SAR雷达目标信号模拟器案例

SAR雷达目标信号模拟器案例
SAR雷达目标信号模拟器案例

SAR雷达目标信号模拟器案例

来源:北京华力创通科技股份有限公司作者:发表时间:2010-04-08 16:08:50 目前机载 SAR 雷达设备的主要测试手段是在地面采用点目标信号进行部分指标和分辨率测试。进

一步完整的成像测试需要安装在运载飞机上进行实际飞行测试,得到最后的指标。

星载 SAR 雷达设备的主要测试手段同样是在地面点目标信号进行部分指标和分辨率测试。通过

这种测试来估计实际的成像指标。

XXX 型 SAR 雷达目标信号模拟器可以实时模拟回放多点目标和场景目标回波。用于机载或星载

SAR 雷达设备在地面进行完整的功能和性能指标调试和测试。

XXX 型 SAR 雷达目标回波信号模拟器基本原理是一种数字储频体制的测试信号模拟设备。接收

来自雷达系统 TR 组件送出的脉冲发射信号,并在此基础上生成触发脉冲和回波信号;实时模拟点目

标回波信号:--能进行时间延迟、能叠加多普勒频移,能进行幅度调制;非实时模拟面目标回波信

号--可叠加地表信息、轨道特性、平台姿态特性和幅相误差、波位特性、天线性能等工程误差

XXX 型 SAR 雷达目标回波信号模拟器主要由三个功能单元组成:

射频单元

将来自雷达系统脉冲发射信号转换到中频,并将中频单元的模拟回波信号混频至射频,通过射频

电缆注入或通过天线回放给被测雷达;

数字中频单元

基于数字储频体制获取中频信号,经过数字变换成多点目标回波中频信号回放给射频单元。或根

据被测雷达的信号特征,将已经存储的大型场景目标回波回放出去

数学仿真单元

运行 SAR 雷达场景目标模拟生成算法,生成场景(即面目标)回波数据,注入给数字中频单元

技术优势

幅相控制技术

高速 AD/DA 技术( 20M - 1.5G 采样率)

实时点目标运算,非实时面目标模拟

高速板间数据传输技术(单通道最高速率可达 6Gbps )

大容量板级数据存储技术( 20G )

应用方案

雷达系统回波模拟

精密延迟信号实现

用于宽带雷达模拟器

实时记录 SAR 发射信号

实时回放数字信号、模拟各种条件

下的回波信号

技术性能

AD/DA 指标: 1.5GSPS , 10bits

板间数据传输速度: 6 × 6Gbps

单板数据存储容量: 16GB

磁盘阵列容量: 2TB

相位精度:二次相位误差:≤ 10 °

三次相位误差:≤ 8 °

带内幅度波动:± 0.5dB

采样率: 1.2GSPS

多普勒带宽: 2000 - 3000Hz

回波宽度: 80 - 250us ,步长 5us

整体时延:τ +2us - 300us ,步长 0.5us 可调,τ为脉宽

sar合成孔径雷达图像点目标仿真报告附matlab代码

S A R 图像点目 标仿真报告 徐一凡 1 SAR 原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。 SAR 回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:2r r C B ρ=,式中r ρ表示雷达的距离分辨率,r B 表示雷达发射信号带宽,C 表示光速。同为 (PT x = ,0z =;), (;)PT R s r = = (2) (;)R s r 就表示任意时刻s 时,目标与雷达的斜距。一般情况下,0v s s r -<<,于是通过傅里叶技术展开,可将(2)式可近似写为: 2 20(;)()2v R s r r s s r =≈+- (3) 可见,斜距是s r 和的函数,不同的目标,r 也不一样,但当目标距SAR 较远时,在观测带

内,可近似认为r 不变,即0r R =。 图2:空间几何关系 (a)正视图 (b)侧视图 图2(a)中,Lsar 表示合成孔径长度,它和合成孔径时间Tsar 的关系是Lsar vTsar =。(b)中,θ?为雷达天线半功率点波束角,θ为波束轴线与Z 轴的夹角,即波束视角,min R 为近距点距离,max R 为远距点距离,W 为测绘带宽度,它们的关系为: 2min (R H tg θθ?=?-) 式中,rect()表示矩形信号,r K 为距离向的chirp 信号调频率,c f 为载频。 雷达回波信号由发射信号波形,天线方向图,斜距,目标RCS ,环境等因素共同决定,若不考虑环境因素,则单点目标雷达回波信号可写成式(6)所示: ()()r n n s t wp t n PRT στ∞=-∞= -?-∑ (6) 其中,σ表示点目标的雷达散射截面,w 表示点目标天线方向图双向幅度加权,n τ表

雷达信号模拟器方案设计报告

1总体技术方案 1.1总体设计概述 雷达信号环境模拟器能够产生各种类型的雷达辐射信号,为XX电子侦察设备的鉴定试验,产生所要求的各种类型的雷达辐射信号,构建既定的复杂雷达信号的电磁环境,以便准确评估雷达侦察设备的技术战术指标和效能。 雷达信号环境模拟器在系统中的地位和作用如下图所示: 图4.1-1 设备在系统中的地位和作用 测评系统主要由被试的雷达侦察设备、雷达信号环境模拟器(5个频段构成)、评测系统软件等设备组成。 1.2总体设计方案 雷达信号环境模拟器的总体组成框图如下图所示:

辐射源数据库用于存储各种雷达和平台的参数(包括真实雷达和虚拟雷达),通过主控计算机进行读取,辐射源数据可以进行添加、修改和删除等操作。 主控计算机是人机交互的平台,主要完成试验场景描述、试验过程的管理和试验工作状态和参数记录等。试验场景描述首先进行需要模拟的雷达的数量、位置的设定,然后从雷达辐射源库中选取雷达参数,对每部雷达的类型、天线扫描方式、扫描周期、扫描速度、雷达信号的射频频率、脉冲宽度、脉冲重复周期PRI 变化类型等进行配置。主控计算机根据设置的每部雷达的参数,将需要模拟的雷达动态分配给1~5个雷达信号模拟器中的一个,再利用通信接口将相应的雷达参数发送到对应频段的雷达信号模拟器。 各频段的雷达信号模拟器内置的控制DSP ,根据主控计算机传送的雷达信号数量和雷达信号参数数据,按照每部雷达各自的脉冲时序,生成对应的时序控制信号,分配给每个雷达中频信号产生器,产生所需要的雷达中频信号波形数据和中频信号。控制DSP 根据雷达工作频段,控制信号各波段射频模块进行变频和放大,通过天线辐射出去。 各频段的雷达信号模拟器配置有位置和授时接口,用于接收载车提供的GPS/北斗位置和授时信息。在试验过程中记录各频段雷达信号模拟器的当前位置信息,并且以授时时间作为时间基准,按照场景设定的时间要求模拟产生雷达

汽车毫米波雷达目标模拟器

一 汽车毫米波雷达目标模拟器 科电工程的毫米波雷达目标模拟器,用来验证车载76GHz和79GHz毫米波雷达的性能参数。解决毫米波雷达生成企业在研发,生成,质量控制等环节的测速,测距等性能测试需求。特别适合于整车条件下对ACC,FCW,AEB等辅助自动驾驶ADAS功能的验证和测量。同时也提供整车EMC暗室环境下的抗干扰版本。 科电MRT7681-02毫米波雷达目标模拟器 适用范围: ?ISO15622ACC自适应巡航控制系统; ?ISO15623FCW前向碰撞预警系统; ?商用车辆自动紧急制动系统(AEBS)性能要求及试验方法; ?GB/T20608自适应巡航控制系统性能要求与检测方法; ?ISO18682智能交通系统-外部危险检测与预警系统; ?ECE R131先进的紧急制动系统; ?JT/T883营运车辆行驶危险预警系统; ?ETSI EN302288短程设备;运输和交通遥感信息领域;在76GHz-77GHz范围内运行的雷达设备; ?ETSI EN302264短程设备;运输和交通遥感信息领域;在77GHz-81GHz范围内运行的雷达设备; ?GB/T36654-201876GHz 科电MTR78Pxx-T5DW角反射器(xx:20,15,10,5,0dBsm)

高精度毫米波雷达目标角反射器,可以用于雷达产线上的RCS性能标定测试;以及微波暗室内的雷达RCS性能标定测试频率范围:76GHz-81GHz;RCS雷达反射截面积精度:±0.5dBsm。 科电MDL76G-W单目标静态雷达目标模拟器 用于汽车毫米波雷达产线上雷达测距的性能标定。频率范围:76GHz-81GHz;延时距离: 1-150m±0.1。任意定制。

雷达模拟器的未来发展趋势

雷达模拟器未来发展趋势 班级:***************班 学号:***** 作者:薛飞 摘要:本文通过雷达的发展简史、计算机模拟技术发展历史及趋势、电子游戏画面引擎技术和雷达模拟器的相关图形学原理作为参考依据,通过类比的方法和引用未来电子画面渲染技术的发展方向来分析和推测雷达模拟器的未来几年的发展趋势。 关键词:雷达电子计算机模拟技术模拟软件游戏引擎 0 引言 雷达:是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置…… 计算机模拟:是利用计算机进行模拟的方法。利用计算机软件开发出的模拟器,可以进行故障树分析、测试VLSI逻辑设计等复杂的模拟任务…… 1 雷达的发展历史及现状 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。 二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。 后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。还有一种精神感应雷达,该雷达能够对人类在脑电波起反应,对人体的生命迹象进行感知。 当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标 进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。 自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。 雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。以地面为目标的雷达可以探测地面的精确形状。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面也显示出了很好的应用潜力。

合成孔径雷达点目标仿真MATLAB程序

合成孔径雷达成像系统点目标仿真 源程序: clc close all C=3e8; %光速 Fc=1e9; %载波频率 lambda=C/Fc; %波长 %成像区域 Xmin=0; Xmax=50; Yc=10000; Y0=500; %SAR基本参数 V=100; %雷达平台速度 H=0; %雷达平台高度 R0=sqrt(Yc^2+H^2); D=4; %天线孔径长度 Lsar=lambda*R0/D; %合成孔径长度 Tsar=Lsar/V; %合成孔径时间 Ka=-2*V^2/lambda/R0;%线性调频率 Ba=abs(Ka*Tsar); PRF=2*Ba; %脉冲重复频率 PRT=1/PRF; ds=PRT; %脉冲重复周期 Nslow=ceil((Xmax-Xmin+Lsar)/V/ds);%脉冲数 Nslow=2^nextpow2(Nslow); %量化为2的指数 sn=linspace((Xmin-Lsar/2)/V,(Xmax+Lsar/2)/V,Nslow); %创建时间向量PRT=(Xmax-Xmin+Lsar)/V/Nslow; %更新 PRF=1/PRT; % 更新脉冲重复频率 fa=linspace(-0.5*PRF,0.5*PRF,Nslow); Tr=5e-6; %脉冲宽度 Br=30e6; %调频信号带宽 Kr=Br/Tr; %调频率 Fsr=2*Br; %快时间域取样频率 dt=1/Fsr; %快时间域取样间隔

Rmin=sqrt((Yc-Y0)^2+H^2); Rmax=sqrt((Yc+Y0)^2+H^2+(Lsar/2)^2); Nfast=ceil(2*(Rmax-Rmin)/C/dt+Tr/dt); Nfast=2^nextpow2(Nfast); tm=linspace(2*Rmin/C,2*Rmax/C+Tr,Nfast); dt=(2*Rmax/C+Tr-2*Rmin/C)/Nfast; %更新 Fsr=1/dt; fr=linspace(-0.5*Fsr,0.5*Fsr,Nfast); DY=C/2/Br; %距离分辨率 DX=D/2; %方位分辨率 Ntarget=3; %目标数目 Ptarget=[Xmin,Yc,1 %目标位置 Xmin,Yc+10*DY,1 Xmin+20*DX,Yc+50*DY,1]; K=Ntarget; %目标数目 N=Nslow; %慢时间采样数 M=Nfast; %快时间采样数 T=Ptarget; %目标位置 %合成孔径回波仿真 Srnm=zeros(N,M); for k=1:1:K sigma=T(k,3); Dslow=sn*V-T(k,1); R=sqrt(Dslow.^2+T(k,2)^2+H^2); tau=2*R/C; Dfast=ones(N,1)*tm-tau'*ones(1,M); phase=pi*Kr*Dfast.^2-(4*pi/lambda)*(R'*ones(1,M)); Srnm=Srnm+sigma*exp(j*phase).*(0

通用雷达目标模拟源

通用雷达目标模拟源 1.引言 1.1用途 通用雷达目标模拟源用于舰载搜索雷达和跟踪雷达的接收通道检查及雷达性能测试。 1.2使用方式 通用雷达目标模拟源采用在被测雷达平台内,通过中频注入方式工作。 1.3设计依据 ·国际单位制及其应用 GB100-86 ·军用电子测试设备通用规范 GJB3947-2000 ·《通用雷达目标模拟源技术协议》 1.4设计原则 坚持“实用、可靠、先进、经济”的原则,尽量采用成熟技术; 贯彻通用化、系列化、模块(组合)化的设计原则; 以形成雷达接收通道检查及雷达性能测试能力为目标,具有一定的扩展能力; 2.系统功能和战技指标 通用雷达目标模拟源采用对雷达中频脉冲调制信号储频调制转发的技术方案,模拟的回波信号指标特别是相参性能能得到较好的实现。

2.1主要功能: 模拟各种运动速度的目标回波信号,供雷达接收系统和作战通道检查;提供雷达接收系统检查所需模射频模回波信号,用于雷达设备进行服役后接收系统性能检查。具有以下主要功能: z可模拟包括脉冲压缩、脉冲多普勒雷达所接收到的各种相参/非相参目标回波信号; z模拟目标回波时延及多普勒频率; z最大可模拟产生300批不同航迹的固定目标、飞机、导弹、舰艇等目标回波信号;其中机动航迹2条,径向航迹16条,其余为固定点航迹; z模拟目标雷达截面积和幅度起伏特性变化带来的回波信号的变化;目标起伏:Swerling0,I,II,III,IV模型 z具有通道自检功能,并通过网线可以回报给上位机。 2.2战术指标 z可通过软件设置被试雷达的脉冲信号参数; z目标初始位置:1~300km(可更远),步长为被试雷达距离单元; z模拟目标类型:固定目标、舰船、飞机或导弹 z目标起伏:Swerling0,I,II,III,IV模型; 2.3 技术指标: z工作频率:f0=7.5MHz,30MHz,60MHz,70MHz,90MHz,120MHz; z设备采用模块化设计,通过更换输入输出变频模块,具有适应

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

一种新型雷达信号模拟器设计

一种新型雷达信号模拟器设计 刘亲社1,王国红2,王星1 (1 空军工程大学工程学院,陕西西安 710038;2 空军工程大学理学院,陕西西安 710038)摘 要:设计了一种新型雷达信号模拟器,能够提供多种特殊雷达信号,并且设置灵活方便,当用户需要时,可进行软件升级。介绍了该雷达信号模拟器的功能、特点、性能指标和研制方案,提供一种雷达信号产生的解决方法。 关 键 词:新体制雷达;信号模拟器;脉冲产生器;射频信号 中图分类号:TN955文献标识码:A文章编号:1000-274X(2006)0189-07 随着新体制雷达相继问世,现代雷达大都采用了以捷变频和相干信号处理等为代表的新技术,反干扰措施越来越完善,对这些体制的雷达实施干扰越来越困难。信号环境日益复杂,电子对抗技术的发展和新电子对抗设备的研制迫切需要一种能提供多种特殊雷达信号的设备,以适应这种发展变化。我们设计研制的新体制雷达信号模拟器就是一种半实物物理仿真设备,一部分设备使用实际设备而其他部分采用计算机模拟和处理,例如雷达信号环境和信号处理等均可使用软件模拟。这种方法具有很强的通用性,不仅适用于现有的装备,也可以模拟采用某种新技术的装备,对于现有装备的改进和新装备的研制都具有实用价值,是一种相对经济、实用的方法[1,2]。 1 新型雷达信号模拟器的功能特点和性能指标 新型雷达信号模拟器的主要功能是:提供各类信号的调制波形,控制射频频率,控制输出信号的功率。根据用户指定的信号类型、脉宽、重复周期、射频频率等参数,控制模拟器的各个相关部分,最后输出满足要求的信号。 1.1 主要特点 1.1.1多样性和灵活性 多样性是指模拟器控制系统能够提供多种类型的雷达信号调制波形。为了产生多种特殊雷达信号,要求控制系统能灵活控制雷达信号的脉冲宽度、重复周期、射频频率。能够提供的信号类型主要有:连续波、常规脉冲信号、均匀脉组串信号、重频参差信号、线性调频信号、巴克码调相信号、捷变频信号等。 灵活性主要表现在两个方面:①各种信号的参数可以灵活设置。例如:信号的脉冲宽度、重复周期、射频频率等都可以在其各自的范围内任意设置。②信号类型可以灵活选择。模拟器同时有几路的信号输出,各路之间是相互独立的,而且一个支路有多种信号类型供选择。由于信号个数、信号类型、信号参数均能灵活选择,给用户提供了极大方便。用户可以根据自己的需要,选择合适的信号个数和类型,来组合输出各种信号。 1.1.2 智能化 控制系统具有智能化的特点,采用工控机作为控制中心,由计算机完成对模拟器的各项控制,设计了良好的人机界面,采用软面板输入参数具有自动检错功能,以避免用户误操作引起的错误。用

SAR雷达目标信号模拟器案例

SAR雷达目标信号模拟器案例 来源:北京华力创通科技股份有限公司作者:发表时间:2010-04-08 16:08:50 目前机载 SAR 雷达设备的主要测试手段是在地面采用点目标信号进行部分指标和分辨率测试。进 一步完整的成像测试需要安装在运载飞机上进行实际飞行测试,得到最后的指标。 星载 SAR 雷达设备的主要测试手段同样是在地面点目标信号进行部分指标和分辨率测试。通过 这种测试来估计实际的成像指标。 XXX 型 SAR 雷达目标信号模拟器可以实时模拟回放多点目标和场景目标回波。用于机载或星载 SAR 雷达设备在地面进行完整的功能和性能指标调试和测试。 XXX 型 SAR 雷达目标回波信号模拟器基本原理是一种数字储频体制的测试信号模拟设备。接收 来自雷达系统 TR 组件送出的脉冲发射信号,并在此基础上生成触发脉冲和回波信号;实时模拟点目 标回波信号:--能进行时间延迟、能叠加多普勒频移,能进行幅度调制;非实时模拟面目标回波信 号--可叠加地表信息、轨道特性、平台姿态特性和幅相误差、波位特性、天线性能等工程误差 XXX 型 SAR 雷达目标回波信号模拟器主要由三个功能单元组成: 射频单元 将来自雷达系统脉冲发射信号转换到中频,并将中频单元的模拟回波信号混频至射频,通过射频 电缆注入或通过天线回放给被测雷达; 数字中频单元 基于数字储频体制获取中频信号,经过数字变换成多点目标回波中频信号回放给射频单元。或根 据被测雷达的信号特征,将已经存储的大型场景目标回波回放出去 数学仿真单元 运行 SAR 雷达场景目标模拟生成算法,生成场景(即面目标)回波数据,注入给数字中频单元 技术优势 幅相控制技术 高速 AD/DA 技术( 20M - 1.5G 采样率) 实时点目标运算,非实时面目标模拟 高速板间数据传输技术(单通道最高速率可达 6Gbps ) 大容量板级数据存储技术( 20G ) 应用方案 雷达系统回波模拟 精密延迟信号实现 用于宽带雷达模拟器 实时记录 SAR 发射信号 实时回放数字信号、模拟各种条件

合成孔径雷达(SAR)的点目标仿真(附件带代码程序)

合成孔径雷达(SAR)的点目标仿真(附件带代码程序) 合成孔径雷达(SAR)的点目标仿真 一. SAR原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。SAR回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:,式中表示雷达的距离分辨率,表示雷达发射信号带宽,表示光速。同样,SAR回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:,式中表示雷达的方位分辨率,表示雷达方位向多谱勒带宽,表示方位向SAR平台速度。 二. SAR的成像模式和空间几何关系 根据SAR波束照射的方式,SAR的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图2.1。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 图2.1:SAR典型的成像模式 这里分析SAR点目标回波时,只讨论正侧式Stripmap SAR,正侧式表示SAR波束中心和SAR平台运动方向垂直,如图2.2,选取直角坐标系XYZ为参考坐标系,XOY平面为地平面;SAR平台距地平面高h,沿X轴正向以速度V匀速飞行;P点为SAR平台的位置矢量,设其坐标为(x,y,z);T点为目标的位置矢量,设其坐标为;由几何关系,目标与SAR平台的斜距为: (2.1) 由图可知:;令,其中为平台速度,s为慢时间变量(slow time),假设,其中表示SAR平台的x 坐标为的时刻;再令,表示目标与SAR的垂直斜距,重写2.1式为: (2.2) 就表示任意时刻时,目标与雷达的斜距。一般情况下,,于是2.2式可近似写为: (2.3) 可见,斜距是的函数,不同的目标,也不一样,但当目标距SAR较远时,在观测带内,可近似认为不变,即。

雷达目标模拟器射频前端设计与集成

国 防 科 技 大 学 学 报 第32卷第3期 J OUR NAL OF NA TIONA L UNIVERSI TY OF DEFENSE TECHNO LO GY Vol.32No.32010 文章编号:1001-2486(2010)03-0109-06 辐射式雷达目标模拟器射频前端设计与集成 赵 菲,王生水,柴舜连,刘海涛,毛钧杰 (国防科技大学电子科学与工程学院,湖南长沙 410073) 摘 要:完成了辐射式雷达目标射频模拟器射频前端的设计与系统集成,该模拟器工作于L S X三个频段,支持连续波和脉冲工作体制,具有高精度的多目标生成能力。射频前端的插件结构设计保证了射频前端的电磁兼容性能和功能可扩展性。其测试结果均优于指标要求,并支持模拟器系统成功完成了实际雷达的目标模拟实验,验证了模拟器的系统性能。 关键词:雷达模拟器;接收机;发射机;频率综合器;数字射频存储(DRFM) 中图分类号:TN957 文献标识码:A Design and Integration of the Front End RF for the Radiated Radar Target Simulator ZHAO Fei,WANG Sheng shui,C HAI Shun lian,LIU Hai tao,MAO Jun jie (College of Electronic Sci ence and Engineering,National Uni v.of Defense Technology Changsha410073,China) Abstract:The front end RF for radiated radar target simulator was designed and integrated in this paper.This si mulator was operated on the L S X three bands,and it supported the CW and pulse operation.It generated multi targets in hi gh precision.The plug module structure design improved the EMC and the extension performance of the RF front end.The measured results of the system are better than the target.Furthermore,this RF front end supports the radar simulator fi nish the target si mulating for the real radar successfully,which verifies the performance of this radar simulator. Key words:radar simulator;receiver;transmitter;frequency syn thesizer;DRFM 雷达信号模拟器是模拟技术与雷达技术相结合的产物。它通过模拟雷达回波信号来考核被试雷达的技战术指标,并辅助检验雷达的威力和精度[1]。雷达模拟器根据信号注入方式的不同可分为:直接注入式模拟器和辐射(注入)式模拟器,信号注入点越靠前,模拟越复杂,越接近于现实[1]。国外对该领域的研究已有了大量的报导:美国KOR Electronics公司研制了数字化雷达环境模拟器(Digital Radar Environment Simulator),HP公司生产了基于并行FASS(Frequency Agile Signal Simulator)的X波段雷达动目标信号模拟器。国内从20世纪90年代开始相继出现有关雷达信号模拟器的研究报告:北航和航天部601所于1994年研制了一种通用型PD雷达目标模拟器;中科大电子工程系于2000年研制了毫米波目标模拟器[2]。在过去的10年里我国已经在雷达信号模拟的理论研究、设计实现等方面取得了一些令人瞩目的成果。但从总体来看,与国际先进水平相比,在雷达信号模拟的全面性、系统的通用性、可扩充性、兼容性以及产品化等方面还有一定的差距。 本文研制的辐射式雷达目标射频模拟器射频前端覆盖L S X三个工作频段,提高了雷达测试的通用性;多目标模拟精度高,最大程度还原了模拟目标完整性和真实性;各频段对应的射频前端采用插件形式,改善了系统的灵活性及可扩充性。 1 射频系统设计 1 1 模拟器系统结构 该模拟器采用数字射频存储(Data Radio Frequency Memory,DRFM)方案实现。主要由控制计算机、接 收稿日期:2010-02-05 作者简介:赵菲(1983 ),男,博士生。

合成孔径雷达SAR的点目标仿真成像

合成孔径雷达(SAR)的点目标仿真成像 电子与通信工程 侯智深 MF0923008 一. S AR 原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。 SAR 回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:2r r C B ρ=,式中r ρ表示雷达的距离分辨率,r B 表示雷达发射信号带宽,C 表示光速。同样,SAR 回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:a a a v B ρ=,式中a ρ表示雷达的方位分辨率,a B 表示雷达方位向多谱勒带宽,a v 表示方位向SAR 平台速度。 二. S AR 的成像模式和空间几何关系 根据SAR 波束照射的方式,SAR 的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 SAR 典型的成像模式 这里分析SAR 点目标回波时,只讨论正侧式Stripmap SAR ,正侧式表示SAR 波束中心和SAR 平台运动方向垂直,如图2.2,选取直角坐标系XYZ 为参考坐标系,XOY 平面为地平面;SAR 平台距地平面高h ,沿X 轴正向以速度V 匀速飞行;P 点为SAR 平台的位置矢量,设其坐标为(x,y,z); T 点为目标的位置矢量,设其坐标为(,,)T T T x y z ;由几何关系,目标与SAR 平台的斜距为: (PT x =由图可知:0,,0T y z h z ===;令x vs =?, 其中v 为平台速度,s 为慢时间变量(slow time ),

相关文档
最新文档