初中数学竞赛:如何做几何证明题

初中数学竞赛:如何做几何证明题
初中数学竞赛:如何做几何证明题

初中数学竞赛:如何做几何证明题

【知识精读】

1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;

(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】

1、证明线段相等或角相等

两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1

求证:DE=DF

分析:由?ABC

=

连结CD,易得CD AD

证明:连结CD

AC BC A B

ACB AD DB

CD BD AD DCB B A AE CF A DCB AD CD

=∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,,

∴?∴=??ADE CDF

DE DF

说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。

AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF

BE DF

===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中,

BE DF B D BC DA BCE DAF SAS E F

=∠=∠=???

?

?∴?∴∠=∠??()

说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意:

(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。

2、证明直线平行或垂直

在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”

∴=∠∠ABH NBH 又BH ⊥AH

∴==?∠∠AHB NHB 90 BH =BH

∴?∴==??ABH NBH ASA BA BN AH HN

(),

同理,CA =CM ,AK =KM ∴KH 是?AMN 的中位线

∴KH MN // 即KH//BC 说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。

例4. 已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =?==90。 求证:FD ⊥ED

证明一:连结AD

AB AC BD BAC BD AD

B DAB DAE

=∴+==?∴=∴==,∠∠∠∠∠∠129090 在?ADE 和?BDF 中,

AE BF B DAE AD BD ADE BDF

FD ED

===∴?∴∠=∠∴∠+∠=?∴⊥,∠∠,??31

3290

说明:

辅助线。

证明二:如图5 BD DC

BDM BDM CDE CE BM C CBM BM AC

A ABM A

AB AC BF AE AF CE BM

=∠=∠∴?∴=∠=∠∴∠=?

∴∠=?=∠==∴==,,??//9090

∴?∴==∴⊥??AEF BFM FE FM DM DE FD ED

说明:证明两直线垂直的方法如下:

(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。

(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。 (3)证明二直线的夹角等于90°。

3、证明一线段和的问题

(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)

例5. 已知:如图6所示在?ABC 中,∠=?B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相

?,知

,得: 证明:在AC 上截取AF =AE

()

∠=∠=∴?∴∠=∠BAD CAD AO AO

AEO AFO SAS ,??42

又∠=?B 60

∴∠+∠=?∴∠=?

∴∠+∠=?∴∠=∠=∠=∠=?∴?∴=566016023120123460??FOC DOC AAS FC DC

()

即AC AE CD =+

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

初中数学竞赛第二轮专题复习(4)几何

初中数学竞赛第二轮专题复习(4) 几何 1、如图,D ,E 分别为?AB C的边AB ,AC 上的点,且不与?A BC 的顶点重合.已知AE 的长为m,AC 的长为n,A D,AB的长是关于x 的方程2140x x mn -+=的两个根. (Ⅰ)证明:C ,B,D,E 四点共圆; (Ⅱ)若∠A=90°,且m=4, n=6,求C,B ,D,E 所在圆的半径. 解:(Ⅰ)连接DE,根据题意在△ADE 和△ACB 中,A D×A B=mn=A E×A C,即AD AE AC AB =. 又∠DAE=∠CAB ,从而△ADE ∽△ACB 因此∠AD E=∠A CB ,所以C , B, D, E 四点共圆. (Ⅱ)m=4, n =6时,方程x2-14x +mn=0的两根为x1=2,x 2=12. 故AD =2,AB =12. 取CE 的中点G ,DB 的中点F,分别过G,F 作AC ,AB 的垂线,两垂线相交于H点,连接DH . 因为C , B , D, E 四点共圆,所以C, B , D, E 四点所在圆的圆 心为H,半径为DH. 由于∠A=90°,故GH∥AB,H F∥AC .H F=AG=5,D F=12 (12-2)=5. 故C,B,D,E四点所在圆的半径为 . 2、在等腰?AB C中,顶角∠AC B=80°,过A , B引两直线在?ABC 内交于一点O.若∠O AB=10°, ∠OBA=20°,求∠ACO 的大小,并证明你的结论. 解:60ACO ∠=?(4分) 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '',由10OAB ∠=?知20BAB '∠=?且AB AB '=,ABB '为等 腰三角形,故80AB B ACB '∠=?=∠,从而知,,,A B B C '四点共圆,再由20ABO ∠=?知60OBB '∠=?,BB O '?为 等边三角形.由四点共圆知100ACB '∠=?,又 30OBC B BC '∠=∠=?,OB B B '=,BC 公共,故OBC B BC '???. 再由100ACB '∠=?,80ACB ∠=?,故20OCB ∠=?,从而得证:60ACO ∠=?. 答题要点:60ACO ∠=? 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '' ①OBB '?为正三角形;

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

中考数学几何证明压轴题之令狐文艳创作

北京优学教育中考专题训练 令狐文艳 1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC , DE=BF ,试判断△ECF 的形状,并证明你的结论; (3) 在(2)的条件下,当 BE :CE=1: 2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交 于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3FE 的延长线与AB 的延长线相交于点线与GF 的延长线相交于点N E B F C D A

4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若sin ∠BAD =35 ,求CD 的长; (2)若∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留π)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=3 1∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在 与 C A B D O E

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

七年级几何证明压轴题

一、选择 1.如图,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50°B.65°C.70°D.75° 2.下列判断错误的是( ) A.一条线段有无数条垂线; B.过线段AB 中点有且只有一条直线与线段AB 垂直; C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直; D.若两条直线相交,则它们互相垂直. 3.下列判断正确的是( ) A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离; B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离; C.画出已知直线外一点到已知直线的距离; D.连接直线外一点与直线上各点的所有线段中垂线段最短. 二、压轴题 1.(11分)如图12-1,点O 是线段AD 上的一点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . (1)求∠AEB 的大小; (2)如图12-2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小. 2.(本题9分)如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点, PE ⊥AD 交直线BC 于点E. ⑴若∠B=35°,∠ACB=85°,求∠E 的度数; ⑵当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系.写出结论无需证明. 3如图1,△ABC 的边BC 直线l 上,AC ⊥BC ,且AC=BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且 EF=FP . O 图 12-1 A 图12-2 P E D C B A

中考数学超好几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状, 并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于 G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中 点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM , FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在与地 面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60. E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

2020年中考数学压轴题精讲:几何证明及几何计算

2020年中考数学压轴题精讲:几何证明及几何计算例题1:如图1,在△ABC中,BC>AC,∠ACB=90°,点D在AB边上,DE⊥AC于点E. (1)若 1 3 AD DB =,AE=2,求EC的长; (2)设点F在线段EC上,点G在射线CB上,以F、C、G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高还是中线?或两者都有可能?请说明理由. 图1 满分解答 (1)由∠ACB=90°,DE⊥AC,得DE//BC. 所以 1 3 AE AD EC DB ==.所以 21 3 EC =.解得EC=6. (2)△CFG与△EDC都是直角三角形,有一个锐角相等,分两种情况: ①如图2,当∠1=∠2时,由于∠2与∠3互余,所以∠2与∠3也互余. 因此∠CPF=90°.所以CP是△CFG的高. ②如图3,当∠1=∠3时,PF=PC. 又因为∠1与∠4互余,∠3与∠2互余,所以∠4=∠2.所以PC=PG. 所以PF=PC=PG.所以CP是△CFG的中线. 综合①、②,当CD是∠ACB的平分线时,CP既是△CFG的高,也是中线(如图4). 图2 图3 图4 例题2:如图1,正六边形ABCDEF的边长为a,P是BC边上的一动点,过P作PM//AB 交AF于M,作PN//CD交DE于N. (1)①∠MPN=_______°; ②求证:PM+PN=3a; (2)如图2,点O是AD的中点,联结OM、ON.求证:OM=ON. (3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊的四边形,并说明理由.

图1 图2 图3 满分解答 (1)①∠MPN=60°. ②如图4,延长F A、ED交直线B C与M′、N′,那么△ABM′、△MPM′、△DCN′、 △EPN′都是等边三角形. 所以PM+PN=M′N′=M′B+BC+CN′=3a. 图4 图5 图6 (2)如图5,联结OP. 由(1)知,AM=BP,DN=CP. 由AM=BP,∠OAM=∠OBP=60°,OA=OB, 得△AOM≌△BOP.所以OM=OP. 同理△COP≌△DON,得ON=OP. 所以OM=ON. (3)四边形OMGN是菱形.说理如下: 由(2)知,∠AOM=∠BOP,∠DON=∠COP(如图5). 所以∠AOM+∠DON=∠BOP+∠COP=60°.所以∠MON=120°. 如图6,当OG平分∠MON时,∠MOG=∠NOG=60°. 又因为∠AOF=∠FOE=∠EOD=60°,于是可得∠AOM=∠FOG=∠EON. 于是可得△AOM≌△FOG≌△EON. 所以OM=OG=ON. 所以△MOG与△NOG是两个全等的等边三角形. 所以四边形OMGN的四条边都相等,四边形OMGN是菱形. 例题3:已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3). (1)求此二次函数的解析式; (2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形. ①求正方形的ABCD的面积;

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

几何证明压轴题选.doc

儿何体精选 1、如图,在梯形ABCD 中,AB〃CD, ZBCD=90°,且AB=1, BC=2, tanZADC=2. (1)求证:DC=BC; (2)E是梯形内一点,F是梯形外一点,旦NEDC=NFBC, DE=BF,试判断Z\ECF的形 状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2, ZBEC=135° 时,求sinZBFE 的值. [解析](1)过A作DC的垂线AM交DC于M, 则AM=BC=2. 2 又tanZADC=2,所以DM =- = 1.即DC=BC. 2 (2)等腰三角形. 证明:因为DE = DF,』EDC = ZFBC, DC = BC . 所以,ADEC竺ZXBFC 所以,CE = CF,ZECD = ZBCF. 所以,ZECF =』BCF + ZBCE = ZECD + ZBCE = ZBCD = 90°即AECF是等腰直角三角形. (3)设BE = k,则CE = CF = 2k,所以EF = 2&. 因为为BEC = 135。, XZCEF= 45°,所以ZBEF = 90°. 所以BF =+(2gkV = 3k k 1 所以sinZBFE = —=-. 3k 3 2、已知:如图,在OABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG〃DB 交CB的延长线于G. (1)求证:AADE^ACBF; (2)若四边形BEDF是菱形,则四边形AGBD是什 么特殊四边形?并证明你的结论. [解析](1)..?四边形ABCD是平行四边形, .\Z1 = ZC, AD=CB, AB=CD . ?.?点E、F分别是AB、CD的中点, 1 1 ?.?AE=-AB , CF=-CD . 2 2 ???AE=CF

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

初中数学竞赛几何证明题综合训练

几何证明题综合训练 1. 线段或角相等的证明 (1) 利用全等△或相似多边形; (2) 利用等腰△; (3) 利用平行四边形; (4) 利用等量代换; (5) 利用平行线的性质或利用比例关系 (6) 利用圆中的等量关系等。 2. 线段或角的和差倍分的证明 (1) 转化为相等问题。如要证明a=b±c ,可以先作出线段p=b±c ,再去证明a=p , 即所谓“截长补短”,角的问题仿此进行。 (2) 直接用已知的定理。例如:中位线定理,Rt △斜边上的中线等于斜边的一半; △的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。 3. 两线平行与垂直的证明 (1) 利用两线平行与垂直的判定定理。 (2) 利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。 (3) 利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。 【竞赛例题剖析】 【例1】从⊙O 外一点P 向圆引两条切线PA 、PB 和割线PCD 。从A 点作弦AE 平行于CD ,连结BE 交CD 于F 。求证:BE 平分CD 。 【分析1】构造两个全等△。 连结ED 、AC 、AF 。 CF=DF ←△ACF ≌△EDF ← ←? ?? ?? ?????←←∠=∠∠=∠=∠←∠=∠←??? ∠=∠=四点共圆、、、P B F A ABP AFC ABP AEF EFD EFD AFC CD //AE EDF ACF ED AC ←∠PAB=∠AEB=∠PFB 【分析2】利用圆中的等量关系。连结OF 、?? ?? ?=∠←=∠←=、、、P B F O 90 OBP 90OFP DF CF 0 ←∠PFB=∠POB ← ←? ??←∠=∠←∠=∠是切线、PB PA AEB POB CD //AE AEB PFB

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

高中的数学竞赛平面几何基本定理

(高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边 和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:2 22222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC = BC ·DC ·BD . 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角. 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其 延长线必平分对边. 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题 成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角 形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三

2018-2019初中数学竞赛专题复习 极限几何100题

1. 如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是 BC 边的中点,EF ⊥AD 于点 F ,CG ⊥AD 于点 G , 3 若 tan ∠CAD= 4 ,AB =20,则线段 EF 的长为 C F 2. 如图,在△ABC 中,tan ∠ACB=3,点D 、E 在 BC 边上,∠DAE = 1 ∠BAC ,∠ACB =∠DAE +∠B ,点 2 F 在线段 AE 的延长线上,AF =AD ,若 CD =4,CF =2,则 AC 边的长为 3. 如图,在△ABC 中,∠A=30°,点 D 、E 分别在 AB 、AC 边上,BD=CE=BC ,点 F 在 BC 边上,DF 与 BE 1 交于点 G 。若 BG=1,∠BDF= 2 ∠ACB ,则线段 EG 的长为

4. 如图,在△ABC 中,∠A =60°,角平分线 BD 、CE 交于点 F ,若 BC =3CD ,BF =2,则 BC 边的长为 E B 5. 如图,在△ABC 中,AB =AC ,∠ACD =45°,点 E 在射线 BD 上,AE//CD ,AE =DE ,若 BD =1,CD = 5,则 AE 的长为 6. 如图,△ABC 中,∠AB =90°,CD 是 AB 边上的中线,点 F 在线段 AD 上,点 F 在 CD 延长线上,AE = DF ,连接 CE 、BF ,若∠AEC =∠DFB ,AC = 2 3 ,DF = 1,则线段 CE 的长为 A B 7. 如图,在等边△ABC 中,D 为 AB 边上一点,连接 CD ,在 CD 上取一点E ,连接BE ,∠BED =60°,若 3

高中数学竞赛平面几何定理证明大全

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成 一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。

如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF =FD=FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。 看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。 △PFE也是一个等腰三角形,这是因为△PDF≌△PDE,(PD是公用边,∠DPF=∠DPE,∠PDF=∠PDE=30°),所以PF=PE。等腰三角形△PFE的顶角大小为: ∠FPE=π-2/3(∠ABC+∠ACB)=π-2/3(π-∠BAC)=π/3+2/3∠BAC (1) ∠BFD=∠PDF+∠DPF=π/6+1/2∠FPE=π/6+π/6+1/3∠BAC=π/3+1/3∠BAC (2) ∠GFE=2π-∠EFD-2∠BFD=2π-π/3-2π/3-2∠BAC/3=π-2/3∠BAC (3) 最后得到:∠FGE=∠FEG=1/2(π-∠GFE)=1/3∠BAC...(4)同理可证:∠FHE=∠HFE=1/3∠BAC (5) 至此可知G,H,E,F,A五点共圓。 因GF=FE=EH,所以∠GAF=∠FAE=∠EAH=1/3∠BAC (6) 即AE和AF恰好是∠BAC的三等分线,所以△DEF是莫利三角形。 AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、N,求证:MS=NS。

相关文档
最新文档