导数与微分在物理中的应用

导数与微分在物理中的应用
导数与微分在物理中的应用

导数与微分在高三物理复习中的应用

湖北宜昌市田家炳中学 443001 齐克军

高中数学新教材已将“导数与微分”作为高三数学教学内容,这一改革对物理教师来说,是一件如鱼儿得水的快事!在高三物理复习中,恰当运用导数与微分这一数学工具,可以简化分析过程,提升思维层次,深化对物理问题的理解;同时,可以让学生深刻体念数学在物理中的价值,培养学生善于运用数学知识解决物理问题的能力.笔者结合近几年高三复习备考的尝试,谈谈导数与微分在高三物理复习中的应用.

一、理解物理概念.

瞬时速度是一个不好理解的概念,高一物理教材在“怎样理解瞬时速度”的阅读材料中举例:汽车经过A 点时,从A 点起取足够小的位移或足够短的时间,所得的平均速度就等于汽车经过A 点的瞬时速度.高三复习时,可以将这种表述简化为数学式:dt

ds t

s v

t t

=

??=→?0

lim

即质点经过某点的瞬时速度等于位移对时间在该点的导数.类似地,质点经过某点的加速度等于速度对时间在该点的导数.我们还可以用匀变速直线运动的公式2

21at

t v

s +=、at

v v t

+=0来验证.

电阻虽然是一个简单的物理概念,但仍然

存在理解上的误区.如有的同学在"研究小灯

泡伏安特性曲线"实验中认为:I-U 图线切线斜率的变化反映电阻的变化,甚至认为I-U 图线切线斜率的倒数就等于电阻.结合小灯泡伏

图1

安特性曲线(图1)来看,从A 到B ,切线斜率减小,电阻增大,这种理解似乎没错,但换一种情形,这种理解的错误就会显露出来.如图2,从A 到B ,切线斜率减小,即B 点切线斜率斜率的倒数较大,但B 点对应的电阻较小.从导数的知识可知,I-U 图线切线斜率k 等于I 对U 的导数,即dU

dI k =,

dI

dU k

=

1,上述错误在于把电阻的定义式I

U R

=

成了dI

dU R

=,而一般情况下,dI

dU I U ≠,只有对金属导体这类线性元

件(伏安特性曲线是过原点的直线),才有dI

dU I U R

==.

再如,感应电动势的计算公式t

E ??=φ,高中物理中一般只涉及两

种情况:当S 不变时,t

B S

E

??=;当B 不变时,t

S B

E ??=.但高三复

习中,有学生问“当B 和S 都变时,怎样求E 呢?”,如果我们回答“这种情况高考不考”,学生是不会满意的,如果将此公式写成

dt

d E φ=

,同时将BS

代入得dt

dS B

dt

dB S

E

+=,然后分三种情况讨论,

既开阔了学生的眼界,又培养了学生的兴趣.

二、认识物理规律.

LC 回路电磁振荡规律中,电容器放电时,极板间电压减小,放电电流增大,到放电完毕瞬间,极板间电压为零,放电电流达到最大.学生总是受欧姆定律R

u i =

的干扰,产生疑问:电压为零时,电流

怎么会最大呢?高二上新课时,我们除了强调学生不要用欧姆定律研究LC 回路之外,只能从电能、磁能转化和守恒的角度作定性的分析说明.高三复习时,我们可以借助导数和微分的知识,轻松地突破这

图2

一难点:

放电时,电容器极板上电荷q 的减少量等于导线中流过的电量,由电流的定义式可得dt

dq i

-

=

再结合电容的定义式u

q C =得dt

du C

i -=

LC 回路中电容器周期性充放电,极板间电压可表示为

t

U u m ωc o s =

则t CU i m ωωsin = 由此可知,0=u

时,i

取最大值.

绳拉物体运动的分解也是一个教学难点.如图3,小车拉绳的速度v 1和木块前进的速度v 2,哪个当分速度,哪个当合速度,二者关系如何,学生不易弄清,借用导数知识很容易解决:

由图可知,2

2

2

l

h x =+

两边对时间求导得:dt

dl l

dt

dx x =

由于dt

dl v -

=1

、dt

dx v -

=2

、l

x =θ

cos

故θ

cos 21

v v =.

三、求解物理问题.

高中物理中,经常遇到一些研究变化趋势、快慢和极值的问题,这类问题通常可以用数学变换(如化为繁分数、配成完全平方式)和数学重要不等式等方法解决,但有时用这些方法显得很麻烦,甚至解不出来,而用导数和微分的方法却很简洁.实际上,导数和微分是解决这类问题的一般方法.

例一:如图4所示,某人站在离河北岸20m 的A

处,看到河

图3

下游70m 离河南岸10m 的B 处发生险情,此人马上快速跑到河边,再以跑步43

的速度

过河跑到出事点进行抢险.已知河宽为40m ,且河水不流动,此人跑步的速度为8m/s ,问此人到达出事点的最短时间是多少?

为便于研究,先将河道向南平移10m ,使陆地上的两段运动连在一起,这样将问题情景转化成人离北岸30m ,出事点在南岸边上,如图5所示.

为了求出最短时间,我们先把人沿任意

路线(图5中的A-E-B )

运动的时间表示出来:设EF =x ,则x ED

-=70

6

8

2

2

2

2

ED BD

EF AF

t ++

+=

即6

)70(40

8

30

2

2

2

2

x x

t

-++

+=

(70

0≤≤

x )

根据上述表达式,求最短时间,就是求上式中t 的最小值.为此,令t 对x 的导数等于零,即

0)

70(40

67030

82

2

2

2

=-+--+=

'x x

x

x

t

解得x =40m ,代入t 的表达式得t =14.6s .这就是最短时间.(注:本题借用光学中的费马定理也可以很简洁求解)

例二:如图6所示,三个点电荷位于等边

A

B

北岸 南岸

河 图4

q q 2

图6

图5

E

D

A

B

北岸 南岸

F

三角形的三个顶点,1q 和2q 为正电荷,3q 为负电荷,电量均为q ,现将1q 和2q 固定,3q 由静止释放,试定性讨论3q 的速度和加速度变化情况.(不考虑重力)

q 3受电场力的合力沿1q 和2q 连线的中垂线,3q 由静止释放后沿中垂线做直线运动,为弄清加速度的变化情况,先要弄清中垂线上电场强度的变化情况.根据1q 和2q 连线中点O 处和无限远处场强均为零可推知,中垂线上电场强度不是单调递增或递减,一定存在极值点,我们需要把极值点求出来.

如图7,设1q 和2q 连线长为2a ,则中垂线上任意一点P 处场强为:

()

θ

θθθ

2

2

2

cos sin 2sin cos 2

a

kq a

kq

E =

=

求E 对θ的导数得:

()θ

θθcos sin 2cos

22

3

2

-=

'a

kq E

令0='E 得:3

3sin ±

=θ(负值对应P 在O 点下方).

由于

60

sin 2

33

3sin =<

,故电场强度最大值在3q 初位置下方.

由此可知,3q 由静止释放后沿中垂线先做加速度增大的加速运动,再做加速度减小的加速运动,到达1q 和2q 连线中点O 时加速度为零,速度最大,然后做加速度增大的减速运动,再做加速度减小的减速运动,到达初位置的对称点时,速度减为零,开始向上返回,此后,按照类似的规律往复运动.

图7

2

导数在实际生活中的应用

导数在实际生活中的应用 导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。 导数知识是学习高等数学的基础,它是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不仅在天文、物理、工程领域有着广泛的应用。而且在工农业生产及实际生活中,也经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决。接下来就导数在实际生活中的应用略微讨论。 1.导数与函数的极值、最值解读 函数的极值是在局部范围内讨论的问题,是一个局部概念,函数的极值可能不止一个,也可能没有极值。 函数()y f x =在点0x 处可导,则'0()0F x =是0x 是极值点的必要不充分条件,但导数不存在的点也有可能是极值点。 最大值、最小值是函数对整个定义域而言的,是整体范围内讨论的问题,是一个整体性的概念,函数的最大值、最小值最多各有一个。函数最值在极值点处或区间的断点处取得。 2.导数在实际生活中的应用解读 生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。 例1:在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 思路:设箱底边长为x cm ,则箱高602 x h -=cm ,得箱子容积V 是箱底边长x 的函数:23 2 60()(060)2x x r x x h x -==<<,从求得的结果发现,箱子的高恰好是原正方形边长的

关于导数的29个典型习题

关于导数的29个典型习题 习题1设函数在0=x 的某邻域内1 C 类(有一阶连续导数),且.0)0(,0)0(≠'≠f f 若)0()2()(f h f b h f a -+在 0→h 时是比h 高阶的无穷小,试确定b a ,的值。 解 由题设知 0)0()1()]0()2()([lim 0 =-+=-+→f b a f h f b h f a h . .01,0)0(=-+∴≠b a f 由洛比达法则知 ).0()2(1 ) 2(2)(lim )0()2()(lim 000f b a h f b h f a h f h bf h af h h '+='+'=-+=→→洛,0)0(≠'f 故.02=+b a 联立可 解出.1,2-==b a 习题2 设,0,00,)()(?????=≠-=-x x x e x g x f x 其中)(x g 有二阶连续导数,且1)0(,1)0(-='=g g .(1) 求);(x f '(2) 讨论 )(x f '在),(+∞-∞上的连续性. 解 (1) 当0≠x 时,用公式有 ,)1()()()(])([)(2 2x e x x g x g x x e x g e x g x x f x x x ---++-'=+-+'=' 当0=x 时,用定义求导数,有 .21)0()(lim )0(2 0-''=-='-→g x e x g f x x 二次洛 ???? ?=-''≠++-'='∴-.0,2 1)0(0,)1()()()(2x g x x e x x g x g x x f x (2) 因在0=x 处有 ).0(2 1)0(2)(lim 2)1()()()(lim )(lim 000f g e x g x e x e x g x g x x g x f x x x x x x '=-''=-''=+-+'-''+'='-→--→→洛 而)(x f '在0≠x 处连续,故).,()(+∞-∞∈'C x f 习题3 证明:若022=++++c y b x a y x (圆),其中c b a ,,为定数),04(22>-+c b a 则 =+x d y d dx dy 222 3 2])(1[定数。 证 求导,,022='++'+y b a y y x 即.22b y a x y ++-=' 再导一次,,02222 =''+'+''+y b y y y 即 .2)1(22b y y y +'--='' )(.42 1...1)2(21...)1(22 22 3 2定数c b a y b y y y -+-=='++-=='''+∴

第3章-微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的关 系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便于 直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim ()x x f x → 那么就在0 x 附近展开。如果极限是 lim ()x f x →∞ ,

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

导数在经济学中的应用

引言 近年来,随着市场经济的不断发展、经济的不断繁荣,经济活动中的实际问题也愈加复杂,简单的分析已经不足以满足企业管理者对经济分析的需求。因此,有必要将高等数学应用于简单的数学函数所不能解决的实际经济问题中,对其进行定量分析,这使得高等数学在解决经济问题中占据重要地位。而导数作为高等数学中的重要概念,同样也是解决经济问题的一个有力工具。在高等数学中,导数通常被用于判断函数的单调性,求函数的最值、极值等。在实际经济问题中,导数可作为经济分析的工具,广泛地应用到经济研究和企业管理之中,促进经济理论朝着更加精确的方向发展。本文从边际分析,弹性分析,优化分析三个方面论述导数在经济分析方面的应用。 1、导数的概念 早在法国数学家费马探究极值问题时就将导数的思想引入了,但导数思想是在英国数学家牛顿研究力学和德国数学家莱布尼茨研究几何学的过程中正式建 2、经济分析中常用的函数 由于导数主要应用于探究经济领域中出现的一些函数关系问题,所以,我们必需对经济分析中的一些常用的函数具有一定的了解,以便更好的理解和使用它们。经济分析中常用的函数主要有以下四类: 2.1需求函数 需求函数指在特定的时间,各种可能的价格条件下,消费者愿意并且能够购买该商品的数量。(出处?)为了使问题简单化,我们一般假设需求函数的诸多

自变量中除价格外其他均为常量,则函数表示为()P f Q d =,其中,P 为商品的价格,Q d 为商品的需求量。这个函数表示一种商品的需求量与价格之间存在一 一对应的关系,并且通过观察可以知道商品(除某些抵挡商品、某些炫耀性商品、某些投资性商品除外)的需求量与价格成反方向变动关系,即商品本身价格上升,需求量随之减少,反之亦然。 例1:服装店销售某种衬衫的件数Q 与价格P 是线性关系,当价格为100元一件时,可销售120件,当价格为80元时,可销售200件,求需求函数。 解:设衬衫的件数与价格的函数关系为:b aP Q += 则b a +=100120;b a +=80200 解得4-=a ;520=b 所以需求函数为5204+-=P Q 。 2.2供给函数 一种商品的供给函数,是指单个生产者在一定时期在各种可能的价格下,愿意且能够提供出售的该种商品数量。[3]我们通常通过将除价格外的其他因素看成常量以达到化简问题的目的。所以,供给函数可以用()P f Q s =表示,其中,P 为商品的价格,Q S 为商品的供给量。可以看出,商品(除单个劳动力商品、古董商品、某些投资性商品外)的价格与供给量之间成同方向变动的关系。 例2:已知大蒜的收购价为每千克4元,每星期能收购2000千克,若收购价每千克提高0.5元,每星期可收购2500千克,求大蒜的供给函数。 解:设大蒜的线性供给函数为:b aP Q += 则b a +=42000;b a +=5.42500 得1000=a ;2000-=b 所以供给函数为为:20001000-=P Q 2.3成本函数 产品成本一般情况下是用货币的形式来表现的企业生产和出售产品的所用度支出。成本函数所表示的是企业成本总额与产出总量之间关系的公式。产品成

导数与微分测试题及答案(一)

导数与微分测试题(一) 一、选择题(每小题4分,共20分) 1、 设函数10 ()10 2 x x f x x ?≠??=??=?? 在0x =处( ) A 、不连续; B 、连续但不可导; C 、二阶可导; D 、仅一阶可导; 2、若抛物线2y ax =与曲线ln y x =相切,则a 等于( ) A 、1; B 、 12 ; C 、 12e ; D 、2e ; 3、设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( ) A 、1; B 、 2 e ; C 、 2e ; D 、e ; 4、设函数()f x 在点x a =处可导,则0 ()() lim x f a x f a x x →+--等于( ) A 、0; B 、()f a '; C 、2()f a '; D 、(2)f a '; 5、设函数()f x 可微,则当0x ?→时,y dy ?-与x ?相比是( ) A 、等价无穷小; B 、同阶非等价无穷小; C 、低阶无穷小; D 、高阶无穷小; 二、填空题(每小题4分,共20分) 1、设函数()f x x x =,则(0)f '=______; 2、 设函数()x f x xe =,则(0)f ''=______; 3、 设函数()f x 在0x 处可导,且0()f x =0,0()f x '=1,则 01lim ()n nf x n →∞ + =______; 4、 曲线2 28y x x =-+上点______处的切线平行于x 轴,点______处的 切线与x 轴正向的交角为 4 π 。

5、 d ______ = x e dx - 三、解答题 1、(7分)设函数()()() , ()f x x a x x ??=-在x a =处连续, 求()f a '; 2、(7分)设函数()a a x a x a f x x a a =++,求()f x '; 3、(8分)求曲线 sin cos 2x t y t =?? =? 在 6 t π = 处的切线方程和法线方程; 4、(7分)求由方程 1sin 02 x y y -+=所确定的隐函数y 的二阶导数 2 2 d y dx 5、(7分)设函数1212()()()n a a a n y x a x a x a =--- ,求 y ' 6、(10分)设函数2 12()12 x x f x ax b x ?≤?? =? ?+> ?? ,适当选择,a b 的值,使 得()f x 在12 x = 处可导 7(7分)若2 2 ()()y f x xf y x +=,其中 ()f x 为可微函数,求dy 8、(7分)设函数()f x 在[,]a b 上连续,且满足 ()()0,()()0f a f b f a f b +-''==?>,证明:()f x 在(,)a b 内至少存在一点c ,使得 ()0f c = 导数与微分测试题及答案(一) 一、1-5 CCBCD 二、1. 0; 2. 2; 3. 1; 4.(1,7)、329(, )24 ; 5. x e --; 三、1. 解:()() ()() ()lim lim ()x a x a f x f a x a x f a a x a x a ??→→--'===--;

第2章导数与微分总结

1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: lim 丄一x) f °)是描述趋近任意 x 时的斜率。而 x 0 3、I 若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到 的就是这点的斜率一一导数。 4、可导与连续的关系: 1基础总结 lim -= lim x 0 x x 0 f(x X)f(x) x lim x x o f(x ) f (x o ) X o 叫 号严可以刻画趋近具体 x0 时的斜率。 li m o 要注意细心观察发现,

导数的实质是定义在某点的左右极限。 既然定义在了某点上,该点自然存在,而 且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。 不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存 在的。如: f(x) x,x 0 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如: A 旦主^謎I C m F 左电鼓 pg 总生戟乞 f ( x) f (x) -中的f(x))至u 底是神马。比如求上图 lim f(x x) f(x) x 0 x lim f(X X)f(0) 。 x 0 定义里面需要用到f(0)啊!因此,千 中 iim f (x )论) x 1 x x 0 ,这个f(x0)千万要等于2/3,而不是1 ! 定义解决时候一定要注意问。 X X o

导数与微分重点知识归纳

导数的概念 例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速 度? 我们知道时间从t0有增量△t时,质点的位置有增量 这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为: 若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。 我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度, 即:质点在t0时的瞬时速度= 为此就产生了导数的定义,如下 导数的定义 设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地 函数有增量 , 若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。 记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。 若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数 对于区 间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数, 我们就称这个函数为原来函数的导函数。 注:导数也就是差商的极限左、右导数 前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的

概念。 若极限存在,我们就称它为函数在x=x0处的左导数。 若极限存在,我们就称它为函数在x=x0处的右导数。 注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件 函数的和差求导法则 法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差). 用公式可写为:。其中u、v为可导函数。 常数与函数的积的求导法则 法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 函数的积的求导法则 法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成: 函数的商的求导法则 法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成: 复合函数的求导法则 例题:求=? 解答:由于,故这个解答正确吗? 这个解答是错误的,正确的解答应该如下: 我们发生错误的原因是是对自变量x求导,而不是对2x求导。 下面我们给出复合函数的求导法则

导数在实际生活中的应用

导数在实际生活中的应用 1.(江苏省启东中学高三质量检测)曲线y =1 3 x 3+x 在点????1,43处的切线与坐标轴围成的 三角形面积为________. 解析:曲线y =1 3x 3+x 在点????1,43处的切线斜率为y ′|x =1=????13x 3+x ′x =1=(x 2+1)|x =1 =2,所以切线的方程为y -43=2(x -1),即y =2x -2 3 ,与x 轴的交点和y 轴的交点为 ????13,0,????0,-23,所求面积为S =12×13×23=19 . 答案:1 9 2.(江苏省高考命题研究专家原创卷)设m ∈R ,若函数y =e x +2mx ,有大于零的极值 点, 则m 的取值范围是________. 解析:因为函数y =e x +2mx ,有大于零的极值点,所以y ′=e x +2m =0有大于零的实 根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图象可得-2m >1, 即m <-1 2. 答案:m <-1 2 3.(江苏省高考名校联考信息优化卷)已知f (x )=x 2+2x +a ln x ,若f (x )在区间(0,1]上恒 为单调函数,则实数a 的取值范围为________. 解析:由题意知,f ′(x )=2x +2+a x =2x 2 +2x +a x , ∵f (x )在区间(0,1]上恒为单调函数,∴f ′(x )在区间(0,1]上恒大于等于0或恒小于等于0, ∴2x 2+2x +a ≥0或2x 2+2x +a ≤0在区间(0,1]上恒成立,即a ≥-(2x 2+2x )或a ≤-(2x 2 +2x ),而函数y =-2x 2-2x 在区间(0,1]的值域为[-4,0),∴a ≥0或a ≤-4. 答案:a ≥0或a ≤-4 4.已知f (x )为奇函数,且当x >0时,f (x )>0,f ′(x )>0,则函数y =xf (x )的递增区间 是________. 解析:当x >0时,y ′=[xf (x )]′=f (x )+xf ′(x )>0,∴y =xf (x )在(0,+∞)上递增. 又f (x )为奇函数,∴y =xf (x )为偶函数,∴y =xf (x )在(-∞,0)上递减. 答案:(0,+∞) 5.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元, 已知总收益R 与年产量x 的关系是

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

导数在实际生活中的应用1教案

导数在实际生活中的应用1 教学目标 1、使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用 2、提高将实际问题转化为数学问题的能力 教学重点 理利用导数解决生活中的一些优化问题 教学难点 利用导数解决生活中的一些优化问题 教学过程 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 二.新课讲授 1、导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方 面: (1)与几何有关的最值问题; (2)与物理学有关的最值问题; (3)与利润及其成本有关的最值问题; (4)效率最值问题。 2、解决优化问题的方法: 首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域, 通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 3三.例题讲解 4、学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张 贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。如何设计海报的 尺寸,才能使四周空心面积最小? 解:设版心的高为xdm ,则版心的宽为 128x dm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x =++-=++> 求导数,得'2512()2S x x =-。 令'2512()20S x x =-=,解得16(16x x ==-舍去)。 于是宽为128128816x ==。

导数与微分习题(基础题)

导数与微分习题(基础题) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量=?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可导,则()()=?-?-→?x x f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0 ,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

电大【高等数学基础】 导数与微分

2) 导数与微分 070713.设 )(x f 在0x 可导,则=--→h x f h x f h ) ()2(lim 000 ( ). A )(0x f ' B )(20x f ' C )(0x f '- D )(20x f '- 070113.设 )(x f 在0x 可导,则=--→h x f h x f h 2) ()2(lim 000 ( ). (A) )(0x f ' (B) )(20x f ' (C) )(0x f '- (D) )(20x f '- 060113.设 x x f e )(=,则=?-?+→?x f x f x )1()1(lim ( ).A e 2 B e C 080713.下列等式中正确的是( ) A dx x x d 1 )1(2-= B dx x 2)x 1d(= C dx d x x 2)ln22(= D 050713.下列等式中正确的是( ). A.xdx d arctan )1( 2= B. 2 )1(dx d -= C.dx d x x 2)2ln 2 (= D.xdx x d cot )(tan = A 先单调下降再单调上升 B 单调下降 C 先单调上升再单调下降 D 单调上升 060713. 函数 622+-=x x y 在区间)5,2(内满足( ) . A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升 080724.函数 2)2(2+-=x y 的单调减少区间是 .

080124.函数 1)(2-=x x f 的单调减少区间是 . 070724. 函数2 x e y -=的单调减少区间是 . 070124.函数x y arctan =的单调增加区间是 . 060724.函数1)1(2++=x y 的单调增加区间是 . 060124.函数1)1(2++=x y 的单调减少区间是 . 050724.函数 )1ln(2x y +=的单调增加区间是 . 080732.设 2sin sin x e y x +=,求y ' 解:2sin 2sin cos 2cos )(sin )(x x x e x e y x x +='+'=' 080132.设2 x xe y =,求 y ' 解:2 22222)()(x x x x e x e e x e x y +='+'=' 070732.设2sin x e y x -=,求'y 解:x xe x x e y x x 2cos )().(sin sin 2sin -='-'=' 070132.设x x y e cos ln +=,求'y 解:x x x y e sin )(ln -'=' 060732.设 x x e y x ln tan -=,求y '. x x x x x 12- 解:由导数四则运算法则得 x x x x x x x x x y ++= '+'+'='ln 2cos 1 )(ln ln )()(tan 222 050733.设 2cos ln x y =,求d y .

导数在实际中的应用的简单举例【最新】

答:关于导数,我们知道,它是微积分的核心概念。它有着及其丰富的背景和广泛的应用。我们的教材,通过大量的实例,引导同学们经历由平均变化率到瞬时变化率刻画现实问题的过程,体会导数的思想,理解导数的含义,并且通过用导数研究函数的单调性,极值等性质和解决各种最优化问题,让我们的学生充分体会到导数在解决数学问题和实际问题中的广泛应用和强大力量。 例如,使利润最大、用料最省、效率最高等优化问题,都能够引领我们的学生深刻体会到导数在解决实际问题中的重大作用.具体说来,总结如下 1.研究函数性质 导数作为研究函数问题的利刃,常用来解决极值、最大(小)值、单调性等三类问题.在求解这些函数问题时,要结合导数的思想与理解性质的基础上,掌握用导数方法求解的一般步骤.在熟练运用导数工具研究函数的性质同时,我们要注意比较研究函数的导数方法与初等方法,体会导数方法在研究函数性质中的一般性和有效性. 2.证明不等式成立 证明不等式的方法有许多,导数作为研究一些不等式恒成立问题的工具,体现了导数应用上的新颖性以及导数思想

的重要性. 由导数方法研究不等式时,一般是先构造一个函数,借助对函数单调性或最大(小)值的研究,经历某些代数变形,得到待证明的不等式. 3.求解参数范围 给定含有参数的函数以及相关的函数性质,求解参数的值或范围,需要我们灵活运用导数这一工具,对问题实施正确的等价转化,列出关于参数的方程或不等式. 在此类含参问题的求解过程中,逆向思维的作用尤其重要. 4.研究曲线的切线问题 导数的几何意义表现为曲线的切线斜率值,从而利用导数可求曲线的切线,并进一步将导数融合到函数与解析几何的交汇问题中. 解决此类相切问题,一般先求函数的导数,依据曲线在处的切线斜率为而进行研究. 由于切点具有双重身份,既在切线上,又在函数图象上,从而对切点的研究可作为解决问题的纽带,特别是在不知道具体切点的情况下,常常设切点坐标并联立方程组而求解. 5.解决实践问题

导数与微分练习题

题型 1.由已知导数,求切线的方程 2.对简单的、常见函数进行求导 3.对复合函数、隐函数、对数求导法进行求导 4.参数方程与一些个别函数的应用 5.常见的高阶导数及其求导 内容 一.导数的概念 1.导数的定义 2.导数的几何意义 3.导数的物理意义 4.可导与连续之间的关系 二.导数的计算 1.导数的基本公式 2.导数的四则运算法则 3.反函数的求导法则 4.复函数的求导法则 5.隐函数的求导 6.参数方程所确定的函数的导数 7. 对数求导法 8.高阶导数

三.微分 1.微分的定义 2.可导与可微的关系 3.复合函数的微分法则 4.微分在近似计算中的应用 典型例题 题型I 利用导数定义解题 题型II 导数在几何上的应用 题型III 利用导数公式及其求导法则求导 题型IV 求高阶导数 题型V 可导、连续与极限存在的关系 自测题二 一.填空题 二.选择题 三.解答题 4月9日微分练习题 基础题: (一)选择题 1.若 ? ??≥+<+=1,1,3)(2x b ax x x x f 在1=x 处可导,则( ) A. 2,2==b a B. 2,2=-=b a C. 2,2-==b a D. 2 ,2-=-=b a

2. 设 0'()2f x =,则000 ()() lim x f x h f x h h ?→+--=( ). A 、不存在 B 、 2 C 、 0 D 、 4 3. 设 )0()(32>=x x x f , 则(_))4(='f A.2 B.3 C.4 D.5 4.已知函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则当n 为大于 2的正整数时, )(x f 的n 阶 导数 )()(x f n 是( )。 A 、1)]([+n x f n B 、1)]([!+n x f n C 、n x f 2)]([ D 、n x f n 2)]([! (二)填空题 5. 设 2 sin x e y = ,则=dy _____. 6.已知 x y 2sin =,则) (n y = . 7.设函数 ()y y x =由参数方程(),()x x y y θθ==确定,()x θ与()y θ均可导,且00()x x θ=, '0()2x θ=, 2x x dy dx ==,则'0()y θ= . 8.设 0,sin )(>=a x x f ,则=--→h a f h a f h 2) ()(lim ; 9. 已知设 cos2x y e = ,则=dy ____ _. 10. sin x y x = ,则2 x dy π==_____________ 11. 已知函数()x f x xe =,则(100)()f x = . 12. 设 )]([22x f x f y +=, 其中)(u f 为可导函数, 则 =dx dy 13.2 x x y =,则 dx dy .=______ 14. 已知函数)100()2)(1()(---=x x x x x f ,则)0('f = 15. 设函数,22x x y -+=求.) (n y . 综合题: (三)解答题 16. 求与抛物线2 25y x x =-+上连接两点(1,4)P 与(3,8)Q 的弦平行,且与抛物线相切的

高等数学考研大总结之四导数与微分

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()() 00,x f x f y x x x -=?-=?则()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量 增量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极 限不存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0 x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

高中数学导数与定积分知识点

高中数学知识点—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数; ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数; ③会使用导数公式表。 (3)导数在研究函数中的应用 ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积

分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。 即f (x 0)=0 lim →?x x y ??=0 lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

相关文档
最新文档