压器的额定电压。 自测题(一)---- 电力系统的基本知识 一、单项选择题(下面每个小题的四个选项中,只有一个是正确的,请你在答题区填入正确答案的序号,每小题2.5分,共50分) 1、对电力系统的基本要求是(A)。 A、保证对用户的供电可靠性和电能质量,提高电力系统运行的经济性,减少对环境的不良影响; B、保证对用户的供电可靠性和电能质量; C、保证对用户的供电可靠性,提高系统运行的经济性; D、保证对用户的供电可靠性。 2、停电有可能导致人员伤亡或主要生产设备损坏的用户的用电设备属于(A)。 A、一级负荷; B、二级负荷; C、三级负荷; D、特级负荷。 3、对于供电可靠性,下述说法中正确的是(D)。 A、所有负荷都应当做到在任何情况下不中断供电; B、一级和二级负荷应当在任何情况下不中断供电; C、除一级负荷不允许中断供电外,其它负荷随时可以中断供电; D、一级负荷在任何情况下都不允许中断供电、二级负荷应尽可能不停电、三级负荷可以根据系统运行情况随时停电。 4、衡量电能质量的技术指标是(B)。 A、电压偏移、频率偏移、网损率; B、电压偏移、频率偏移、电压畸变率; C、厂用电率、燃料消耗率、网损率; D、厂用电率、网损率、电压畸变率 5、用于电能远距离输送的线路称为(C)。 A、配电线路; B、直配线路; C、输电线路; D、输配电线路。

6、关于变压器,下述说法中错误的是(B) A、对电压进行变化,升高电压满足大容量远距离输电的需要,降低电压满足用电的需求; B、变压器不仅可以对电压大小进行变换,也可以对功率大小进行变换; C、当变压器原边绕组与发电机直接相连时(发电厂升压变压器的低压绕组),变压器原边绕组的额定电压应与发电机额定电压相同; D、变压器的副边绕组额定电压一般应为用电设备额定电压的1.1倍。 7、衡量电力系统运行经济性的主要指标是(A)。 A、燃料消耗率、厂用电率、网损率; B、燃料消耗率、建设投资、网损率; C、网损率、建设投资、电压畸变率; D、网损率、占地面积、建设投资。 8、关于联合电力系统,下述说法中错误的是(D)。 A、联合电力系统可以更好地合理利用能源; B、在满足负荷要求的情况下,联合电力系统的装机容量可以减少; C、联合电力系统可以提高供电可靠性和电能质量; D、联合电力系统不利于装设效率较高的大容量机组。 9、我国目前电力系统的最高电压等级是(D)。 A、交流500kv,直流; B、交流750kv,直流; C、交流500kv,直流;; D、交流1000kv,直流500 kv 。 10、用于连接220kv和110kv两个电压等级的降压变压器,其两侧绕组的额定电压应为(D)。 A、220kv、110kv; B、220kv、115kv; C、242Kv、121Kv; D、220kv、121kv。 11、对于一级负荷比例比较大的电力用户,应采用的电力系统接线方式为(B)。 A、单电源双回路放射式; B、双电源供电方式; C、单回路放射式接线; D、单回路放射式或单电源双回路放射式。 12、关于单电源环形供电网络,下述说法中正确的是(C)。 A、供电可靠性差、正常运行方式下电压质量好; B、供电可靠性高、正常运行及线路检修(开环运行)情况下都有好的电压质量; C、供电可靠性高、正常运行情况下具有较好的电压质量,但在线路检修时可能出现电压质量较差的情况; D、供电可靠性高,但电压质量较差。 13、关于各种电压等级在输配电网络中的应用,下述说法中错误的是(D)。 A、交流500kv通常用于区域电力系统的输电网络; B、交流220kv通常用于地方电力系统的输电网络; C、交流35kv及以下电压等级通常用于配电网络;

电力系统基础知识

1、电力系统基础知识 ●电力系统的构成 ●电力系统的额定电压 ●电力系统的中性点运行方式●供电质量的主要指标 ●电气主接线方式

电力系统的构成 一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用。 图1-1 电力系统的组成示意图

电力系统的额定电压 电网电压是有等级的,电网的额定电压等级是根据国民经济发展的需要、技术经济的合理性以及电气设备的制造水平等因素,经全面分析论证,由国家统一制定和颁布的。 1.用电设备 用电设备的额定电压和电网的额定电压一致。实际上,由于电网中有电压损失,致使各点实际电压偏离额定值。为了保证用电设备的良好运行,国家对各级电网电压的偏差均有严格规定。显然,用电设备应具有比电网电压允许偏差更宽的正常工作电压范围。 2.发电机 发电机的额定电压一般比同级电网额定电压高出5%,用于补偿电网上的电压损失。3.变压器 变压器的额定电压分为一次和二次绕组。对于一次绕组,当变压器接于电网末端时,性质上等同于电网上的一个负荷(如工厂降压变压器),故其额定电压与电网一致,当变压器接于发电机引出端时(如发电厂升压变压器),则其额定电压应与发电机额定电压相同。对于二次绕组,额定电压是指空载电压,考虑到变压器承载时自身电压损失(按5%计),变压器二次绕组额定电压应比电网额定电压高5%,当二次侧输电距离较长时,还应考虑到线路电压损失(按5%计),此时,二次绕组额定电压应比电网额定电压高10%。

电力系统的中性点运行方式 在电力系统中,当变压器或发电机的三相绕组为星形联结时,其中性点可有两种运行方式:中性点接地和中性点不接地。中性点直接接地系统称为大电流接地系统,中性点不接地和中性点经消弧线圈(或电阻)接地的系统称为小电流接地系统。中性点的运行方式主要取决于单相接地时电气设备绝缘要求及供电可靠性。图1-2列出了常用的中性点运行方式。图中,电容C为输电线路对地分布电容。 图1-2 电力系统中性点运行方式 a)中性点直接接地b)中性点不接地 c)中性点经消弧线圈接地d)中性点经电阻接地 中性点直接接地方式:当发生一相对地绝缘破坏时,即构成单相短路,供电中断,可靠性降低。但是,该方式下非故障相对地电压不变,电气设备绝缘水平可按相电压考虑。此外,在380/220V低压供电系统中,线对地电压为相电压,可接入单相负荷。 中性点不接地方式:当发生单相接地故障时,线电压不变,而非故障相对地电压升高到原来相电压的√3倍,供电不中断,可靠性高。

2010电力考试题

2010年考题 ▲判断题: 1、电流对人体危害的程度只与通过人体的电流强度有关,而与通过人体的持续时间、频率、途径以及人体的健康状况等因素无关。 2、中性点不接地的电力系统主要应用于220kV以上的电网。 3、在中性点接地的三相四线制低压系统中,可以将一部分电气设备的金属外壳采用保护接地,而将另一部分电气设备的金属外壳保护接零。 4、零线在短路电流作用下不应断线,零线上不得装设熔断器和开关设备。 5、停电拉闸操作必须按照断路器(开关)→负荷侧隔离开关(刀闸)→母线侧隔离开关(刀闸)的顺序依次操作,送电合闸操作应按上述相反的顺序进行。 6、当电气设备发生接地故障,若人在接地短路点周围,此时人应当快步跑出电位分布区。 7、谐波对供电系统无功计量装置的正确性没有影响。 8、与停电设备有关的电压互感器,只须从高压侧断开即可。 9、直流电动机与同一容量的三相异步电动机相比效率低。 10、企业变配电所的位置应接近负荷中心,减少变压级数,缩短供电半径,按经济电流密度选择导线截面。 11、在一经合闸即可送电到工作地点的断路器隔离开关的操作手柄上,应悬挂“止步,高压危险!”标志牌。 12、对地电压在380V及以下的电气设备,称为低压电气设备。 13、电网分析中的单相计算所采用的线路参数就是指只存在A相输电导线时的元件等值参数。 14、电力网包括发电机、变压器、线路等,电力系统包括电力网以及各种用电设备。 15、节点导纳矩阵的对角线元素与该行其他元素相加的总和为零。 16、最大运行方式就是能够提供最大出力的运行状态。 17、输电线路导线换相的目的是为了保持三相对称性。

18、电磁环网有利于提高电力系统运行的经济性。 19、潮流计算中,牛顿法比快速接耦潮流精度高。 20、闭环式电力网潮流计算是非线性问题,开式电力网潮流计算是线性电路问题,因此开式电网潮流计算更简单。 21、电力系统静态稳定性指的是在系统中频率或者电压会越限,或没有可行的潮流解。 22、静态安全分析研究电力系统静态稳定性,动态安全分析研究电力系统动态稳定和暂态稳定性的问题。 23、稳态短路电流值和短路开始瞬间的短路电流值都可以通过同一种短路电流计算方法求取,两种计算的不同点在于发电机需要选用不同的模型和参数值。 24、发电机发出的有功出力要受到原动机出力的限制,无功功率要受励磁电流的限制。 25、在合理的运行方式下,线路上有功功率的传输主要由线路两端的电压相角差确定。 26、当用户端电压下降比较大时,在给用户供电的变压器出口处改变电压分接头是提高电压的唯一有效手段。 27、长距离输电线受电端电压一定会比供电端低一些。 28、电力系统正常运行时零序电流为0,当电力系统发生不对称故障时,就会出现零序电流。 29、当电力系统发生不对称故障时,一定会出现负序电流,但不一定存在零序电流。 30、中性点加装消弧线圈的系统出现单相接地故障时,故障所在的线路会因通过的单相短路电流过大使继电保护动作。 ▲单项选择题: 31、10KV及以下三相供电电压允许偏差为额定电压的___________。 A、10% B、+7%, -10% C、+-7% D、+-5% 32、10KV以下公共供电点,由冲击性功率负荷产生的电压波动允许值为____。 A、2.5% B、2% C、1.5% D、1.0%

供电质量的指标释义及标准

供电质量的指标释义及标准 供电质量包括电能质量和供电可靠性两个内容。 1 电能质量 电能质量是表征电能品质的优劣程度。通常以供用电双方供电设备产权分界点的电能质量作为评价的依据。电能质量包括电压质量与频率质量两部分。电压质量又可分为幅值与波形质量两方面。通常以电压偏差、电压波动与闪变、电压正弦波畸变率、负序电压系数(三相电压不平衡度)、频率偏差等项指标来衡量。 (1)电压偏差: 在某一时段内,电压幅值缓慢变化而偏离额定值的程度,以电压实际值与额定值之差ΔU或其百分值ΔU%来表示,即: 或△U%=(U-U e )/U e ×100% 式中U--检测点上电压实测值,V U e --检测点电网电压的额定值,V 供电电压允许偏差限值见表1。 (2)电压波动和闪变: 在某一时段内,电压急剧变化而偏离额定值的现象,称为电压波动。电压变化的速率大于1%/s的,即为电压急剧变化。电压波动程度以电压在急剧变化过程中,相继出现的电压最大值与最小值之差或其百分比来表示,即: 式中U e --额定电压,V U max 、U min --某一时段内电压波动的最大值与最小值,V 周期性电压急剧变化引起电光源光通量急剧波动而造成人眼视觉不舒适的 现象,称为闪变。通常用引起闪变刺激性程度的电压波动值--闪变电压限值ΔU v 或电压调幅波中不同频率的正弦分量的均方根值,等效为10Hz值的1min平均值 --等效闪变值ΔU 10 来表示。电力系统供电点由冲击功率产生的闪变电压应小于ΔU10或ΔU t的允许值,否则将会出现闪变。 电压波动与闪变限值见表1。 (3)电压正弦波畸变率: 在理想状况下,电压波形应是正弦波,但由于电力系统中存在有大量非线性阻抗特性的供用电设备,这些设备向公用电网注入谐波电流或在公用电网中产生谐波电压,称为谐波源。谐波源使得实际的电压波形偏离正弦波,这种现象称为电压正弦波形畸变。通常以谐波来表征。电压波形畸变的程度用电压正弦波畸变

浅析配电网台区电压偏差问题及解决方法

浅析配电网台区电压偏差问题及解决方法 发表时间:2018-12-25T11:04:25.153Z 来源:《基层建设》2018年第32期作者:李昭茂 [导读] 摘要:在现代社会的发展过程中,供电行业的地位和作用越来越重要,供电的安全性和通畅度影响着人们的生活质量和水平。 广东中誉设计院有限公司佛山电力分公司 528200 摘要:在现代社会的发展过程中,供电行业的地位和作用越来越重要,供电的安全性和通畅度影响着人们的生活质量和水平。随着人们对电力的需求越来越高,在城镇乡村中各种供电网络呈现复杂化和多样化,使得供电行业面临着巨大的挑战。尤其是大规模的城乡电网改造中不合理的电网结构大量存在,导致配电网的电压超标,最终使得配电网台区经常出现电压偏差问题。本文通过电压偏差问题及影响进行深入地分析,找到其中存在的不足,提出具有针对性的解决方法,促进我国供电行业的长远发展。 关键词:配电网;台区;电压偏差;问题;解决方法 引言 配电网电压质量主要包括:电压不平衡量、电压频率偏差、谐波电压、电压偏差等多个方面,其偏差故障不仅与用户的用电负荷相关, 配电网络的输电量、传输距离、导线性状等都会影响电网的运行,进而导致台区电压偏差。电压偏差问题一旦出现,极有可能带来一系列的用电故障,危害用户的用电安全。 1、电压偏差的危害 由于现代化建设的推进,各企业的电气化程度不断提高,电压偏差对人们工作生活的危害也就越来越明显:(1)降低照明设备的使用效果及其发光效率,影响电力装置的力矩出力,降低设备转速、引起电机异常发热、导致生产效率的下降以及产品质量的降低。(2)干扰家电正常工作,例如冰箱、空调、电视等的正常使用,降低使用寿命,甚至造成计算机等电子设备工作不正常。(3)降低企业生产设备的运行效率,增大电力受损程度,降低生产稳定性。(4)造成变压器内部线路大量发热,产生极大消耗,降低并联电容器的有效运行寿命。这些危害会对电力系统配电网络的运行以及用电安全造成消极的负面影响。 2、配电网台区电压偏差问题分析 2.1配电线路供电半径过大 受资金限制,电网规划时未能严格执行“小容量、多布点”的原则,但是,实际的电网规划却未能按照这个原则建设,变电站分布点较少,再加上变压器受到容量的限制,导致配电网线路供电半径过大,线路末端电压产生的损耗也在逐渐增加。同时在农网改造时低压导线截面选择过小。随着供电负荷的增大,线路截面已不能满足载流量的要求,导致用户电压在负荷高峰期无法满足需要,从而造成配电网台区电压偏差的问题出现,甚至引发配电网线路故障。 2.2台区三相负荷不平衡 低压供电系统用户多为单相、三相负荷混合供电,由于负荷大小不同和用电时间的差异,出现三相电流不平衡且难以根本消除。配变三相不平衡,使台区相电压出现偏移,重负荷所在相电压偏低,轻负荷所在相电压偏高。 2.3低压无功补偿配置的不足 随着社会经济的不断发展,人们生活水平的不断提高,用户的家用电器数量也在逐渐的增加,这无疑给供电系统带来的一定的压力,用电负荷的迅速增加,使得电力系统出现低压无功补偿配置不足的现象,而产生的电压损耗也将会引发配电台区电压偏差的问题。 2.4配变档位设置不合理 配变档位主要是对配电网实际的运行情况进行相应的调整,是提高配电网运行质量的关键。由于配电运维工作管理不到位,大部分配变分接头始终位于中间档位,没有根据配变在电网中所处位置和季节性负荷变化及时对变压器档位进行调整,用电负荷达不到低压客户端的电压标准,不仅对用户的用电产生一定的影响,甚至产生配电网台区电压偏差的问题,严重影响到配电网的运行质量。 3配电网台区电压偏差的影响 3.1对家用电器使用产生影响 由于电压偏差,白炽灯等照明装置的功率流量、发光效率以及寿命等都有很大的影响。如果供电电压偏差过大,会导致用户的家用电器无法正常工作,甚至出现烧毁现象。 3.2影响电动机的正常运行 电动机在运行的过程中会产生电流、功率流量、功率因数等,而配电网中的电压偏差会影响到电动机的正常运行,甚至缩短电动机的寿命。当电压下降时,超出了临界点就会很难启动电动机,甚至因为堵转而导致电动机烧毁;当电压高于临界点时,会使得电动机运作过热,缩短机器的使用寿命。 3.3对配电变压器的使用寿命和使用效率产生影响 若变压器的电压高于额定值,铁芯的饱和程度增加,使电压和磁通的波形发生严重的畸变,且使变压器的空载电流大增,损耗加大,同时使绝缘降低;而当变压器的电压过低时,将使变压器容量不能充分利用。 3.4 对线路和电容器具有一定的影响 电压偏差会影响到电容器的功率流量、使用寿命等,当电压过高时,电容器会因为保护程序而退出运行,对配电网的正常运行造成较大的影响。 4、配电网台区电压偏差问题的解决方法 4.1完善电网规划工作 通过以上对配电网台区电压偏差问题的分析得知,电网在规划中缺乏合理性会导致偏差的问题的发展,对此,应加强电网规划工作。首先,应严格按照小容量、多布点的规划原则进行,当然,在规划的过程中,要结合配网台区的负荷分布情况进行分析,结合实际的情况进行规划,同时还应了解用户的实际用电情况,便于用电规划工作的顺利开展。其次要对供电半径较大的区域进行有效的规划,可以根据配网的实际运行情况,对供电半径过大的线路进行拆分布点,将各个拆分点处设立相应配电网台区,这样可以有效的缩短供电半径,确保配电网线路未端电压负荷损耗在规定范围之内,进一步保障配电网供电能够满足供电客户的用电需求,从而有效的提升配电网台区供电的

相关文档
最新文档