牵引变压器课程设计

牵引变压器课程设计
牵引变压器课程设计

第1章课程设计目的和任务要求

1.1 设计目的

牵引变电所是电气化铁道的心脏,牵引变压器是牵引供电系统的重要设备,其容量的大小关系到能否完成国家交给的运输任务和运营成本。因此,变压器的容量计算是极其必要的,要根据实际运营情况进行仔细运算,从而确定选择安装容量。同时,对牵引变压器的继电保护也是必不可少的,合理的保护可以使变压器安全稳定的运行,根据这两方便综合进而完成牵引变电所的设计。

1.2 任务要求

(1) 确定该牵引变电所高压侧的电气主接线的形式,并分析其正常运行的四种运行方式。

(2) 确定牵引变压器的容量、台数及接线形式。

(3) 确定牵引负荷侧电气主接线的形式。

(4) 对变电所进行短路计算,并进行电气设备选择。

(5) 设置合适的过电压保护装置、防雷装置以及提高接触网功率因数的装置。

(6) 用CAD画出整个牵引变电所的电气主接线图。

1.3 设计依据

区域电网以双回路110kV输送电能,电力系统容量为3000MV A,选取基准容量为

J

S为1000MV A,在最大允许方式下,电力系统的电抗标幺值分别为0.24;在最小运行方式下,电力系统的标幺值为0.30。

某牵引变电所A采用直接供电方式向双线区段供电,牵引变压器类型为110/27.5kV,三相平衡接线,两供电臂电流归算到27.5kV侧电流如下表1-1所示。

表1-1 两供电臂电流归算到27.5kV侧的电流

牵引变电

所供电臂

长度km

端子平均电流A 有效电流A 短路电流A 穿越电流A

A

24.6 β282 363 1023 202

20.4 α240 319 874 154

1.4 设计思路

本设计要求采用斯科特变压器。现将斯科特变压器原理简要介绍如下:

斯科特结线变压器实际上是由两台单相变压器按规定连接而成。一台变压器

的原边绕组两端引出,分别接到三相电力系统的两相,称为M 座变压器;另一

台单相变压器原边绕组一端引出,接到三相电力系统的另一相,另一端接到M 座

变压器原边绕组的中点O ,称为T 座变压器。这种结线型式把对称三相电压变换成相位差为2π的对称两相电压,用两相中的一相供应一边供电臂,另一相供应

另一边供电臂。

图1-2中M 座变压器原边绕组匝数、电压分别用1ω、M 1U 表示,两端分别

接入电力系统的B 、C 相;副边绕组匝数、电压分别用2ω、M 2U 表示,向左边

供电臂供电。T 座变压器原边绕组匝数、电压分别为231ω、T 1U ,一端接到M

座变压器原边绕组的中点O ,另一端接到电力系统的A 相;副边绕组匝数、电

压分别为2ω、T 2U ,向右边供电臂供电。原、副边电流如图中标示。由图可知,

T 座和M 座副边匝数相同,都是2ω;但原边匝数不相同,T 座原边匝数是M 座的23倍。实际中,通常把两台单相变压器绕组装配在一个铁芯上,安装在一

个油箱里。

图1-1 斯科特变压器原理电路图

由于该牵引变电所采用直接供电方式向双线区段供电,牵引变压器类型为

110/27.5KV ,SCOTT 接线。因此,其动力变压器及其自用电变压器可采用逆斯

科特变压器,逆斯科特变压器接线如图1-2所示。

图1-2 逆斯科特接线

第2章主接线设计

2.1 110KV侧主接线

牵引变电所高压侧(电源进线侧)的主接线设计可以分为三类:母线型接线、桥式接线、双T接线。对于大型变电所来说,母线型接线是中心牵引变电所110kV 电源侧电气主接线的核心;通过式牵引变电所110kV电源侧一般采用桥式接线;分接式牵引变电所110kV电源侧采用双T接线。

根据题目要求及分析已知条件可知:待设计变电所为一中等容量的通过式牵引变电所。所以我们选取结构比较简单且经济性能高的桥式接线。

桥式接线又分为内桥和外桥两种接线形式。

图2-1内桥接线图2-2 外侨接线

图2-1内桥接线,连接在靠近变压器侧,其特点是适用于线路长,线路故障高,而变压器不需要频繁操作的场合,这种接线形式可以很方便地切换或投入线路。图2-2为外桥接线,本设计采用的是外桥接线,连接在靠近线路侧,其特点是适用于输电距离较短,线路故障较少,而变压器需要经常操作的场合,这种接线方式便于变压器的投入以及切除。

为了配合牵引变电所在出现主变压器故障时备用变压器的自动投入,选择采用外桥接线便于备用变压器的投入以及故障主变压器的切除。

2.2 倒闸操作

正常运行时,图2-1中QS7,QF,QS8其他断路器隔离开关均断开,变压器T1通过L1得电,使得变压器向27.5kV侧输送电能。

当需要检修时,假如仍然需要在L1得电,先断开QF1,然后断开QS3和QS5,再闭合QS4,然后合QS6。最后闭合QF,即可满足检修时供电需要。检修结束时,先断开QF2,然后断开QS4和QS6,再断QF,后闭合QS3和QS5,最后闭合QF1,即可恢复正常供电。

当L1线路故障需要由L2线路供电时,先闭合QS2,闭合QF,故障线路QF1跳闸,再断开QS1,最后QF2闭合即可满足L1故障时的供电。如L1线路恢复正常,可以先断开QF2、QF,再断开QS2,闭合QS1,最后闭合QF1即可恢复正常供电。

由此可以看出采用外桥型接线对于线路发生故障时比较有利,可以在停电瞬间通过互感器自动检测跳开故障线路断路器,然后闭合备用线路断路器,保证线路故障时自动转换开关使牵引变压器继续运行,有利于系统供电的可靠性和安全性。

2.3 馈线侧主接线设计

题目要求牵引变电所采直接供电方式向双线区段供电,牵引变压器类型为110/27.5KV,SCOTT接线。

直接供电方式的馈电线包括接触网(T)和正馈线(F)两根线,断路器和隔离开关均为双线;另外有中线馈出,不设断路器和隔离开关。当牵引变压器(SCOTT接线变压器)副边线圈无中点抽头时,在变电所内还应另设自耦变压器。一般将自耦变压器设在馈电线外侧,当相邻变电所越区供电时,可作为末端的自耦变压器使用。双线铁路一般为四回馈电线,每两回同相馈电线设一组备用断路器,如图2-3所示。

图2-4 双线区段斯科特变压器直接供电方式馈电线主接线该方式是%

50备用的接线方式,这种接线方便于工作,当工作断路器需检修时,可有各自的备用断路器来代替其工作,断路器的转换操作较方便,供电可靠性高。

2.4 绘制电气主接线图

综合电源侧主接线图、变压器主接线图、馈线侧主接线图可得牵引变电所电气主结线图。电气主结线图见附图。

图中高压侧采用外桥接线形式,这种接线形式所用电气设备少,接线相对简单,可靠性高。两台主变压器均为斯科特接线变压器,正常时一台工作,一台备用。当工作电源失压或工作变压器故障时,在主断路器跳闸后,由自动切换装置使备用的斯科特变压器投入工作,从而保证了不间断供电。两回110KV电源进线各挂有一组电容式电压互感器(TV)。

由于主变压器二次侧为对称的的两相27.5KV,故每相(两条线)所使用的断路器、隔离开关均为双极联动的。并联电容补偿装置跨接于每相的两条线上。两台自用电变压器分别接于两台主变压器的二次侧,并采取二相——三相的斯科特反变换获得三相电源。

这种供电方式的牵引馈电线,每路始端均跨接有自耦变压器直接。直接两端分别与牵引网的接触导线(或接触网T)及正馈导线(F)相连,中点与钢轨(R)及保护线(PW)相连,并通过火花间隙(放电器)接地。该主接线中的馈线断路器采用的备用方式。

主接线图见附图1。

第3章 牵引变压器的选择和容量计算

3.1 牵引变压器的选择步骤

牵引变电所容量计算和选择,就是指牵引变压器容量的计算和选择。一般分

为三个步骤进行。

(1) 按给定的计算条件求出牵引变压器供应牵引负荷所必需的最小容量,称

为计算容量。

(2) 按列车紧密运行时供电臂的有效电流与充分利用牵引变压器的过负荷能

力,求出所需要的容量,称为校核定量。这是为确保牵引变压器安全运行所必需

的容量。

(3) 根据计算容量和校核容量,再考虑其他因素(如备用方式等),最后按实

际系列产品的规格选定牵引变压器的台数和容量,称为安装容量和设计容量。

3.2 变压器计算容量

斯科特结线变压器两副边绕组是相互独立的,故副边绕组的有效电流为

e Te I I 1=

e Me I I 2= 式中,Te I 和Me I 分别为T 座、M 座绕组有效值;e I 1和e I 2为对应于T 座与M

座的供电臂1、2的有效电流。

则其计算容量为 '

122)3(ηTe Te Me I I I U S ++= (3-2) 式中,由于是用于直接供电系统,则27.5U kV =,21e Te I I =、22e Me I I =。

由条件知1363202565

e I A =+=,2319154473e I A =+=,282.5Te I A =,236.5Me I A =,则由式(3-2)可得计算容量为

282.5 1.19236.5

Te Me I n I ===

(3-1)

'22211 1.190.911111 1.19 1.1933

n n n η++===+++?+22'221(3)27.5(236.5282.53282.5)0.9120235.6Me Te Te S U I I I kVA

η=++=?+÷+?=

3.3 变压器校核容量 '

2max 2max 2max max )3(ηI I I U S T T M b ++= (3-3) 式中U 为牵引侧电压,为27.5kV ;max T I 、max M I 分别为M 座、T 座二次绕组

最大电流,A I T 504max =,A I M 344max =,max I α、max I β分别为与α、β对应的供

电臂最大电流。

则由式(3-3)可得变压器的最大容量为

47.1344

504max max '===

M T I I n 89.047.147.131147

.113

1112'2'''2=+?++=+++=n n n η '2222max max max max 2(3)27.5(344504/3504)0.8948684M T T b U kVA S I I I η=++=?++?=

校核容量J S 为

kVA K S S b J 24342248684max === (3-4)

3.4 备用方式选择

已知KVA S b 48684max =,故选用的固定备用或移动备用方式下的安装容量是

合适的。在采用移动备用方式的情况下,考虑到当两台并联运行的牵引变压器一

台发生故障停电后,由另一台单独运行,允许超载%30,并持续4小时,为使其

单独运行而不影响铁路正常运输,且考虑到负荷的增长率为%40~%10,由

MVA MVA S b 6.304.1218825.323.125max =?>=?=

所以容量选用kVA 250002?变压器作为移动备用。

如果选用移动备用,当牵引变压器发生故障时,移动变压器的调运和投入约

需数小时。此外,靠一台牵引变压器供电往往不能保证铁路正常运输,即使这种

影响在单线区段或运量小的双线区段可以很快恢复正常,但考虑到本牵引变电所

设在沿线有公路条件的大运量的双线区段,为确保供电的可靠性应当采用固定备

用方式。

采用固定备用方式,为使其单独运行而不影响铁路正常运输,且考虑到负荷

的增长率为%40~%10,由

MVA MVA S b 4.454.132********max =?>=?=

所以安装容量选用kVA 400002?变压器,一台运行一台固定备用。

采用固定备用方式的优点是:其投入快速方便,可以确保铁路正常运输,又

可不修建铁路专用线岔,可使牵引变电所选址方便、灵活,场地面积较小,土方

量少,电气主接线较简单。

综上所述,采用kVA 400002?容量的斯科特变压器,采用固定备用方式,变

压器型号为53025T SCOTT -。

表3-1 53025T SCOTT -变压器的技术参数

额定容量(KVA) 额定电压(KV) 额定电流(A) 损耗(KV) 阻抗

电压

(%) 空载电流(%)

高压

低压 高压 低压 空载 短路 40000 110 27.5 60 310 21 54 5.25 2.5

第4章 短路计算

4.1 短路计算的目的

(1)在选择电气设备时,为保证设备在正常运行和故障情况下都能安全、

可靠地工作,同时又力求节约资金,这需要全面的短路计算。

(2)在设计屋外高压配电装置时,需按短路计算条件检验软导线的相间和

对地的安全距离。

(3)在选择几点保护方式和进行整定计算时,需要短路计算提供依据。

4.2 短路点的选取

因短路计算的主要计算式短路电流,所以对一次侧设备的选取一般选取

110kV 高压侧母线短路点作为短路计算点;对二次侧设备和牵引馈线侧断路器的

选择一般选取27.5kV 低压母线侧短路点作为短路计算点。

4.3 短路计算

由于采用的是完全备用方式,主变压器单台运行,牵引变压器高压侧三相接

地短路短路电流与1d 点的三相接地短路电流相等,最终在计算可能通过各种电气

设备和母线最大电流时,计算短路21d d ,点的三相接地短路电流即可。所以可以

将主接线图转化为电路短路示意图4-1

图4-1 短路示意图

短路电路图如图4-2,其中1d 点为110kV 高压母线短路点,2d 点为27.5kV 牵

引母线短路点。

图4-2 短路计算等效电路

(1)1d 点短路计算

回路的等值电抗为:

321.023.0091.0*1=+=∑X

回路的等值电流为

12.3321.011*1k *===

∑X I

短路电流有效值: )

k (57.13115100

12.33k *1A U S I I B B

=??=?=

短路电流的最大值有效值:

)(kA 37.257.151.1sh =?=I

短路容量:

)(31210012.3k *1MVA S I S B =?=?=

(2)2d 点短路计算

回路的等值电抗为:

651.023.0091.033.0*2=++=∑X

回路的等值电流为

54.11*k *==

∑X I

短路电流有效值: )

k (23.335.27100

54.13k *2A U S I I B B =??=?

=

短路电流的最大值有效值:

)(kA 07.523.357.1sh =?=I

短路容量:

)(15410054.1k *1MVA S I S B =?=?=

表4-1 短路计算值

)kA (I )(kA sh I 110kV 侧

27.5kV 侧 1.57 3.23

2.37 5.07 第5章 电气设备选择

5.1 电气设备选择的一般原则

(1) 应满足正常运行检修短路和过电压情况下的要求并考虑远景发展;

(2) 应满足安装地点和当地环境条件校核;

(3) 应力求技术先进和经济合理;

(4) 同类设备应尽量减少品种;

(5) 选用的新产品种均应具有可靠的试验数据并经正式签订合格,特殊情况

下选用未经正式鉴定的新产品应经上级批准。

5.2 室外110kV 进线侧母线的选择

(1)最大负荷持续工作电流

A 93.214110

3315003.1U 3S 3.1I N N 30=??=?= (2)按经济电流密度选择进线截面。

)mm (81.2389

.093.214j I A 2ec 30ec === 取2ec mm /A 9.0j =

故应选择LGJ-240钢芯铝绞线,在最高允许温度为C 40时长期允许载流量

为494A 。

(3)校验发热条件

查附录表得LGJ-240的允许载流量(环境温度为C 40)。 A 93.214I kA 494I 30al =?=

因此满足发热条件。

(4)校验进线机械强度

查附录表得110kV 架空线钢芯铝绞线的最小截面2

2min mm 240A mm 35M =?=因此所选LGJ=240型钢芯铝绞线也满足机械强度要求。

5.3 27.5kV 侧母线的选择

低压母线水平平放,档距为900mm ,档数大于2,相邻两相母线的轴线距离

为50mm ,查附录表17得到,27.5kV 母线选LMY-50×5即母线尺寸为

mm 5mm 50?。

(1)校验动稳定度

按c al σ≥σ校验,式中al σ为母线材料的最大允许应力(Pa),硬铝母线(LMY)

型,MPa 70al =σ。c σ为母线通过)3(sh i 时,所受到的最大计算应力。线距

mm 160a =,档距为m 9.0l =。

)3(F 为发生三相短路时两导体之间产生的电动力:

N A N a l i F sh 37.851016

.09.0)1036.9(3/103723272)3()3(=???=?=-- MPa 69.3W

M ==δ

10/l F M )3(=

b /h b W 2

= 3.69MPa δ70MPa δal =≥=

b 为母线截面的水平宽度,h 为母线截面的垂直高度。

(2)校验热稳定度

按式min A A ≥,A 为母线截面积,单位为2mm ;min A 为满足热稳定度条件的最小截面积,单位为2mm ,

2ima )3(min mm 18.42C t I

A ==∞ 22min mm 250A mm 18.42A =≤=

因此,所选的母线符合其要求。

5.4 110kV 侧断路器与隔离开关

高压侧计算电流为:

A U S I N N 34.165110

331500330=?== 根据上述选择原则可以选出高压断路器与高压隔离开关如下表5-1所示。

表5-1 高压侧断路器与隔离开关的选择与校验

选择校验项目

电压 电流 断流 能力 动稳定度 热稳定度 结论 装置

件 项目

max U U N )3(sh i ima t I ?∞2)3( - 数据 110kV/115kV 165.34A 2.09kA 5.33kA -

额定参数 e N U ? max i t I t ?2 -

30I )3(k I 5.17409.22=?o c I e N U ?

5.5 27.5kV 侧断路器与隔离开关

低压侧短路电流:

A U S I N N 35.6615

.27331500330=?== 根据上述选择原则可以选出断路器与隔离开关如下表5-2所

表5-2 低压侧断路器与隔离开关的选择与校验

5.6 电压互感器

供继电保护用的电压互感器的选择:准确级为3级。供110kV 侧使用的电压互感器选择为准确级0.5级。

由于电压互感器装于110kV 侧使用,并不需要起保护作用,因为如果110kV 侧发生故障或事故时,其地方的电力系统会启动继电保护装置跳闸,将其故障或事故切除,因此选用6JCC -110型准确级0.5级,其技术数据如表5-3所示。 高压隔离开关

GW4-110/630

-CJ5

110kV/126kV 630A - 20kA 100004502=? 合格 高压少油断路

器SW 3-110G 110kV/126kV 1200A 15.8kA 41kA 合格

选择校验项目

电压 电流 断流 能力 动稳定度电流 热稳定度 结论 装置地点

条件

项目 )3(sh i ima t I ?∞2)3( - 数据 27.5kV 661.35A 3.68KA 6.77kA - 额定参数

- 低压隔离开关

GW4-27.5DT-CS-11

27.5kV 1250A - 80kA 合格 低压真空断路器

VBR2-60525BA

55kV 1250A 25kA 63kA 合格

699846152..=?max U U N 30I )3(k I 17.54468.32=?396945312=?.25004252=?e N U ?e N U ?oc I max i t I t ?2

表5-3 6JCC -110参数表

由于电压互感器是并接在主回路中,当主回路发生短路时,短路电流不会流过互感器,因此电压互感器不需要校验短路的稳定性。

5.7 电流互感器

5.7.1 电流互感器的选择条件

(1)额定一次电压和额定电流

电流互感器的额定一次电压N 1U 必须与电流互感器安装处的额定电压NW U 相一致,它与额定电流应满足:N 1U ≥NW U ,N 1I ≥max ,w I

式中N 1I ,max ,w I 为电流互感器原边额定电流和装置的最大长期工作电流。 在环境温度条件下,连续通过电流互感器的原边电流应尽量接近额定电流1e I ,过大将使误差增大。互感器的二次额定电流一般为5A ,与仪表、继电器的标准电流相符。

(2)准确度级与铁芯数

电流互感器不同铁芯时,二次绕组的准确度级不同,供电度表需用0.5级,一般仪表用1.0级,估计电参数的仪表只需3级准确度,若只有一种用途,则可只选一个铁芯的互感器。

电流互感器的准确度级与一定容量相对应,若负载增大超过某一准确度级所对应的额定容量,则准确度级下降。

5.7.2 110kV 侧的电流互感器

在高压侧电流互感器安装处的额定电压NW U =110kV, 装置的最大长期工作电A A I I N 94.21434.1653.13.1max ,w =?==

本牵引变电所采用直接供电方式向双线区段供电,所以电流互感器可选用两个铁芯,准确度级为0.5/1。

型号

额定电压(kV ) 额定容量(V .A ) 最大容量(V .A ) 原线圈 副线圈 0.5级 1级 3级 JCC 6-110 300 500 500 2000 110/3

0.1/3

综上所述,电流互感器选用LCWD 2-110-2×300

5.7.2 27.5kV 侧的电流互感器

在低压侧电流互感器安装处的额定电压NW U =27.5kV , 装置的最大长期工作

电流 A A I I N 76.85935.6613.13.1max ,w =?==

本牵引变电所为中间牵引变所主要向牵引负荷和地区负荷供电,所以电流互感器可选用两个铁芯,准确度级为0.5/1。

综上所述,电流互感器选用LZBJ-27.5-1000/5A 0.5/10P2

第6章 继电保护

继电保护是电力系统的重要组成部分,是保证电力系统安全可靠运行的必不可少的技术措施之一。继电保护装置是指能反应电力系统中电器元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务是:

(1) 自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。

(2) 反应电器元件的不正常运行状态,并动作与断路器跳闸、发出信号或减负荷。

由此可见继电保护在电力系统中的主要作用是通过预防事故或缩小事故范围来提高系统运行的可靠性,最大限度地保证向用户安全连续供电。

继电保护利用电力系统正常运行状态和不正常运行或故障时各物理量的差别来判断故障和异常,并通过断路器跳闸将故障切除或发出信号。

继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。

6.1 导线机电保护配置

采用平行双回线路横联方向差动保护加电流保护。其中横联方向差动保护为主保护。电流保护作为横联方向差动保护的后备保护。

6.2 主变电压器继电保护装置配置

变压器为变电所的核心设备,根据其故障和不正常运行的情况,从反应各种不同故障的可靠、快速、灵敏及提高系统的安全性出发,设置相应的主保护、异常运行保护和必要的辅助保护如下:

主保护:瓦斯保护(以防御变压器内部故障和油面降低)、纵联差动保护(以防御变压器绕组、套管和引出线的相间短路)。

后备保护:过电流保护(以反应变压器外部相间故障)、过负荷保护(反应由于过负荷而引起的过电流)。

异常运行保护和必要的辅助保护:温度保护(以检测变压器的油温,防止变压器油劣化加速)和冷却风机自启动(用变压器一相电流的70%来启动冷却风机,防止变压器油温过高)。

第7章 并联无功补偿

在牵引变电所牵引侧设计和安装并联电容补偿装置,既是减少负荷谐波影响的一项措施,又是提高牵引负荷功率因数的一种对策。

7.1 并联无功补偿的作用

(1)提高功率因数

(2)吸收谐波电流,具有滤波作用

(3)改善电力系统的电压质量

(4)减少电力系统的电能损失。并联电容补偿装置提供的容性电流,不仅提高了牵引负荷的功率因数,而且使流经电力系统和牵引变压器的电流值小于未补偿时的电流值。根据电能损失与电流值的二次方成正比的关系,显然并联电容补偿后可以减少电力系统的电能损失。

7.2 补偿无功容量

M 座的并联无功补偿如下:

(1)牵引变电所负荷平均有功功率L P :

8884.7kW 0.8227.5154)(240cos U I P WN av L =??+=?=

(2)需补无功容量d Q ,

无防倒要求时:

var k 97.282419.01178.017.88841cos 11cos 1P Q 222212L d =???

? ??---?=???? ??-?--?= (3)安装无功容量A Q :

()d 2

max W CN A Q U U a 1Q ??

? ??-=? a 15.11U U max W CN -≥?

代入kV 29U max W =?,12.0a =可求得: kV 34U CN =,var k 1.3417Q A =

(4)实际安装无功容量RA Q ,选取电容器型号为BWF10.5-16-1

串联电容器单元数n 按下式确定:

45

.1034U U n CO CN ≈==

并联电容器单元数m 按下式确定: 5416

41.3417nQ Q m O A ≈?== m 应受下列允许值限制,

最小允许值:

355

.1195.32414U U n 1n m '1C min ≈--=--= 1C U 为电容器组工作电压,'U 为故障电容器端电压,按下式确定:

kV 95.3212

.0129a 1U U max W 1C =-=-=?,kV 55.115.101.1U 1.1U CO '=?== 最大允许值:

626200P max 1019.582

.1785.44000210U C W 2m ?=??=?= O U 为电容器单元故障瞬间电压降,O C 为电容器单元额定电容,

按下式计算: kV 82.175.1022.1U 22.1U 0C 0=??==,

uF 85.45

.105014.3216f U 2Q C 20C 00=???=π= 实际安装无功容量:var k 3456

16544mnQ Q 0RA =??== 表7-1 M 、T 座的并联无功补偿计算

()kW P L var)(k Q d var)(k Q A n m ? var)(k Q RA M 座

888.4 2824.97 3417.1 216 3456 T 座 10924.2 3470.27 4179 264 4224

7.3 并联电容补偿装置主接线

图7-1表示了并联电容补偿装置的主接线,用于直接供电方式、带回流线的直接供电方式和BT供电方式等牵引变电所;

主接线的主要设备有:

①并联电容器组C。用于无功补偿,与串联电抗器匹配,滤掉一部分谐波电流。

②串联电抗器L。用于限制断路器合闸是的涌流和分闸时的重燃电流;与电容器组匹配,滤掉一部分谐波电流;防止并联电容补偿装置与供电系统发生高次谐波并联谐振;发生短路故障(例如牵引侧母线短路)时,避免电容器组通过短路点直接放电,保护电容器不受损坏;还可以抑制牵引母线瞬时电压降低为零

③断路器QF。为了投切和保护并联电容补偿装置。

④隔离开关QS。为了在维护检查并联电容补偿装置时有明显电点。

⑤电压互感器TV1,TV2(或放电线圈)。为了实现电容器组的继电保护,并联电容器组退出运行时放电。

⑥电流互感器TA1,TA2。为了实现并联电容补偿装置的电流测量和继电保护。

⑦避雷器F。作为过电压保护。

⑧熔断器FU。作为单台电容器的保护。

图7-1 无功补偿的主接线

第8章防雷保护

雷是一种大气中的放电现象,常常损坏有线电视设备。雷击主要有两种:直击雷和感应雷。直击雷是带电云层和大地之间放电造成的,可使用避雷针、避雷线和避雷网防避。感应雷是由静电感应和雷电流产生的电磁感应两种原因引起的。感应雷约占雷击率的90%,危害范围甚广。

8.1 雷电的危害

雷电是自然界存在的物理现象,打雷是指带正负电荷的雷云之间或是带电荷的雷云对大地快速放电而产生的声和光。雷云之间正负电荷放电现象,就是我们平时看到天空闪光和随之而来的巨大隆隆声。天空打雷对现代微电子的电气设备有伤害,但对自然界生物和净化空气十分有好处。但是天空中带电荷的雷云对大地放电。这种强烈直击雷,不仅产生刺眼闪光和巨大雷声,而且打雷所产生的强大雷电流(几十KA~几百KA)、炽热高温(6000~10000℃)。猛烈冲击波,对打雷附近的人畜生命安全造成严重威胁,使建筑房屋损坏,森林着火,石油、电力、气象、通信、航空航天建筑设施造成严重破坏。沿着雷电流流动方向,使周围数公里空间造成强大剧变电磁场,静电场和强烈电磁辐射等物理效应。把感应出来雷电压、雷电流通过供电线路、信号线路和各种金属管线传到各家各户造成人员伤亡,特别对微电子设备(计算机、电视、通信设备、电气设备等)造成严重破坏,导致重大经济损失,打雷是年年重复发生的自然现象,根据有关方面统计资料报告,全球每年因雷电灾害造成的损失高达数十亿美元。我国每年因雷击造成伤亡人员达一万多人,造成的各种经济损失也达数亿人民币。

8.2 防雷措施

(1) 直击雷保护:110KV配电装置装设避雷针或装设独立避雷针;主变压器装设独立避雷针;屋外组合导线装设独立避雷针。

(2)雷电侵入波保护:避雷器结合进线段保护。装设阀式避雷器是变电站对雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值.但是为了使阀式避雷器不至与负荷过重(流过的冲击电流过大)和有效的发挥其保护功能,还需要有”进线段保护”与之配合,这是现代变电站防雷接线的基本思路。阀式避雷器的保护作用基于三个前提:①它的伏秒特性与被保护绝缘的伏秒特性有良好的配合在一切电压波形下,前者均处于后者之下②它的③伏安特性应保证其残压低于被保护绝缘的冲击电气强度③被保护绝缘必须处于该避雷器的

保护距离之内。

8.3 防雷设备安装

首先,在110kV电源进线的终端杆上装设FS4—110型阀式避雷器。引下线采用25mm ×4 mm的镀锌扁刚,下与公共接地网焊接相连,上与避雷器接地端栓连接。

其次,在110kV高压配电室内装设有GG—1A(F)—54型开关柜,其中配有FS4—110型避雷器,靠近主变压器。主变压器主要靠此避雷器来保护,防雷电侵入波的危害。

最后,在27.5kV侧架空线出线杆上,装设保护间隙,或将其绝缘子的铁脚接地,用以防护沿架空线侵入的雷电波。

第9章结论

这次课程设计要求采用斯科特变压器在直接供电方式下给双线区段供电臂供电。以下是本次设计我所做的工作。首先提出设计方案三相平衡联接牵引变电所,通过技术比较确定最终方案。然后,设备的选型和校验包括牵引变压器的选择和校验主要是容量计算和技术指标的检测,绝缘设备的选型和校验主要是关于电气设备、开关设备的选型和校验,以及对室内外母线,断路器的选型和校验。其次是对牵引变电所的防雷设计。本次设计的重点放在了选型、校验和短路计算。最后通过老师和同学的指导完成本次设计满足任务中提及的要求,从而使牵引供电知识得到系统性的深化。经过这几天的牵引供电课程设计,不但使我对之前学过的专业课知识有了一次很好的复习,而且使我深刻体会到书上的知识和实践运用的差距,认识到了课程设计在大学学习中的重要性。通过近两周的课程设计,不但使我对以前所学过的专业课知识有了一次很好的复习,而且使我更加深刻的认识到了课程设计在我们大学学习中的重要性。通过这次实践,我了解了牵引供电系统的用途及工作原理,熟悉了电气化铁道供电系统牵引变电所的设计步骤,锻炼了工程设计实践能力,培养了自己独立设计能力。此次课程设计是对我专业知识和专业基础知识一次实际检验和巩固,同时也是走向工作岗位前的一次热身。

电力变压器试验报告

电力变压器试验报告 装设地点:幸福里小区运行编号:14#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—630/10 10000/400 南阳市鑫特电气有限公司130274 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 1、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 2、直流电阻:

绕阻S位置 实测值(mΩ)最大不平衡 率% AB BC AC 高压1 1049 1050 1050 0.1 2 993.8 994.2 993.9 3 937.7 938.6 938.1 低压a~o b~o c~o 2.8 1.271 1.281 1.307 3、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告

装设地点:幸福里小区运行编号:15#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—650/10 10000/400 南阳市鑫特电气有限公司131105 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 4、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 5、直流电阻: 实测值(mΩ)最大不平衡绕阻S位置 率% AB BC AC 高压 1 1050 1048 1050 0.1

《电机与拖动》课程设计_小型单相变压器设计[文档在线提供][1].

小型单相变压器设计 小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V.A 以下的变压器。最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。这类变压器在生活中的应用非常广泛。 一、 变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1N ,副绕组匝数为2N 。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。 (1) 电压变换 当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一 次绕组交链,又与二次绕组交链的主磁通φ。 (1-1) (1-2)

() (1-3) (1-4) 说明只要改变原、副绕组的匝数比,就能按要求改变电压。 (2) 电流变换 变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。 2211I U I U = 又 (1-5) K I I U U I 22121== ∴ (1-6) 说明变压器在改变电压的同时,亦能改变电流。 小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。 二、 变压器的基本结构 1、 铁心:铁心是变压器磁路部分。为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅量较高的、厚度为0.35或0.5mm 、表面 涂有绝漆的热轧或冷轧硅钢片叠装而成。 铁心分为铁柱和铁轭两部分,铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。 铁心结构有两种基本形式:心式和壳式。 2、 绕组:绕组是变压器的电路部分。一般采用绝缘纸包的铝线或铜线绕成。为了节省铜材,我国变压器线圈大部分是采用铝线。 图(2) 3、 其它结构部件:储油柜、气体继电器、油箱。

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

6~35KV变压器检修、试验规划方案.docx

广西石化公司2013 年大检修变压器检修技术方案 编制:桂文吉 审核: 批准: 动力部电气装置

目录 一工程概况 二检修项目 三编制依据 四检修组织 五检修工艺及技术要求 六安全措施

一工程概况 广西石化全厂共有 108 台变压器,由 ABB 公司 220KV 变压器、江苏华鹏 35KV 变压器、广州维奥依林 6KV 变压器、顺特 6KV 干式变压器组成。开工运行平稳,没有出现过变压器事故,在本次大检修当中重点进行常规检修、维护保养、变压器试验。 二检修项目 2.1 油变检修项目 2.1.1 检查并拧紧套管引出线的接头; 2.1.2 放出储油柜中的污泥,检查油位计; 2.1.3 净油器及放油阀的检查; 2.1.4 冷却器、储油柜、安全气道及其保护膜的检检查; 2.1.5 套管密封、顶部连接帽密封衬垫的检查,瓷绝缘的检查、清扫;2.1.6 检查各种保护装置、测量装置及操作控制箱,并进行试验; 2.1.7 检查有载或无载分接开关; 2.1.8 充油套管及本体补充变压器油; 2.1.9 检查接地装置; 2.1.10 油箱及附件检查防腐; 2.1.11 检查并消除已发现而就地能消除的缺陷;、 2.1.12 全面清扫 2.1.13 进行规定的测量和试验。 三检修依据

3.1 《石油化工设备维护检修规程(第六册)(SHS06002-2004) 3.2 《电业安全工作规程》 DL408-91 3.3 《电力变压器检修导则》;DL/T573-95 3.4 《电力变压器运行规程》;DL/T572-95 3.5 《电力设备预防性试验规程》;DL/T596-1996 四检修组织 检修负责人 技术负责人 安全员 检修班组 班长 五检修工艺及技术要求 5.1 油变部分 5.1 冷却系统检修 5.1.1 冷却风机应清洁、牢固、转动灵活、叶片完好;试运转时应无振动、过热或碰擦等情况、转向应正确;电动机操作回路、开关等绝缘良好。 5.1.2 强迫油循环系统的油、水管路应完好无渗漏;管路中的阀门应操作灵活,开闭位置正确;阀门及法兰连接处应密封良好 5.1.3 强迫油循环泵转向应正确,转动时应无异音、振动和过热现象;其密封应良好,无渗油或进气现象。 5.1.4 差压继电器、流动继电器应经校验合格,且密封良好,动作可

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

变压器课程设计-兰州交通大学

. . 电气2013级“卓班” 企业课程(电机学)实习与实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2015年7月25日

1 实习报告 1.1实习项目 1.1.1 实习项目 1 时间:2015-7-22,上午8:00至12: 00 地点:中国北车集团兰州机车厂 指导教师:张红生 实习内容:了解电机生产、制造的工艺流程及测试方法 今天,我们来到了中国北车兰州机车厂了解电机生产、制造的工艺流程及测试方法。兰州机车厂隶属中国北方机车车辆工业集团公司,是西北地区机车检修的重要基地,目前检修的主要品种有东风系列内燃机车和韶山型电力机车。 北车兰州机车有限公司是中国北车股份有限公司的全资子公司,始建于1954年,是我国西北地区唯一的内燃机车、电力机车检修基地,铁路工程机械制造基地和规模最大、品种最全的工矿机车制造基地,属国家高新技术企业。今天,在老师的带领下,我们来到了兰州机车厂进行了认识实习。 在进入厂区前,工作人员给我们详细地介绍了相关的注意事项,我们了解到厂区 内部的设备大多都是 带电设备,不能直接 触摸,以免发生危险, 同时也给我们介绍到 中国北车兰州机车厂 是中国北车集团下属 的分公司,主要承担 机车的保养和修理任 务。当机车运行到120 万公里时就必须要进 厂检修。检修也是一 步一步完成的,他们 厂里的各个车间分别 承担着不同的检修任图1 内燃机车主发电机转子务。

进入车间,我们在一个老师的带领下,从外向里开始参观。首先我们参观了电机车间,观看了电机部件的生产,电机的拆卸及组装。进入车间后,我们看到了 正在检修的内燃机车主 发电机的定转子(如图1 和图2所示),在发电机 转子的转子上,绕着一系 列的励磁绕组,励磁绕组 是可以产生磁场的线圈 绕组,有串励和并励之分 的,发电机内用励磁 图 2 内燃机车主 发电机定子 绕组,可以替代永磁体, 可以产生永磁体无法产生的强大的磁通密度,且可以方便调节,从而可以实现大功率发电。在发电机的定子绕组上,绕的是发电机的电枢绕组,电枢绕组由一定数目的电枢线圈按一定的规律连接组成,他是直流电机的电路部分,也是感生电动势,产生电磁转矩进行机电能量转换的部分。线圈用绝缘的圆形或矩形截面的导线绕成,分上下两层嵌放在电枢铁心槽内,上下层以及线圈与电枢铁心之间都要妥善地绝缘,并用槽楔压紧。 接下来,工作人员又带我们了解了机车上的电压互感器,电压互感器的实质就是一个带铁芯的变压器,它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。 最后,我们又参观了电器车间,进去后就可以看到组成机车电气系统的分立元件的生产和检修,车间分为了两部分,一部分用于机车电气系统中一些较大部件的检修,生产和加工;另一部分是一些机车电气小部件及控制开关的检修生产。通过今天的参观实习,我对电机的检修与生产的工艺流程有了进一步的认识,不仅见到了原来在课本上学过但却没有实际见过的东西,也学到了原来在课本上学不到的知识,让我深刻的认识到将理论转换为实践的重要意义,在以后的生活和工作中,我要不断的充实和丰富自己,不放弃任何能够锻炼自己的机会,让自己能够学习到更多的知识。 1.1.2实习项目2 时间:2015-7-22,下午2:30至4: 30 地点:甘肃宏宇变压器有限公司

课程设计-电力变压器台数和容量的最佳方案设计

编号:1151401127 课程设计 (2011级本科) 题目:电力变压器台数和容量的最佳方案设计 系(部)院:物理与机电工程学院 专业:电气工程及其自动化 作者姓名:谭小峰 指导教师:刘永科职称:副教授 完成日期:2014 年7 月 1 日 二○一四年七月

目录 1 前言 1.1 设计任务书 (1) 1.2基础资料 (3) 2 主接线方案的选择 (4) 3变压器的选择 (5) 3.1 变压器容量的选择 (5) 3.2 变压器台数的选择 (5) 4方案中变压器容量的经济比较 (5) 4.1 变压器经济比较 (5) 4.2 综合费用比较 (7) 4.3 动态比较 (7) 附电气主接线图 (9) 全文总结 (10)

前言 变电站内变压器容量和台数是影响电网结构、供电安全可靠性和经济性的重要因素,而容量大小和台数多少的选择往往取决于区域负荷的现状和增长速度,取决于一次性建设投资的大小,取决于周围上一级电网或电厂提供负载的能力,取决于与之相联结的配电装置技术和性能指标,取决于负荷本身的性质和对供电可靠性要求的高低,取决于变压器单位容量造价、系统短路容量和运输安装条件等等,近几年随着变压器制造技术的不断提高,变压器自身质量和安全运行水平大幅度提高;变压器空载损耗下降的幅度大,变压器经济运行的负载率得到不断降低;又国家节能减排政策,鼓励企业开展经济运行工作;建设、扩建和变压器增容的台数和容量的选择,国内尚无明确具体的规定,也是随技术水平提高不断完善的一个系统工程,一般根据常规经验和规划者的观点来进行;结合相关规程制度,作者认为一般都应考虑如下因素: (1)变压器额定容量应能满足供电区域内用电负荷的需要,即满足全部用电设备总计算负荷的需要,避免变压器长期处于过负荷状态运行。新建变电站变压器容量应满足5-10年规划负荷的需要,防止不必要的扩建和增容,也减少因为扩建增容造成的大面积和长时间停电;对较高可靠性供电要求的变电站一次最好投入两台变压器,变压器正常的负载率不大于50%为最好。 (2)对于供电区域内有重要用户的变电站,应考虑一台变压器在故障或停电检修状态下,其它变压器在计及过负荷能力后的允许时间内,保证用户的一级和二级负荷,对一般负荷的变电站,任何一台变压器停运,应能保证全部负荷的70%-80%的电力供应不受影响,城区变电站变压器台数和容量应满足N-1的要求。

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

400A动铁心分磁式弧焊变压器课程设计要点

目录 绪论 ................................................................................................. 错误!未定义书签。第一章动铁心分磁式弧焊变压器简介 (4) 1.1 结构和原理 (4) 1.2 用途及特点 (5) 1.3 安全使用规则 (6) 1.4 故障与处理方法 (7) 1.5 注意事项 (7) 第二章动铁分磁式弧焊变压器设计 (9) 2.1 原始数据 (9) 2.2 初步参数计算 (9) 2.3 初步决定铁心主要尺寸 (10) 2.4 计算初、次级绕组尺寸 (12) 2.5 确定变压器尺寸 (14) 2.6 核算焊接电流 (15) 2.7 验算变压器经济指标 .................................................... 错误!未定义书签。结束语 ............................................................................................. 错误!未定义书签。参考文献 . (20)

绪论 1、弧焊电源在电弧焊中的作用 不同材料、不同结构的工件,需要采用不同的电弧焊工艺方法,而不同的电弧焊工艺方法则需用不同的电弧焊机。例如:操作方便、应用最为广泛的焊条电弧焊,需要由对电弧供电的电源装置、和焊钳组成的手弧焊机;锅炉、化工、造船等工业广为使用的埋弧焊,需要由电源装置和、控制箱和焊车等组成的埋弧焊机;适用于焊接化学性活泼金属的气体保护电弧焊,需要由电源装置、控制箱、焊车(自动焊)或送丝机构(半自动焊)、焊枪、气路和水路系统等组成的气体保护电弧焊;适用于焊接高熔点金属的等离子弧焊,则需要由电源装置、控制系统、焊枪或焊车(自动焊)、气路和水路系统等组成的等离子弧焊机。 由上述可知,各种电弧焊方法所需的供电装置即弧焊电源是电弧焊机的重要组成部分,是对焊接电弧供给电能的装置,它应满足电弧焊所要求的电气特性,这正是本课程将要系统讲述的内容。与弧焊电源配套的其它装置和设备部分,将在《焊接方法和设备》课程中讲述。 显然,弧焊电源电气性能的优劣,在很大程度上决定了电弧焊机焊接过程的稳定性。没有先进的弧焊电源,要实现先进的焊接工艺和焊接过程自动化也是难以办到的。因此,应该对弧焊电源的基本理论、结构特点和电气性能进行深入的研究,真正了解和正确使用弧焊电源,进而研制出新型的弧焊电源,使焊接质量 和生产效率得到进一步提高。[][]5数据来源参考文献 。 2、常见弧焊电源的特点和用途 1、交流弧焊电源 交流弧焊电源包括工频交流弧焊电源(弧焊变压器)、矩形波交流弧焊电源。下面分述其特及用途。 工频交流弧焊电源 即是弧焊变压器,它把电网的交流电变成适合于电弧焊的低电压交流电,它由变压器、电抗器等组成。弧焊变压器具有结构简单、易造易修、成本低、磁偏吹小、空载损耗小、噪声小等优点。但其输出电流波形为正弦波,因此,电弧稳定性较差,功率因数低,一般用于焊条电弧焊、埋弧焊和钨极惰性气体保护电弧焊等方法。 矩形波交流弧焊电源 它是利用半导体控制技术来获得矩形交流电流的。由于输出电流过零点时间短,电弧稳定性好,正负半波通电时间和电流比值可以自由调节,此特点适合于铝及铝合金钨极氩弧焊。 2、直流弧焊电源 直流弧焊发电机

变压器课程设计-兰州交通大学讲解

电气2013级“卓班” 企业课程(电机学)实习与实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2015年7月25日

1 实习报告 1.1实习项目 1.1.1 实习项目 1 时间:2015-7-22,上午8:00至12: 00 地点:中国北车集团兰州机车厂 指导教师:张红生 实习内容:了解电机生产、制造的工艺流程及测试方法 今天,我们来到了中国北车兰州机车厂了解电机生产、制造的工艺流程及测试方法。兰州机车厂隶属中国北方机车车辆工业集团公司,是西北地区机车检修的重要基地,目前检修的主要品种有东风系列内燃机车和韶山型电力机车。 北车兰州机车有限公司是中国北车股份有限公司的全资子公司,始建于1954年,是我国西北地区唯一的内燃机车、电力机车检修基地,铁路工程机械制造基地和规模最大、品种最全的工矿机车制造基地,属国家高新技术企业。今天,在老师的带领下,我们来到了兰州机车厂进行了认识实习。 在进入厂区前,工作人员给我们详细地介绍了相关的注意事项,我们了解到厂区 内部的设备大多都是 带电设备,不能直接 触摸,以免发生危险, 同时也给我们介绍到 中国北车兰州机车厂 是中国北车集团下属 的分公司,主要承担 机车的保养和修理任 务。当机车运行到120 万公里时就必须要进 厂检修。检修也是一 步一步完成的,他们 厂里的各个车间分别 承担着不同的检修任图1 内燃机车主发电机转子务。

进入车间,我们在一个老师的带领下,从外向里开始参观。首先我们参观了电 机车间,观看了电机部件 的生产,电机的拆卸及组 装。进入车间后,我们看 到了正在检修的内燃机 车主发电机的定转子(如 图1和图2所示),在发 电机转子的转子上,绕着 一系列的励磁绕组,励磁 绕组是可以产生磁场的 线圈绕组,有串励和并励 之分的,发电机内用励磁图2 内燃机车主发电机定子绕组,可以替代永磁体,可以产生永磁体无法产生的强大的磁通密度,且可以方便调节,从而可以实现大功率发电。在发电机的定子绕组上,绕的是发电机的电枢绕组,电枢绕组由一定数目的电枢线圈按一定的规律连接组成,他是直流电机的电路部分,也是感生电动势,产生电磁转矩进行机电能量转换的部分。线圈用绝缘的圆形或矩形截面的导线绕成,分上下两层嵌放在电枢铁心槽内,上下层以及线圈与电枢铁心之间都要妥善地绝缘,并用槽楔压紧。 接下来,工作人员又带我们了解了机车上的电压互感器,电压互感器的实质就是一个带铁芯的变压器,它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。 最后,我们又参观了电器车间,进去后就可以看到组成机车电气系统的分立元件的生产和检修,车间分为了两部分,一部分用于机车电气系统中一些较大部件的检修,生产和加工;另一部分是一些机车电气小部件及控制开关的检修生产。通过今天的参观实习,我对电机的检修与生产的工艺流程有了进一步的认识,不仅见到了原来在课本上学过但却没有实际见过的东西,也学到了原来在课本上学不到的知识,让我深刻的认识到将理论转换为实践的重要意义,在以后的生活和工作中,我要不断的充实和丰富自己,不放弃任何能够锻炼自己的机会,让自己能够学习到更多的知识。

电力变压器试验报告

电力变压器试验报告装设地点:幸福里小区运行编号:14#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 二、试验项目: 3、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告 装设地点:幸福里小区运行编号:15#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号:

二、试验项目: 6、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告 装设地点:幸福里小区运行编号:4#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 二、试验项目:

9、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告 装设地点:幸福里小区运行编号:4#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 二、试验项目: 12、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格

35KV变压器课程设计

前言 本次课程设计,我选到的题目是35KV变电站电气初设。 此次设计的初衷是设计一个终端变电站,变电站按小型化、无人值班、有人看守,以及综合自动化等要求设计。而变电站的设计应秉承如下原则:安全可靠,技术领先,投资合理,标准统一,运行高效。所以,本次设计应该体现统一性,适应性,先进性,可靠性和经济性。 根据资料,本变电站主供电源曲子白家冲220KV变电站的110KV 母线,经大水变电站两个35KV出现间隔双回线供电。本变电站地理位臵为东经110°24′230″北纬30°35′34″,海拔高度▽89.30;年平均降水量1164.1mm,日最大降水量116.6mm,年平均风速1.6m/s,最大风速20m/s,年平均雷暴日40日/年,为多雷区;占地约为35*40平方米,四周平坦,西面进线,东面出线,该地地质构造为红色硬黏土,土地电阻率为100欧米。

目录 前言 (1) 第一章主变压器的选择 (2) 第二章电气主接线设计 (4) 第三章短路电流计算 (5) 第四章电气设备的选择 (8) 第五章 10KV侧母线的选择 (10) 参考文献 (12)

第一章 主变压器的选择 一、变压器台数的确定 1、对大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。 2、对地区性孤立的一次变电所或大型工业专用变电所,在设计时应考虑装设三台主变压器的可能性。 3、对于规划只装设两台主变压器的变电所,其变压器基础宜按大于变电所容量的1~2级设计,以便负荷发展时,更换变压器的容量。 所以,由上述三条规定可以确定,本变电站主变压器台数为两台。 二、主变压器容量的确定 1、主变压器容量一般按照变电所建成5~10年的规划负荷选择并适当考虑到远期10~20年的负荷发展。对于城郊变电所,主变压器容量应与城市规划相结合。 2、根据变电所所带负荷的性质和电网结构确定主变压器的容量。对于有重要负荷的变电所,应考虑当一台主变压器停运时,其余变压器在设计过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对于一般性变电所,当一台主变停运时,其余变压器容量应保证全部符合的70%~80%。 3、同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化、标准化。 因此,变压器容量的计算为S N 24.4041%70*97 .05600 %70*cos ===βP KVA

课程设计论文电力变压器继电保护设计

目录 1 引言 (3) 2 继电保护相关理论知识 (4) 2.1 继电保护的概述 (4) 2.2 继电保护的任务 (5) 2.3 继电保护基本原理 (5) 2.3.1 反映电气量的保护 (5) 2.3.2 反映非电气量的保护 (6) 2.4 对继电保护装置的要求 (6) 2.5 继电保护装置的组成 (8) 2.6 工作回路 (9) 3 某电力变压器继电保护设计 (9) 3.1 设计基本资料 (9) 3.2 本系统故障分析 (10) 3.3 本设计继电保护装置原理概述 (10) 3.3.1 纵差动保护 (10) 3.3.2 变压器瓦斯保护 (12) 3.3.3 平行双回线路横联方向差动保护 (13) 3.3.4 复合电压启动的过电流 (13) 第1页共25页

3.3.5 变压器中性点直接接地零序电流保护工作原理 (14) 3.3.6 过电流保护的构成及工作原理 (16) 4 短路电流计算和继电保护设计整定 (17) 4.1 初始数据 (17) 4.2 设计计算 (17) 4.2.1 画出短路等值电路 (18) 4.2.2 短路电流计算 (19) 4.2.3 保护装置的配置 (20) 4.2.4 各保护装置的整定计算 (21) 4.3 保护配置图 (27) 4.3.1三段式电流保护接线图 (27) 4.3.2 差动保护单相原理图 (28) 4.3.3 复合电压启动的过电流保护原理图 (29) 4.3.4 零序电流保护和中性点间隙接地保护原理图 (30) 5 课程设计心得与体会 (30) 参考文献 (32) 第2页共25页

1 引言 电网继电保护和安全自动装置是电力系统的重要组成部分,对保证电力系统的正常运行,防止事故发生或扩大起了重要作用。继电保护是对电力系统中发生 第3页共25页

《电机与拖动》课程设计_小型单相变压器设计 [文档在线提供]

小型单相变压器设计 小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V.A 以下的变压器。最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、 彼此绝缘的绕组(构成电路)构成。这类变压器在生活中的应用非常广泛。 一、 变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E 型和C 型铁心。 变压器(transformer )是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1N ,副绕组匝数为2N 。 图(1)变压器结构示意图 理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u ,产生电流1i ,建立磁通φ,沿铁心闭合,分别在原副绕组中感应电动势21e e 和。 (1) 电压变换 当一次绕组两端加上交流电压1u 时,绕组中通过交流电流1i ,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通φ。 (1-1) (1-2)

() (1-3) (1-4) 说明只要改变原、副绕组的匝数比,就能按要求改变电压。 (2) 电流变换 变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模|1Z |的大小,而一次电流1I 的大小则取决于2I 的大小。 2211I U I U = 又 (1-5) K I I U U I 22121== ∴ (1-6) 说明变压器在改变电压的同时,亦能改变电流。 小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。 二、 变压器的基本结构 1、 铁心:铁心是变压器磁路部分。为减少铁心内磁滞损耗涡流损耗,通常铁心用含硅量较高的、厚度为0.35或0.5mm 、表面 涂有绝漆的热轧或冷轧硅钢片叠装而成。 铁心分为铁柱和铁轭两部分,铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。 铁心结构有两种基本形式:心式和壳式。 2、 绕组:绕组是变压器的电路部分。一般采用绝缘纸包的铝线或铜线绕成。为了节省铜材,我国变压器线圈大部分是采用铝线。 图(2) 3、 其它结构部件:储油柜、气体继电器、油箱。

课程设计变压器设计

课程设计任务书 班级(专业) 10生产过程自动化2班设计人乔月朋 一、课程设计题目:小型单相变压器设计 二、设计要求 通过该设计,初步掌握小型变压器容量、铁心、绕组等设计步骤和方法,熟悉有关规程和设计手册的使用方法。 三、设计的主要内容 1、额定容量的确定 2、铁心尺寸的确定 3、绕组匝数与导线直径 4、绕组排列及铁心尺寸的最后确定 5、讨论说明 6、整理成册 四、原始资料 变压器容量V·A 磁通密度 ×10T 效率η(%)电流密度 铁心计算中的 值 小于10 6000~7000 60~70 3~2.5 2 10~50 7000~8000 70~80 2.5~2 2~1.5 50~100 8000~9000 80~85 2.5~2 1.5~1.3 100~500 9000~11000 85~90 2.5~1.5 1.3~1.25 500~1000 11000~12000 90~92 1.5~1.2 1.25~1.1 五、设计步骤 1、分组布置任务,熟悉原始资料 2、搜集资料,学习理解 3、根据要求进行计算 4、根据要求写出报告,打印成册

5、检查情况、答辩、给出成绩 六、课程设计论文包括的内容 1、设计任务书 2、原理 3、结构 4、额定容量的确定 5、铁心尺寸的确定 6、绕组匝数与导线直径 7、绕组排列及铁心尺寸的最后确定 8、谢辞 9、参考文献 10、后记 要求课程设计自 2011 年 12 月 26 日至 2011 年 12 月 30 日 止自动化专业教研室主任年月日 机电系、系主任签章年月日

指导教师评语: 指导教师: 年月日

目录 1、课程设计任务书 2、教师评语 3、小型单相变压器的设计 (5) 3.1变压器工作原理 (5) 3.2变压器基本结构 (6) 4、变压器基本设计内容 (7) 4.1额定容量的确定 (7) 4.2铁心尺寸的设定 (8) 4.3绕组匝数与导线直径 (9) 4.4绕组排列及铁心尺寸的最后确定 (11) 5、实例举例 (12) 结论 (15) 心得体会 (15) 谢辞 (15) 主要参考文献 (16) 英文资料 (16)

小型变压器课程设计

辽宁工程技术大学 《电机学》课程设计 设计题目:小型单相变压器设计 院(系、部): 专业班级: 姓名: 学号: 指导教师: 日期: 2013-6-28

电气工程系课程设计标准评分模板

摘要 电,现今社会已经近乎于主导地位的洁净能源,还在继续提高着自己的位置。围绕着它所展开的学术研究也一天天的多了起来,针对着世界能源紧缺这个不可回避的问题,人们把希望寄托到了电的身上。它的产生方式很多,这就为它能多方式的产生打下了基础,如水能、风能等不好利用的能源,都能被合理的转化成电能,可见电的发展前景是很广阔的。发电、变电、用电,很多课题都已经大规模的展开,变压器也是其中一门很重要的学科。 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。

目录 一﹑变压器的工作原理 (6) 二﹑变压器的组成 (6) (三)﹑其他部分 (8) 三﹑变压器主要参数的计算 (9) (一)、容量的确定 (9) (二)、铁心尺寸的选定 (10) (三)、绕组的计算 (12) (四)、绕组排列 (13) (五)、安全性和稳定性 (14) 四、例题 (15) 五、结论 (17) 参考文献 (18)

一﹑变压器的工作原理 当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁芯穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁芯中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁芯里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。 二﹑变压器的组成 (一)﹑铁心 1﹑铁心的作用和形式铁心是变压器的基本部件,由磁导体和夹紧装置组成,所以它有两个作用。 在原理上,铁心的磁导体是变压器的磁路。它把一次电路的电能转为磁能,又由自己的磁能转变为二次电路的电能,是能量转换的媒介,磁导体是铁心的主体。在结构上,铁心的夹紧装置不仅使磁导体成为一个机械上完整的结构,而且在其上面套有带绝缘的线圈,支持着引线,几乎安装了变压器内部的所有部件,所以它又是变压器的骨架。 铁心的重量在变压器各部件中占有绝对的优势,在干式变压器中占总重量的60%左右,在油浸式变压器中由于有变压器油和油箱,重量的比例才下降约占40%。 变压器的铁心(即磁导体)是框形闭合结构。其中,套线圈的部分称心柱,不套线圈只起闭合磁路的部分称铁扼。 铁心分为两大类,不套线圈只起闭合磁路的部分称铁扼。 铁心分为两大类,壳式铁心和心式铁心。铁扼包围了线圈的称为壳式铁心,否则称心式铁心,由带状硅钢片卷绕而成的称卷铁心。 壳式铁心一般是水平放置的,心柱截面为矩形,每相有两个旁扼,壳式铁心的优点是铁心片规格少,心柱截面大而长度短,夹紧和固定方便,漏磁通有闭合回路,附加损耗小,易于油对流散热。缺点是线圈为矩形,工艺特殊,绝缘结构复杂,短路能力差,尤其是硅钢片用量多。 心式铁心的优缺点正好与壳式相反,壳式和心式两种结构各有特色,很难断定其劣式。但由其绝缘所决定的制造工艺则大有区别,一旦选定了某一种结构,就很难转而生产另一种结构。正由于这个原因,国内都采用心式铁心,只有在小容量的单相变压器及特殊用途的变压器中采用壳式铁心。

变压器冲压模具课程设计

哈尔滨理工大学荣成学院课程设计说明书 题目:变压器铁芯级进模设计 专业年级: 学生姓名: 学号: 指导教师: 哈尔滨理工大学荣成学院 完成时间:2014 年 6 月26 日

哈尔滨理工大学荣成学院课程设计任务书

目录 第1章变压器铁芯的冲裁工艺性分析 (1) 1.1 设计任务 (1) 1.2 变压器铁芯的工艺性分析 (1) 1.2.1 变压器铁芯的原材料分析 (1) 1.2.2 变压器铁芯的尺寸精度分析 (1) 1.2.3 变压器铁芯结构工艺性分析 (2) 1.3 变压器铁芯冲裁的工艺方案的确定 (2) 第2章变压器铁芯冲压模具总体结构设计 (3) 2.1 模具总体方案的确定 (3) 2.2 定位、送料方式 (4) 2.3 卸料出件方式 (5) 2.4 模具压力中心 (5) 2.5 凸凹模刃口尺寸设计 (6) 2.6 导向方式与模架类型 (7) 2.6.1 导向方式的确定 (7) 2.6.2 模架类型的选择 (8) 第3章变压器铁芯冲压模具的零部件设计 (9) 3.1 凸模 (9) 3.2 凹模 (10) 第4章模具的装配和校核 (11) 4.1 模具的总装图和工作过程 (11) 4.2 模具的装配 (12) 4.3 模具的安装 (12) 4.4 闭合高度和压力机相关参数校核 (13) 4.4.1 压力机的选择 (13) 4.4.2 装模高度的校核 (13) 参考文献 (14)

第1章 变压器铁芯的冲裁工艺性分析 1.1 设计任务 设计任务如图1-1所示。 图1-1 垫片零件图 已知技术参数: 变压器铁芯 材料硅钢 料厚 0.35 mm 1.2 变压器铁芯的工艺性分析 冲压件的工艺性是指冲压件对冲压工艺的适应性。冲裁件的工艺性是否合理,对冲裁件的质量、模具寿命和生产率有很大影响,在一般情况下,对冲压件工艺性影响最大的几何形状尺寸和精度要求。良好的冲压工艺性应能满足材料较省、工序较少、模具加工较容易、寿命较高、操作方便及产品质量稳定等要求。 此工件是标准的小容量变压器的芯片,生产批量大,材料是硅钢片,厚度0.35mm 。,在变压器线圈上插装时,相邻的一层倒叠装,直到所需的铁心厚度。鉴于生产批量大,应重点考虑节省材料、提高材料利用率的问题。 1.2.1 变压器铁芯的原材料分析 硅钢的强度 硬度高,弹性好,塑性 韧性较低,但零件尺寸要求不高,厚度小,具有一定的冲压性能。孔边距远大于凸、凹模所允许的最小壁厚,如零件图所示,故可以考虑采用复合冲压工序;零件上的尺寸都是自由公差,按IT14级,一般冲裁均能满足。 1.2.2 变压器铁芯的尺寸精度分析 1)冲裁件的经济公差等级不高于IT11级,一般要求落料件公差等级最好低于IT10级,冲孔件最好低于IT9级。零件上所有未注工差的尺寸,属自由尺寸可按照IT11级确定工件的工差, 零件外形: mm mm mm mm 013.0011.0016.0019.019,12,5.45,67---- 内部形状:mm mm 075 .0016.004,5.33++φ 孔心距mm 085.055± 2)冲裁件的断面粗糙度与材料塑性、材料厚度、冲裁模间隙、刃口锐钝以及冲模

相关文档
最新文档