(完整版)圆锥曲线解题方法技巧归纳

(完整版)圆锥曲线解题方法技巧归纳
(完整版)圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳

第一、知识储备: 1. 直线方程的形式

(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈

②点到直线的距离d =

③夹角公式:

2121

tan 1k k k k α-=

+

(3)弦长公式

直线

y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-

= 或12AB y =- (4)两条直线的位置关系

①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质

(1)、椭圆的方程的形式有几种?(三种形式)

标准方程:22

1(0,0)x y m n m n m n

+=>>≠且

2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种

标准方程:22

1(0)x y m n m n

+=?<

距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗?

22

222b b p a a

椭圆:;双曲线:;抛物线:

(4)、圆锥曲线的定义你记清楚了吗?

如:已知21F F 、是椭圆13

42

2=+y x 的两个焦点,平面内一个动点M 满

足221=-MF MF 则动点M 的轨迹是( )

A 、双曲线;

B 、双曲线的一支;

C 、两条射线;

D 、一条射线 (5)、焦点三角形面积公式:1

2

2tan 2

F PF P b θ

?=在椭圆上时,S

1

2

2cot 2

F PF P b θ

?=在双曲线上时,S

(其中2221212121212||||4,cos ,||||cos ||||

PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?u u u

r u u u u r u u u r u u u u r )

(6)、记住焦半径公式:(1)

00

;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。

(2)0||x e x a ±双曲线焦点在轴上时为

(3)11||,||22

p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备

1、点差法(中点弦问题) 设()

11,y x A 、()22,y x B ,()b a M ,为椭圆13

42

2=+y x 的弦AB 中点则有

1342121=+y x ,1342

222=+y x ;两式相减得(

)()03

4

2

2

2

1

2

2

21=-+-y y

x x

?

()()

()()

3

4

21212121y y y y x x x x +--

=+-?AB k =b

a 43-

2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?

经典套路是什么?如果有两个参数怎么办?

设直线的方程,并且与曲线的方程联立,消去一个未知数,得到

一个二次方程,使用判别式0?≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为y kx b =+,就意味着k 存在。

例1、已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).

(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程. 分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为090可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程;

解:(1)设B (1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),F(2,0)则有

116

20,116202

2

222121=+=+y x y x 两式作差有

16)

)((20))((21212121=+-+-+y y y y x x x x 04

500=+k

y x (1) F(2,0)为三角形重心,所以由

2321=+x x ,得30=x ,由03

4

21=++y y 得20-=y ,代入(1)得5

6=

k 直线BC 的方程为02856=--y x

2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2) 设直线

BC

方程为

80

54,22=++=y x b kx y 代入,得

080510)54(222=-+++b bkx x k

2

215410k

kb

x x +-=+,222154805k b x x +-= 22

22122154804,548k k b y y k k y y +-=+=+ 代入(2)式得

054163292

2=+--k

b b ,解得)(4舍=b 或94

-=b 直线过定点(0,)9

4

-,设D (x,y ),则

1494

-=-?+

x

y x y ,即016329922=--+y x y

所以所求点D 的轨迹方程是)4()9

20

()916(222≠=-

+y y x 。 3、设而不求法

例2、如图,已知梯形ABCD 中CD

AB

2=,点E 分有向线段AC 所

成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点当4

33

2≤≤λ时,求双曲线离心率e 的取值范围。

分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念

和性质,推理、运算能力和综合运用数学知识解决问题的能力。建立直角坐标系xOy ,如图,若设

C ??

?

??h c , 2,代入12222=-b y a x ,求得h =L

进而求得,,E E x y ==L L 再代入

12

2

22=-b y a x ,建立目标函数

(,,,)0f a b c λ=,整理(,)0f e λ=,此运算量可见是难上加难.我们对h 可

采取设而不求的解题策略,

建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,化繁为简.

解法一:如图,以AB 为垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴因为双曲线经过点C 、D ,且以A 、

B 为焦点,由双曲线的对称性知

C 、

D 关于y 轴对称

依题意,记A ()0 ,c -,C ??

? ??h c , 2

,E ()00 ,y x ,其中||2

1

AB c =为双

曲线的半焦距,h 是梯形的高,由定比分点坐标公式得

()()122120+-=++-=λλλλ

c c

c x , λ

λ+=10h y

设双曲线的方程为122

22=-b

y a x ,则离心率a c

e =

由点C 、E 在双曲线上,将点C 、E 的坐标和a

c e =代入双曲线方程得

1422

2=-b h e , ①

11124

22

2=??? ??+-??? ??+-b

h e λλλλ ②

由①式得

1422

2-=e b h , ③

将③式代入②式,整理得

()λλ21444

2

+=-e ,

故 1

312+-=e λ

由题设4332≤≤λ得,4

3231322≤+-≤e

解得 107≤≤e

所以双曲线的离心率的取值范围为[]10

, 7

分析:考虑,AE AC 为焦半径,可用焦半径公式, ,AE AC 用,E C 的横坐标表示,回避h 的计算, 达到设而不求的解题策略. 解法二:建系同解法一,(),E C AE a ex AC a ex =-+=+,

()()22121E c

c c x λλλλ-+-==++,又1AE AC λλ

=+,代入整理1312+-=e λ,由题设4

33

2≤≤λ得,43

231322

≤+-

≤e 解得

107≤≤e

所以双曲线的离心率的取值范围为[]10

, 7

4、判别式法 例3已知双曲线12

2:2

2

=-x y

C ,

直线l 过点(

)

0,2A ,斜率为k ,当1

0<

分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式

0=?. 由此出发,可设计如下解题思路:

()10)

2(:

<<-=k x k y l

k

k kx y l 2222:'-++=

的值解得k

分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:

简解:设点)2,(2x x M +为双曲线C 上支上任一点,则点M 到直线l 的距离为:

21

2222=+-+-k k

x kx

()10<

于是,问题即可转化为如上关于x 的方程. 由于10<>+22,从而有

.222222k x kx k x kx +++-=-+-

于是关于x 的方程()*

?)1(22222+=+++-k k x kx

把直线l ’的方程代入双曲线方程,消去y ,令判别式0=?

直线l ’在l 的上方且到直线l 的距离为

2

?()

????

?>+-++-+=+0

2)1(2,

)2)1(2(22

2222kx k k kx k k x ?(

)

()()

????

?>+-+=--++-++-.

02)1(2,022)1(22)1(2212

2

2

222kx k k k k

x k k k x k

由10<

方程()()()

022)1(22)1(2212

2222=--++-++-k k x k k k x k 的二根同

正,故02)1(22>+-+kx k k 恒成立,于是()*等价于

()

(

)()

022)1(22)1(2212

2

2

2

2

=--++

-++-k k

x k k k x k

.

由如上关于x 的方程有唯一解,判别式0=?,就可解得 5

5

2=

k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.

例4已知椭圆C:x y 22

28

+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQ

QB

=-,求动点Q 的轨迹所在曲线的方程.

分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q 的横、纵坐标用参数表达,最后通过消参可达到解题的目的.

由于点),(y x Q 的变化是由直线AB 的变化引起的,自然可选择直线AB 的斜率k 作为参数,如何将y x ,与k 联系起来?一方面利用点Q 在

直线AB 上;另一方面就是运用题目条件:AP PB AQ

QB

=-来转化.由A 、B 、

P 、Q 四点共线,不难得到)

(82)(4B A B A B A

x x x x x x

x +--+=,要建立x 与k 的关系,只需

将直线AB 的方程代入椭圆C 的方程,利用韦达定理即可.

通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.

在得到()k f x =之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于y x ,的方程(不含k ),则可由1)4(+-=x k y 解得

4

1

--=

x y k ,直接代入()k f x =即可得到轨迹方程。从而简化消去参的过程。

简解:设()),(),(,,2211y x Q y x B y x A ,,则由QB

AQ

PB

AP

-

=可得:

x

x x x x x --=

--21

21

4

4, 解之得:)

(82)(4212121x x x x x x x +--+= (1)

设直线AB 的方程为:1)4(+-=x k y ,代入椭圆C 的方程,消去y 得出关于 x 的一元二次方程:

()

08)41(2)41(412222

=--+-++k x k k x k

(2)

???

????

+--=+-=+.128)41(2,12)14(422

21221k k x x k k k x x 代入(1),化简得.2

34++=k k x (3)

与1)4(+-=x k y 联立,消去k 得:().0)4(42=--+x y x 在(2)中,由02464642>++-=?k k ,解得 4

10

24102+<<-k ,结合(3)

可求得

.9

10216910216+<<-x

故知点Q 的轨迹方程为:042=-+y x (9

10

2169

10216+<

<-x ).

点评:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到. 这当中,难点在引出参,活点在应用参,重点在消去参.,而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道. 5、求根公式法 例5设直线l 过点P (0,3),和椭圆x y 22

94

1+=顺次交于

A 、

B 两点,

试求

AP

PB

的取值范围. 分析:本题中,绝大多数同学不难得到:AP PB

=B

A x x -,但从此后却一

筹莫展, 问题的根源在于对题目的整体把握不够. 事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.

分析1: 从第一条想法入手,AP PB =B

A x x

-已经是一个关系式,但由于

有两个变量B A x x ,,同时这两个变量的范围不好控制,所以自然想到利用第3个变量——直线AB 的斜率k . 问题就转化为如何将B A x x ,转化

为关于k 的表达式,到此为止,将直线方程代入椭圆方程,消去y 得出关于x 的一元二次方程,其求根公式呼之欲出.

简解1:当直线l 垂直于x 轴时,可求得

5

1

-=PB AP ; 当l 与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l 的方程为:

3+=kx y ,代入椭圆方程,消去y 得()045544922=+++kx x k

解之得

.4

95

96272

22

,1+-±-=k k k x 因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.

当0>k 时,4

95

9627221+-+-=

k k k x ,4

9596

272

22+---=k k k x , 所以 21x x PB AP -==5929592922-+-+-k k k k =59291812-+-k k k =2

5

929181k -+-

.

由 ()049180)54(22≥+--=?k k , 解得 9

52≥k ,

所以 5

1

5

92918112

-<-+-

≤-k ,综上

5

1

1-≤≤

-PB AP .

分析2: 如果想构造关于所求量的不等式,则应该考虑到:判别式

往往是产生不等的根源. 由判别式值的非负性可以很快确定k 的取值

范围,于是问题转化为如何将所求量与k 联系起来. 一般来说,韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于

2

1x x PB AP

-=不是关于21,x x 的对称关系式. 原因找到后,解决问题的方法自然也就有了,即我们可以构造关于21,x x 的对称关系式.

简解2:设直线l 的方程为:3+=kx y ,代入椭圆方程,消去y 得

()

045544922

=+++kx x k

(*)

???

???

?

+=+-=+.4945,4954221221k x x k k x x 令

λ=21x x ,则,.20

45324212

2+=++k k λλ 在(*)中,由判别式,0≥?可得 9

5

2≥k , 从而有

53620

45324422≤

+≤k k ,所以 5

36

21

4≤

++≤λ

λ,解得 551≤≤λ. 结合10≤<λ得15

1

≤≤λ. 综上,5

1

1-≤≤-PB AP . 点评:范围问题不等关系的建立途径多多,诸如判别式法,均值

不等式法,变量的有界性法,函数的性质法,数形结合法等等. 本题也可从数形结合的角度入手,给出又一优美解法.

解题犹如打仗,不能只是忙于冲锋陷阵,一时局部的胜利并不能说明问题,有时甚至会被局部所纠缠而看不清问题的实质所在,只有见微知著,树立全局观念,讲究排兵布阵,运筹帷幄,方能决胜千里.

第三、推理训练:数学推理是由已知的数学命题得出新命题的基本思维形式,它是数学求解的核心。以已知的真实数学命题,即定义、公理、定理、性质等为依据,选择恰当的解题方法,达到解题目标,得出结论的一系列推理过程。在推理过程中,必须注意所使用的命题之间的相互关系(充分性、必要性、充要性等),做到思考缜密、推理严密。通过编写思维流程图来锤炼自己的大脑,快速提高解题能力。

例6椭圆长轴端点为B A ,,O 为椭圆中心,F 为椭圆的右焦点,且1=?FB AF

1=.

(Ⅰ)求椭圆的标准方程; (Ⅱ)记椭圆的上顶点为M ,直线l 交椭圆于Q P ,两点,问:是否存在直线l ,使点F 恰为PQM ?的垂心?若存在,求出直线l 的方程;若不存在,请说明理由。 思维流程:

(Ⅱ)

消元

解题过程:

(Ⅰ)如图建系,设椭圆方程为22

221(0)x y a b a b

+=>>,则1c =

又∵1=?FB AF 即 22()()1a c a c a c +?-==-,∴22a =

故椭圆方程为2

212

x y +=

(Ⅱ)假设存在直线l 交椭圆于Q P ,两点,且F 恰为PQM ?的垂心,则

设1122(,),(,)P x y Q x y ,∵(0,1),(1,0)M F ,故1=PQ k , 于是设直线l 为

y x m =+,由2

2

22

y x m

x y =+??+=?得,2234220x mx m ++-=

∵12210(1)(1)MP FQ x x y y ?==-+-u u u r u u u r

又(1,2)i i y x m i =+=

得1221(1)()(1)0x x x m x m -+++-= 即

212122()(1)0x x x x m m m ++-+-= 由韦达定理得 222242(1)033

m m m m m -?--+-=

解得4

3m =-或1m =(舍) 经检验43

m =-符合条件.

点石成金:垂心的特点是垂心与顶点的连线垂直对边,然后转化为两向量乘积为零.

例7、已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过

(2,0)A -、(2,0)B 、31,2C ??

???

三点.

(Ⅰ)求椭圆E 的方程: (Ⅱ)若点D 为椭圆E 上不同于A 、B 的任意一点,(1,0),(1,0)F H -,当ΔDFH 内切圆的面积最大时,求ΔDFH 内心的坐标;

(Ⅱ)

解题过程: (Ⅰ)设椭圆方程为122=+ny mx ()0,0>>n m ,将

(2,0)A -、(2,0)B 、3

(1,)2

C 代入椭圆E 的方程,得

41,

9

14

m m n =??

?+=??解得11,43m n ==.∴椭圆E 的方程22143x y += . (Ⅱ)||2FH =,设ΔDFH 边上的高为h h S DFH =??=?22

1

当点D 在椭圆的上顶点时,h ,所以DFH S ? 设ΔDFH 的内切圆的半径为R ,因为ΔDFH 的周长为定值6.所以,

62

1

?=

?R S DFH 所以R .

点石成金:的内切圆的内切圆的周长?????=r S 2

1

例8、已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点.

(Ⅰ)若线段AB 中点的横坐标是12

-,求直线AB 的方程; (Ⅱ)在x 轴上是否存在点M ,使MB MA ?为常数?若存在,求出点M 的坐标;若不存在,请说明理由. 思维流程:

(Ⅰ)解:依题意,直线AB 的斜率存在,设直线AB 的方程为(1)y k x =+, 将(1)y k x =+代入5322=+y x , 消去y 整理得 2222(31)6350.k x k x k +++-=

设1122() () A x y B x y ,,,,

则4222

122364(31)(35)0 (1) 6. (2)

31k k k k x x k ??=-+->??+=-?+?

, 由线段AB 中点的横坐标是1

2

-, 得2122312312x x k k +=-=-+

,解得k =

所以直线AB 的方程为

10x +=,或

10x +=. (Ⅱ)解:假设在x 轴上存在点(,0)M m ,使MB MA ?为常数.

① 当直线AB 与x 轴不垂直时,由(Ⅰ)知

22121222635

. (3)3131

k k x x x x k k -+=-=++,

所以212121212()()()()(1)(1)MA MB x m x m y y x m x m k x x ?=--+=--+++u u u r u u u r

22221212(1)()().k x x k m x x k m =++-+++将(3)代入,整理得

2

2

22

22114(2)(31)2(61)5333131

m k m m k MA MB m m k k -+----?=+=

+++u u u r u u u r 221614

2.33(31)

m m m k +=+--+

注意到MB MA ?是与k 无关的常数, 从而有761403

m m +==-,, 此时

4.9

MA MB ?=u u u r u u u r

② 当直线AB 与x 轴垂直时,此时点A B ,的坐标分别

11?

?-- ?

?、,,当73m =-时, 亦有4.9MA MB ?=u u u r u u u r 综上,在x 轴上存在定点703

M ??

- ???,

,使?为常数. 点石成金:2

2

2222

114(2)(31)2(61)5333131

m k m m k MA MB m m k k -+----?=+=+++u u u r u u u r 22

1614

2.33(31)

m m m k +=+--

+ 例9、已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),l 交椭圆于A 、B 两个不同点。 (Ⅰ)求椭圆的方程; (Ⅱ)求m 的取值范围; (Ⅲ)求证直线MA 、MB 与x 轴始终围成一个等腰三角形.

思维流程:解:(1)设椭圆方程为)0(12222>>=+b a b

y a x

则?????==?????=+=28

114222

2

2b a b a

b a 解得 ∴椭圆方程为12822=+y x

(Ⅱ)∵直线l 平行于OM ,且在y 轴上的截距为m

又K OM =21

m x y l +=∴2

1的方程为:

由0422128

212

22

2

=-++∴???????=++=m mx x y x m x y ∵直线l 与椭圆交于

A 、

B 两个不同点,

,22,0)42(4)2(22≠<<->--=?∴m m m m 且解得

(Ⅲ)设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可

设42,2),,(),,(221212211-=-=+m x x m x x y x B y x A 且 则2

1

,2122

2111--=--=

x y k x y k

由可得042222=-++m mx x

42,222121-=-++m x x m x x

而)

2)(2()

2)(1()2()1(2121211221221121----+---=--+--=

+x x x y x y x y x y k k )2)(2()1(4)2)(2(42)

2)(2()

1(4))(2()2)(2()

2)(121

()2)(12

1(212212*********------+-=

----+++=

----++--+=x x m m m m x x m x x m x x x x x m x x m x

)2)(2(444242212122=+∴=--+-+--=k k x x m m m m

故直线MA 、MB 与x 轴始终围成一个等腰三角形.

点石成金:直线MA 、MB 与x 轴始终围成一个等腰三角形?021=+k k

例10、已知双曲线122

22=-b

y a x 的离心率332=e ,过),0(),0,(b B a A -的直

线到原点的距离是

.2

3

(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值. 思维流程:解:∵(1)

,3

32=a c 原点到直线AB :1=-

b

y

a x 的距离.

3,1.23

2

2=

=∴==+=

a b c ab b a ab d .

故所求双曲线方程为 .13

22

=-y x

(2)把

3

3522=-+=y x kx y 代入中消去

y ,整理得

07830)31(22=---kx x k .

设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则

.

11,315

531152002002

210k

x y k k kx y k k x x x BE

-=+=-=+=?-=+= ,000=++∴k ky x

即7,0,0315311522

2=∴≠=+-+-k k k k

k k k 又 故所求k=±7.

点石成金: C ,D 都在以B 为圆心的圆上?BC=BD ?BE ⊥CD; 例11、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (II )若直线:l y =k x +m 与椭圆C 相交于A 、B 两点(A 、B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.

思维流程:解:(Ⅰ)由题意设椭圆的标准方程为22

221(0)x y a b a b

+=>>,

由已知得:31a c a c +=-=,,

222

213

a c

b a

c ==∴=-=,,

∴椭圆的标准方程为22

143x y +=. (II )设1122()()A x y B x y ,,,.

联立22

1.4

3y kx m x y =+???+=??,

得 222(34)84(3)0k x mkx m +++-=,则

222222122

21226416(34)(3)03408344(3)

.34m k k m k m mk x x k m x x k ?

??=-+->+->??

+=-?+?

?-=

?+?

,即,, 又222

2

121212122

3(4)()()()34m k y y kx m kx m k x x mk x x m k

-=++=+++=+. 因为以AB 为直径的圆过椭圆的右顶点(20)D ,,

1AD BD k k ∴=-,即

12

222

11-=-?-x y x y . 1212122()40y y x x x x ∴+-++=. 222222

3(4)4(3)1540343434m k m mk k k k

--∴+++=+++. 2271640m mk k ∴++=. 解得:12227

k

m k m =-=-

,,且均满足22340k m +->. 当12m k =-时,l 的方程(2)y k x =-,直线过点(20),,与已知矛盾; 当227k m =-

时,l 的方程为27y k x ??=- ???,直线过定点207??

???

,.

所以,直线l 过定点,定点坐标为207

?? ???,

. 点石成金:以AB 为直径的圆过椭圆C 的右顶点? CA ⊥CB; 例

12、已知双曲线)0,0(122

22>>=-b a b

y a x 的左右两个焦点分别为21F F 、,

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

圆锥曲线解题技巧教案

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 ---) ; (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 1

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得 。设x轴上的定点为,可得 ,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,,

要使其为定值,需满足, 解得 . 故定点的坐标为 . 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2 :2C y px =(0,p p >为常数)交于不同的两点,M N ,当1 2 k =时,弦MN 的长为15(1)求抛物线C 的标准方程; (2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()() 2221122,2,,2,,2M t t N t t Q t t ,则1 2 MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++= ()1212:220NQ x t t y t t -++=. 由()1,0-在直线MN 上1 1 t t ?= (1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳 例1、已知三角形ABC 的三个顶点均在椭圆80542 2 =+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴 上). (1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为0 90,AD 垂直BC 于D ,试求点D 的轨迹方程. 分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为0 90可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程; 解:(1)设B (1x ,1y ),C(2x ,2 y ),BC 中点为(00,y x ),F(2,0)则有 116 20,116202 2 222121=+=+y x y x 两式作差有 16) )((20))((21212121=+-+-+y y y y x x x x 04 500=+k y x (1) F(2,0)为三角形重心,所以由 2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得5 6 =k 直线BC 的方程为02856=--y x 2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2) 设直线BC 方程为8054,2 2 =++=y x b kx y 代入,得080510)54(2 2 2 =-+++b bkx x k 2 215410k kb x x +-=+,222154805k b x x +-= 2 2 22122154804,548k k b y y k k y y +-=+=+ 代入(2)式得 054163292 2=+--k b b ,解得)(4舍=b 或94 -=b 直线过定点(0,)94-,设D (x,y ),则1494 -=-?+ x y x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()9 20()916(222 ≠=-+y y x 。 3、设而不求法 例2、如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线 过C 、D 、E 三点,且以A 、B 为焦点当 4 3 32≤≤λ时,求双曲线离心率e 的取值范围。

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式: 2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n +=?< 距离式方程 :|2a = (3)、三种圆锥曲线的通径你记得吗? 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足 221=-MF MF 则动点M的轨迹是( ) A、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1) 00 ;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有

圆锥曲线解题技巧

圆锥曲线:概念、方法、题型、及技巧总结 1.圆锥曲线的定义: (1)定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A . 421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (2)方程8=表示的曲线是_____ 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____ (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是 ___ (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程22Ax By C +=表示双曲线的充要条件是什么? 如(1)双曲线的离心率等于2 5,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______ (2)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______ (3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2,y 2分母的大小决定,焦点在分母大的坐标轴上。

圆锥曲线大题题型归纳3

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12 222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 3.与双曲线x 2a 2- y 2 b 2 =1有相同渐近线的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0), 渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0).要求双曲线x 2a 2- y 2b 2 =λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为 k ,则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|

相关文档
最新文档