SPD浪涌保护器的分级

SPD浪涌保护器的分级

精心整理

SPD 浪涌保护器的分级

分级防护??

由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS —I 的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第二级防雷器进一步吸收。同时,经过第一级防雷器的传输线路也会感应雷击电磁脉冲辐射LEMP ,当线路足够长感应雷的能量就变得足够大,需要第二级防雷器进一步对雷击能量实施泄放。第三级防雷器是对LEMP 和通过第二级防雷器的残余雷击能量进行保护。??

1、第一级保护??

目的是防止浪涌电压直接从LPZ0区传导进入LPZ1区,将数万至数十万伏的浪涌电压限制到2500—3000V 。??

入户电力变压器低压侧安装的电源防雷器作为第一级保护时应为三相电压开关型电源防雷器,其雷电通流量不应低于60KA 。该级电源防雷器应是连接在用户供电系统入电设备的。??

2.5KV ;2、第二级防护??

这些电源每相45kA 1000V ;响应时间不大于3、第三级保护??

20KA 态过电压影响。??

4

浪涌保护器(SPD)的设置及应用现状

浪涌保护器(SPD)的设置及在福建省的应用现状 作者:福建省建筑设计研究院林卫东 杭州鸿雁电器公司谢文平 摘要:为减少雷电电磁脉冲、开关浪涌等对设备所造成的损坏,本文分析了建筑物内电气设备要设置浪涌保护器(SPD)的原因,列出了部分防雷规范、规定及标准,介绍了选用设置各种电源浪涌保护器和信号浪涌保护器的方法;同时本文简述了浪涌保护器在福建省的应用现状,对常用几个厂家的产品进行了市场信息比较,指出浪涌保护器在福建省各个地区必将得到进一步普及。关键词:浪涌保护器(SPD)应用选用设置电压保护水平放电电流雷电电磁脉冲 (转载请保留电气论坛https://www.360docs.net/doc/f15083663.html, 版权!) 在地球上,雷电时时刻刻都存在,国际电工委员会(IEC)将雷电称之为电子化时代的一大公害。据统计,在任一时刻平均有2000多个雷暴在进行着,火灾、爆炸、建筑物破坏、人畜伤亡、设备损坏等无不与之相连,雷暴被联合国列为十大自然灾害之一,它严重影响着人类的各种活动。我国每年因雷害造成的损失达100亿元人民币。 当人类社会进入电子信息时代后,雷灾出现的特点与以往有极大不同,可概括为:(1)受灾面积大大扩大,雷害从电力、建筑这两个传统领域扩展到几乎所有行业,特别是与高新技术关系最密切的领域,如航天航空、国防、邮电通信、计算机、电子工业、石油化工、金融证券等。(2)入侵方式从平面入侵变为立体入侵,从闪电直击和雷电波沿线传输变为空间闪电的脉冲电磁场从立体空间入侵到任何角落,无孔不入地造成灾害,因而防雷工程已从防直击雷、感应雷进入防雷电电磁脉冲(LEMP)。(3)雷灾的经济损失和危害程度大大增加了。有时候雷电袭击对象本身的直接经济损失并不太大,而由此产生的间接损失和影响却难以估量。例如,1999年8月27日下午3点,某寻呼台遭受雷击,导致该台中断数小时,其直接损失是有限的,但间接损失大大超过直接损失。 产生上述现象的根本原因是雷灾的主要对象已集中在微电子设备上,雷电本身并没有变,而是随着科学技术的发展,微电子技术的应用渗透到各种生产和生活领域,微电子器件极端灵敏这一特点很容易受到无孔不入的LEMP的作用,造成微电子设备的失控或者损坏。为此,当今时代的防雷工作的重要性、迫切性、复杂性大大增强了,雷电的防御已从直击雷防护进入到感应雷、雷电电磁脉冲等的防护。当然,来自电路的开、断操作,感性和容性负载的开关操作及来自短路电流的阻断等引起的开关浪涌也是造成微电子设备失控或损坏的原因之一。美国的调查数据表明,在保修期内出现问题的电气产品中,有63%是由于浪涌造成的。 一、浪涌保护器的设置原因 雷电防护包括针对建筑物的直击雷防护,以及针对建筑物内设备、人员的雷电波侵入防护和雷击电磁脉冲防护两大部分。 多数人对直击雷防护并不陌生,但对雷电电磁脉冲防护的认识仍非常有限。雷击发生时,大约50%的雷电流将沿接闪——引下线通路直接泄放入地,频率成分非常复杂的雷电流快速通过引下线时会感应出极强的电磁场,建筑物中的管线相对切割磁力线产生感应电流(即雷击电磁脉冲),间接导致设备损坏和人员伤亡;另一方面,至少有50%的雷电流将沿着进出建筑物的管线泄放,对人员和设备构成直接威胁。因此,雷电波侵入与雷击电磁脉冲防护已成为现代防雷设计的重中之重。依据IEC61024-1的说明,室内雷电保护的主要防护措施是:浪涌保护器安装和等电位连接。等电位连接的目的,在于减小保护区间内,各金属部件和各系统之间的电位差。对非带电金

浪涌保护器选型

电涌保护器选型 随着国际信息潮流的冲击、微电子科技的沸腾和通讯、计算机及自动控制技术的日新月 异,建筑开始走向高品质、高功能领域,形成了一种新的建筑形式——智能建筑。由于在智能建筑中存在众多信息系统,《建筑物防雷设计规范》GB50057-94(2002年版)(以下简称《防雷规范》)提出了安装电涌保护器的相关要求,以保证信息系统的安全稳定运行,笔者仅对其中使用的电涌保护器的产品选型提几点自己的看法。电涌保护器从本质上看就是一种等电位连接用的材料而已,其选型就是指在不同的防雷区内,按照不同雷击电磁脉冲的严重程度和等电位连接点的位置,决定位于该区域内的电子设备采用何种电涌保护器,实现与共用接地体等电位联结。笔者将从电涌保护器的最大放电电流Imax、持续工作电压Uc、保护电压Up、漏电流Ip、告警方式等方面进行论述。按照《防雷规范》第6.4.4条规定“电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳位电压,有能力熄灭在雷电流通过后产生的工频续流。”即电涌保护器的最大钳位电压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。最大放电电流按照《防雷规范》第6.4.6条规定,在LPZOA、LPZOB与LPZ1区的交界处安装电涌保护器其最大放电电流计算如下:根据《防雷规范》规定的“全部雷电流的50%流入建筑物的防雷装置。另50%流入引入建筑物的各种外来导电物、电力线缆、通信线缆等设施”, 表一:首次雷击的雷电流参量 雷电流参数一类防雷建筑物二类防雷建筑物三类防雷建筑物 I幅值(KA)200 150 100 T1波头时间( s)350 350 350 雷电波经建筑物引入的电力线缆、信息线缆、金属管道等分解,总配电间的低配供电线缆雷电流的分流值计算表如表二,线路屏蔽时,通过的雷电流降低到原来的30%,根据《通信局(站)雷电过电压保护工程设计规范》YD/T5098-2001中规定的脉冲为10/350 s波形的电荷量 约为8/20 s模拟雷电波波形电荷量的20 ..倍,具体计算如下: 表二:供电线缆雷电流分流值表 雷电流参数一类防雷建筑二类防雷建筑三类防雷建筑 I幅值(KA)200 150 100 供电线缆总分流值(kA)33.33 25 16.67 每根电缆分流值(kA)11.11 8.33 5.56

避雷器与浪涌保护器的区别

概念 1.避雷器 过电压限制器。当过电压出现时,必雷器两端子间的电压不超过规定定值,是电气设备免受过电压损坏;过电压作用后,又能使系统迅速恢复正常状态。 2.阀片 具有非线性伏安特性的电阻片,在过电压时呈低电阻。从而限制避雷器上的电压,而在正常工频电压下呈高阻,能限制通过避雷器的电流。 3.避雷器的额定电压 是施加到避雷器端子间最大允许工频电压有效值,按照此电压所设计的避雷器能在所规定的动作负载实验中确定暂过电压下正确地工作他是表明避雷器运行特性的一个重要参数。但它不等于系统额定电压。 4.避雷器的残压 放电电流通过避雷器时,其端子间的最大电压值 5.雷电冲击电流 一种8/20波形的冲击电流。因设备调整的限制,视在伯谦时间的实测值为7~9us,波尾中值时间为18-20us。 6.操作冲击电流 视在波前时间大于30us而小于100us,波尾在半峰值时间紧似为视在波前时间2倍的冲击电流。

7.方波冲击电流 迅速上升最大值,在规定时间内大体保持恒定,然后迅速降到零值的冲击波。 8.陡波冲击电流 具有视在波前时间为1us的冲击电流。 9.冲击电流耐受能力(冲击电流迫流容量) 在规定的波形(方波、雷电和线路放电等)情况下,非线性电阻片耐受通过电流的能力,以电流的幅值和次数表示。 10.动作负载试验 用于确定避雷器在规定的条件下可靠重复动作的能力。 模拟雷电过电压动作的实验称为雷电冲击动作负载试验。 模拟操作过电压动作的实验成为操作冲击动作负载试验。 11.避雷器的保护范围 以避雷器到被保护设备之间倒显得最大允许长度,在该范围内被保护设备上的过电压不超过规定值。 12.避雷器的持续电流 在持续运行电压下流过避雷器的电流,以峰值或有效值表示。13.避雷器的持续运行电压 在运行中允许持久地施加在避雷器端子上的工频电压有效值。14.避雷器工频参考电压 在工频参考电流下测出的避雷器上的工频电压最大峰值除以2 15.避雷器的直流参考电流

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 1、根据被保护线路制式,例如:单相220V、三相220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 50343-5 4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一 级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 50057-里的分流计算,计算线路所需的泄放电流强度,选择合 适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现 在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理 在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地 线连接在一起。 MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电 源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时, 电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的 电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌

一回路中电涌保护器(SPD)的配合

同一回路中电涌保护器(SPD)的配合 1 SPD配合的目的 一个系统中所有SPD及所需保护的设备的能量配合,对保护的效率具有决定性意义。[1] 配合的目的:(1)将最终的雷电威胁值减到需要保护设备的耐受程度。(2)各个SPD的额定荷载电涌能力不被超过,否则会造成SPD的损坏。(3)当SPD 之间的限制距离不足时,过电压波可能会在线路上形成反射,产生振荡电压叠加到线路上,使线路上的电压升高,反而会对被保护设备造成威胁。实施能量配合和电压配合,可以使各级SPD之间的限制电压相互协调,减少反射现象。(4)保证SPD逐级先后动作。(5)避免SPD的动作出现盲点。 2 SPD数量的确定 设备的保护需要进行防雷区的划分和雷击风险评估,根据防雷区的划分和风险评估的结果确定SPD的安装数量(具体做法可以参见文献[2])。 3 SPD的安装 3.1 SPD的选用 处于LPZ0A和LPZ1的SPD用来承受和泄放直接雷击的能量,雷击波形为 10/350μs,一般选用电压开关型SPD,称为第一级防护。第一级防护的主要作用是泄放大能量的雷电流。在LPZ0B和LPZ1这两个区域内,由雷击引发的电磁场起支配作用,一般不会发生直接雷击。在这两个区域内往往选用8/20μs波形电压开关型或限压型的较大通流量的SPD,也称为第一级防护。 在LPZ1和LPZ2内的SPD主要考虑上一级的剩余威胁值和LPZ1区内的电磁场的感应效应。一般选用8/20μs波形限压型的SPD,称为第二级防护。第二级的主要作用是泄放雷电流和限压。以后各级SPD泄放雷电流的作用逐级减弱,限压作用逐级增强。依此类推,直到将威胁值减到需要保护设备的耐受能力以下。 3.2 安装原则 根据划分的防雷区,确定各个部分空间不同的雷击电磁脉冲(LEMP)的严重程度,依此选用与各防雷区相匹配的SPD,确保雷电引起的过电压和过电流在经过各级SPD后,能够逐渐减弱,并保证SPD的自身安全。 (1)从预计雷击电磁脉冲的入侵部位到需要保护的设备,循着雷击电磁脉冲的入侵途径,SPD的残压逐级降低。 (2)所选用的各级SPD及它们与需要保护的全部电气系统组成一个完整的防御体系。 (3)之后的各级SPD只需应付LPZ0A和LPZ1交界处剩余雷电流的威胁值加上LPZ1区内电磁场产生的感应效应。 4 SPD之间的配合 4.1 电压开关型和电压开关型SPD的配合 电压开关型SPD的主要元件一般为放电间隙,退耦元件或导线的作用就是使

浪涌保护器的选型及使用

浪涌保护器的选型及使用 由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。 风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。业主对浪涌保护器的需求越来越普遍。这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规范。 应用指南 该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。该标准也说明了选择过电压保护设备的各种问题。标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。下图是评估中最重要问题的概览:

选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT 系统等)。浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。 仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。所以设计该系统时,记得连接电缆要包含火线和接地线。

SPD(避雷器、电涌保护器、浪涌保护器)的选择

低压配电系统中电涌保护器的选择及安装 [日期:2005-10-24] 来源:转引自“中国防雷商务网”作者:[字体:大中小] 近年来,随着现代化水平的不断提高,民用建筑物内安装的电子信息设备和计算机设备越来越多,电子信息设备一般工作电压较低,耐压水平也很低,极易受到雷电电磁脉冲的危害,因此设有信息系统设备的民用建筑物,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施。建立完善的雷电浪涌过电压保护措施是电气工程设计的重要组成部分,为此本文提出了在实际工程中,如何根据被保护建筑物的特点选择电涌保护器,如何根据低压电源系统的不同形式安装电涌保护器及有关的注意事项。可供工程设计人员实际应用中参考。 1.电涌(浪涌、避雷器)保护器(英文缩写为SPD,以下简称SPD)的分类 (1)开关型SPD,又称雷电流避雷器,这种SPD在没有电涌时为高阻抗,但一旦响应电压电涌时其阻抗就突变为低值,用作这种非线性装置的常见例子有放电间隙,气体放电管,闸流晶体管(可控硅)及三端双向可控硅开关。这类S PD有时称为克罗巴型SPD。 (2)限压型SPD,这种SPD在没有电涌时为高阻抗,但随着电涌电流和电压的增加其阻抗会不断减小,用作这类非线性组件的例子是压敏电阻和抑制二极管,这类SPD有时称为箝压型SPD。 (3)联合型SPD,这种SPD由电压开关型部件和限压型部件联合组装在一起,根据二者的联合参数和应用电压特性可组合装成具有电压开关﹑限压或这两种特性兼有的联合型SPD。 2.SPD的主要性能、指标 (1)最大持续运行电压Uc: 可以持续施加于电涌保护器的最大交流有效值电压或最大直流电压,等于电涌保护器的额定电压。 (2)冲击电流Iimp:

三合一防雷器技术参数说明

三合一防雷器技术参数说明 产品介绍 RESON监控系统三合一防雷器主要用于动态监控摄像机的电源、视频/音频、云台控制线路实施全方位保护,是一体化多功能电涌保护器。广泛应用于银行监控系统、小区安防系统、学校、企业、道路安全防护等监控设备。 功能特点 1、大容量:10KA,高速反应(10-12纳秒),低损耗; 2、三合一设计理念,适用于动态球形摄像机防雷保护; 3、能有效防止因电源、视频/音频、云台控制等设备间电位差瞬时增大而造成的设备损坏; 4、三级电涌保护,残压低,响应速度快,使用寿命长; 5、集成化、体积小、接线简易、安装方便。 技术指标 型号CPD-12DC/3 CPD-24DC/3 CPD-24AC/3 CPD-220AC/3 电源视频控制电源视频控制电源视频控制电源视频控制标称工作电压 Un 12V 5V 12V 24V 5V 24V 24V 5V 24V 220V 5V 24V 最大持续运行 电压Uc 15V 8V 30V 30V 8V 30V 48V 8V 30V 275V 8V 30V 标称放电电流 (8/20μS)In 5kA 最大放电电流 (8/20μS)Imax 10kA 电压保护水平 (In)Up ≤30V ≤15V ≤75V ≤60V ≤15V ≤75V 60V ≤15V ≤75V ≤900V ≤15V ≤75V 响应时间tA ≤25ns ≤10ns ≤ 25ns ≤10ns ≤25ns ≤10ns ≤25ns ≤10ns 传输速率Vs - 10Mbps - 10Mbps - 10Mbps - 10Mbps 插入损耗Ae - ≤0.2db - ≤0.2db - ≤0.2db - ≤0.2db 接口类型接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 接线 端子 BNC 接线 端子 安装接线规 格 2.5mm2 - 2.5mm2 2.5mm2 - 2.5mm2 2.5mm2 - 2.5mm2 4mm2 - 2.5mm2 温度范围-40℃ (85)

电源系统电涌保护器(SPD)选用

电源系统电涌保护器(SPD)选用(2013版) 一、主要依据 《建筑物电子信息系统防雷技术规范》GB50343-2012 《建筑物防雷设计规范》GB50057-2010 二、按建筑物电子信息系统的重要性和使用性质, 确定本单位目前的设计的建筑物 (主要为住宅)的雷电防护等级为D级。经计算当第一级浪涌保护器保护的线路长度大于100m时,需设第二级浪涌保护器,当第二级浪涌保护器保护的线路长度大于 50m时,需在被保护设备处设第三级浪涌保护器;在具有重要终端设备或精密敏感设备处,可安装第三级SPD。 三、 SPD的选用原则及主要参数 1、 第一级 SPD (主要安装在建筑物380V低压配电柜(箱)总进线处) 1.1 、 在 IPZ0A或LPZ0B区与LPZ1区交界处,在电源引入的总配电箱出应装设Ⅰ级试 验的电涌保护器。主要参数需满足以下要求: 波形 10/350μS 最大持续运行电压 Uc≥253V 电压保护水平 Up≤2.5KV 冲击电流Iimp≥12.5KA 1.2、 当进线完全在LPZ0B或雷击建筑物和雷击与建筑物相连接的电力线路或通信线上的失效风险可以忽略时,可采用Ⅱ级试验的电涌保护器。主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2.5KV 标称放电电流In≥50KA

1.3、 过电流保护器(熔断器和断路器,优先使用熔断器),选用100A 2、第二级 SPD (主要安装在动力配电柜、楼层配电箱、水泵房、中央控制室、消防、电梯机房、屋面用电设备等)。 2.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤2KV 标称放电电流In≥10KA 2.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用32A 3、第三级 SPD (主要安装在重要的终端设备或精密敏感设备处,如信息机房、办公室入室配电箱等)。 3.1、主要参数需满足以下要求: 波形8/20μS 最大持续运行电压Uc≥253V 电压保护水平Up≤1.2KV 标称放电电流In≥3KA 3.2、 过电流保护器(熔断器和断路器,优先使用熔断器),选用16A 四、产品选用要求(需在说明中注明) 选用的浪涌保护器(SPD) 须经过北京雷电防护装置测试中心或上海防雷产品测试中心的检测通过,并经过当地防雷装置主管机构的备案。

避雷器与浪涌保护器

避雷器和电涌保护器运用说明

目录 一、定义 二、防雷器与浪涌保护器的比较 三、线路避雷器运用及其说明 四、浪涌保护器设计原理、特性、运用范畴 五、参考依据与文献

一、定义 1.避雷器 避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。 2.浪涌保护器 也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

?从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。 二、避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

电涌保护器(SPD)工作原理和结构

编订:__________________ 审核:__________________ 单位:__________________ 电涌保护器(SPD)工作 原理和结构 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8242-61 电涌保护器(SPD)工作原理和结构 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 电涌保护器(SurgeprotectionDevice)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1、按工作原理分: (1).开关型:其工作原理是当没有瞬时过电压

安全防范系统雷电浪涌防护技术要求GA-T670-2006

安全防范系统雷电浪涌防护技术要求 GA/T 670-2006 中华人民共和国公安部2006-12-14发布2007-06-01实施 前言 本标准的附录A、附录B为资料性附录。 本标准由全国安全防范报警系统标准化技术委员会(SAC/TC 100)提出并归口。 本标准起草单位:广西地凯科技有限公司、全国安全防范报警系统标准化技术委员会(SAC/TC100)秘书处、广西壮族自治区公安厅技防办。 本标准主要起草人:王东生、刘希清、张凡夫、施巨岭、张跃、马宁。 1 范围 本标准规定了安全防范系统雷电防护的基本要求,着重规定了安全防范系统雷电浪涌防护的具体要求。 本标准适用于安全防范系统雷电防护的设计、实施和检验等。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本标准。 GB 18802.1—2002 低压配电系统的电涌保护器(SPD) 第1部分:性能要求和试验方法(IEC 61643-1:1998,IDT) GB 50057-1994(2000年版) 建筑物防雷设计规范 GB 50343-2004 建筑物电子信息系统防雷技术规范 GB 50348-2004 安全防范工程技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 安全防范系统security and protection system:SPS 以维护社会公共安全为目的,运用安全防范产品和其他相关产品,所构成的入侵报警系统、视频安防监控系统、出入口控制系统、防爆安全检查系统等;或由这些系统作为子系统组合或集成的电子系统或网络。 [GB 50348-2004,2.0.2] 3.2 直击雷direct lightning flash 闪击直接击在建筑物、其他物体、大地或防雷装置上,产生电效应、热效应和机械力者。 [GB 50057-1994(2000年版)附录8] 3.3 雷电感应lightning induction 闪电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。 [GB 50057-1994(2000年版)附录8] 3.4 雷电浪涌lightning surge 与雷电放电相联系的电磁辐射,所产生的电场和磁场能够耦合到电气(电子)系统中而产生破坏性的冲击电流或电压。 3.5 雷电活动区分类classification of thunder and lightning active zone

避雷器与浪涌保护器的比较

避雷器与浪涌保护器的比较 避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢? 首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。 其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。 再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。 根据分析来回答电涌保护器(SPD,有的称浪涌保护器)和避雷器的区别: 应用范围不同(电压):避雷器范围广泛,有很多电压等级,一般从0.4kV低压到500kV 超高压都有(详见楼上分析),而SPD一般指1kV以下使用的过电压保护器; 避雷针保护对象不同:避雷器是保护电气设备的,而SPD浪涌保护器一般是保护二次信号回路或给电子仪器仪表等末端供电回路。 绝缘水平或耐压水平不同:电器设备和电子设备的耐压水平不在一个数量级上,过电压保护装置的残压应与保护对象的耐压水平匹配。 安装位置不同:避雷器一般安装在一次系统上,防止雷电波的直接侵入,保护架空线路及电器设备;而SPD浪涌保护器多安装于二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;所以避雷器多安装在进线处;SPD多安装于末端出线或信号回路处。浪涌保护器1、变频控制柜必须加2、使用真空断路器的控制柜必须加3、供电系统的进线开关必须加4、其它控制柜可以不加,当然如果为了保险起见有预算空间的话可以都加上 通流容量不同:避雷器因为主要作用是防止雷电过电压,所以其相对通流容量较大;而对于电子设备,其绝缘水平远小于一般意义上的电器设备,故需要SPD对雷电过电压和操作过电压进行防护,但其通流容量一般不大。(SPD一般在末端,不会直接与架空线路连接,经过上一级的限流作用,雷电流已经被限制到较低值,这样通流容量不大的SPD完全可以起到保护作用,通流值不重要,重要的是残压。) 其它绝缘水平、对参数的着眼点等也有较大差异。避雷针浪涌保护器适用于低压供电系统的精细保护,依据不同的交直流电源电床可选择各种相应的规格。电源浪涌保护器一精细由于终端设备离前级浪涌保护器距离较大,从而使得该线路上容易产生振荡过电压或感应到其他过电压。适用于终端设备的精细电源浪涌保护,与前级浪涌保护器配合使用,则保护效果更好。避雷器主材质多为氧化锌(金属氧化物变阻器中的一种),而浪涌保护器主材质根据抗浪涌等级、分级防护(IEC61312)的不同是不一样的,而且在设计上比普通防雷器精密得多。 由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。第一级防雷器可以对于直接雷击电流进行泄放,或者当电源传输线路遭受直接雷击时传导的巨大能量进行泄放,对于有可能发生直接雷击的地方,必须进行CLASS—I的防雷。第二级防雷器是针对前级防雷器的残余电压以及区内感应雷击的防护设备,对于前级发生较大雷击能量吸收时,仍有一部分对设备或第三级防雷器而言是相当巨大的能量会传导过来,需要第

B、C、D类防雷器的作用

B、C、D类防雷器的作用: B类防雷产品在整个防雷系统中所起的根本作用在于:当发生强度很大的雷击时,使产生于供电线路上的感应雷电流,在进入总配电柜之前就迅速泄放入地。因此B类防雷产品本质上应具备的特性是高可靠性、大通流量和长寿命,可承受雷雨季节多次高强度、高能量浪涌过电压的冲击,而稳定可靠的发挥迅速大通流量泄流的作用。在泄放雷电流过程中,B 类防雷器两端所产生的残压,即使仍超过被保护设备的最高瞬态耐压值,也会被安装于设备前端的C类或D类防雷器再次泄放,从而使真正到达设备前线端的浪涌电压已经很低,完全不能对设备的正常运行造成影响,使设备受到可靠的保护。 由于B级防雷产品在泄放供电线路上高能量的雷电流时,在防雷器两端所呈现的残压仍然很高,仍可能大大超过被保护设备所能承受的再高耐压值,因此,按国际电工委员会IEC的要求,在供电线路进入分配电柜前端时,应并联安装相应型号的C类防雷器。C类防雷器的本质作用是通过再次泄流而降低线路上的残压,因此并不要求C类防雷器的通流量特别大(一般40KA)。只是由C类防雷器在整个防雷系统中所起的作用决定的,即进一步泄放线路上的浪涌电流,进一步降低真正达到设备供电端口的浪涌电压值,使之小于设备的耐压值,从而在发生雷击时,使设备遭受损坏的可能性大大减小。 D类防雷器主要用于对设备端的保护,其作用是当发生能量特别大的雷击时,感应雷电流在经过B级、C级防雷器的泄放后,其残压仍然可能高于设备的最高耐压值,重要设备的端口及内部的高精度集成电路仍有可能被烧坏。此时D类防雷器的安装就特别必要了。经过D类防雷器的泄放,设备的完全运行就更为可靠了。 电涌保护器的选型及安装要求: 一、SPD的选型原则: 1、 SPD必须能承受预期通过它们的雷电流,并具有通过电涌时的最大箝压和有熄灭工频续流的能力。 2、安装的SPD电压保护水平加上其两端引线的感应电压应低于被保护设备耐压水平的80%,同时SPD与被保护设备的连线不大于10m时,在被保护设备处可不安装SPD。反之,则应在设备前加装不小于3KA(8/200μs)的SPD。 3、在供电的电压偏差超过所规定的10%以及谐波使电压幅值加大的场所,应根据具体情况对氧化锌压敏电阻SPD的Uc值相应提高。 4、当无法获得被保护设备的耐冲击过电压值时,可参考下表给出的值。

spd浪涌保护器选型

深圳市安普迅通信技术有限公司是专业的spd浪涌保护器生产厂商,主要的防雷系列有:AX电源防雷箱,AM电源防雷模块、ASspd浪涌保护器、AR天馈浪涌保护器、AJ监控系统三合一(二合一)集成浪涌保护器、防雷插座(排插),千兆网浪涌保护器,POE以太网供电浪涌保护器,并对外提供OEM等。 交流电源spd浪涌保护器 交流电源spd浪涌保护器适用范围 ·交流电源防雷模块适用于配电室、配电柜、开关柜、交直流配电屏等系统的电源保护;·建筑物内有室外输入的配电箱、建筑物层配电箱; ·用于低压( 220/380V AC)工业电网和民用电网; ·在电力系统中,主要用于自动化机房、变电站主控制室电源屏内三相电源输入或输出端。命名规则 AM系列交流电源spd浪涌保护器的型号命名规则

保护方式 保护方式 三相 L1,L2,L3,N—PE 三相 L1,L2,L3—N,N—PE (3+1电路) 单相 L,N—PE; 单相 L—N, N—PE;(1+1电路) 代号 A B C D 产品性能参数及特点 性能特点 ·通流容量大,残压低,响应时间快; ·漏电流及变化率小; ·采用最新热脱离技术,彻底避免火灾; ·采用特殊冲击熔片,具有高可靠性; ·自带远程告警干接点,便于远程监控; ·具有工作故障指示,遥信告警功能; ·采用温控保护电路,内置热保护,短路故障自动脱离装置; · 3+1保护模式(L-N, N-PE),特别适合电网差的地区使用; ·采用标准模块化设计,安装简单,维护方便; ·核心元件采用国际知名品牌,性能优异,工作稳定可靠; ·可以实现凯文接线;结构严谨,安装方便,维护简单; ·工艺考究,能在酸、碱、尘、盐雾及潮湿等恶劣环境下长期工作。 主要技术参数 型号AM100A AM80B AM60C AM40D

浪涌保护器和避雷器的区别

浪涌保护器和避雷器的区别 1、避雷器有多个电压等级,从0.38KV低压到500KV特高压均有,而浪涌保护器一般只有低压产品; 2、避雷器多安装在一次系统上,防止雷电波的直接侵入,而浪涌保护器大多安装在二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施; 3、避雷器避雷器是保护电气设备的,而浪涌保护器大多是为保护电子仪器或仪表的; 4、避雷器由于接于电气一次系统上,要有足够的外绝缘性能,外观尺寸比较大,而浪涌保护器由于接于低压,尺寸制作的可以很小。 浪涌保护器1、变频控制柜必须加2、使用真空断路器的控制柜必须加3、供电系统的进线开关必须加4、其它控制柜可以不加,当然如果为了保险起见有预算空间的话可以都加上 浪涌保护器总体分为两类:电机保护型、电站保护型在选择时必须注意! 1.主要结构及工作原理 电涌保护器的工作原避雷器理见示意图,两个电极分别与L(或者N)和PE线相联,两个电极之间形成一个电气间隙。电网在不超过最大持续运行电压的情况下运行时,两个电极之间呈高阻状态。如果电网因雷击或者操作过电压使两个电极之间的电压超过点火电压时,间隙被击穿,通过弧光放电将过电压能量释放。冲击波过后,电弧将被由分弧片和灭弧室组成的灭弧系统熄灭,恢复到高阻状态。 图1 原理示意图 2.作用 BY系列电涌保护器采用了一种非线性特性极好的压敏电阻,在正常情况下,电涌保护器外于极高的电阻状态,漏流几乎为零,保证电源系统避雷器正常供电。当电源系统出现上述情况的过电压时,不锈钢装饰,电涌保护器立即在纳秒级的时间内迅速导通,将该过电压的幅值限止在设备的安全工作范围内。同时把该过电压的能量释放掉。随后,保护器又迅速的变为高阻状态,因而不影响电源系统的正常供电。 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类: 1.按工作原理分: (1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 (2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 (3)分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。 2.按用途分:

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

航嘉相关电涌保护器技术参数

相关电涌保护器技术参数 HJSPD140/4-550电源电涌保护器额定电压Un 380V AC 启动电压V1ma 910V 最大连续工作电压Uc 550V 放电电流In 80KA Imax 140KA 保护级别≤3.1KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:144×92×67mm HJSPD80/4-420电源电涌保护器额定电压Un 380V AC 启动电压V1ma 680V 最大连续工作电压Uc 420V 放电电流In 40KA Imax 80KA 保护级别≤2.5KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:108×90×62mm HJSPD40/4-385电源电涌保护器:额定电压Un 380V AC 启动电压V1ma 620V 最大连续工作电压Uc 385V 放电电流In 20KA Imax 40KA 保护级别≤1.6KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×72mm B级电源防雷器HJSPD80/2 额定电压Un 380V AC 启动电压V1ma 680V 最大连续工作电压Uc 420V 放电电流In 40KA Imax 80KA 保护级别≤2.5KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨

HJSPD40/2-385电源电涌保护器: 额定电压Un 230V AC 启动电压V1ma 620V 最大连续工作电压Uc 385V 放电电流In 20KA Imax 40KA 保护级别≤1.6KV 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×36mm HJSPD40/2-75电源电涌保护器: 启动电压V1ma 120V 最大连续工作电压Uc 75V 放电电流In 5KA Imax 10KA 保护级别≤280V 泄漏电流<20uA 响应时间≤25ns 安装方式:35mm标准导轨 外形尺寸:90×66×36mm HJSPDFLD230电源电涌保护器: 额定电压:230V AC 最大连续工作电压Uc:255V 放电电流:In 5KA Imax 10KA 保护级别:L-N≤1.25KV L/N-PE≤1. 5KV 额定电流:5A 响应时间:L-N≤25ns L/N-PE≤100ns 接入方式:串联 接线规格:最大2.5mm2 安装方式:35mm标准导轨 外形尺寸:90×18×63mm HJSPDFLD24电源电涌保护器: 额定电压:24V 最大连续工作电压Uc:35VDC 25V AC 放电电流:In 5KA Imax 10KA 保护级别:线/线≤50V 线/地≤600V 额定电流:5A 响应时间:线/线≤1ns 线/地≤100ns 接入方式:串联 接线规格:最大2.5mm2 安装方式:35mm标准导轨 外形尺寸:90×18×63mm

SPD浪涌保护器

SPD浪涌保护器 编辑词条 编辑摘要 摘要 浪涌保护器 浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。基本与特点 保护通流量大,残压极低,响应时间快;· 采用最新灭弧技术,彻底避免火灾;;· 采用温控保护电路,内置热保护;· 带有电源状态指示,指示浪涌保护器工作状态;· 结构严谨,工作稳定可靠。 目录 1电涌保护器SPD… 2浪涌保护器也称… 3浪涌保护器的分类 目录 1电涌保护器SPD… 2浪涌保护器也称… 3浪涌保护器的分类 收起 编辑本段电涌保护器SPD工作原理

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 浪涌保护器的基本元器件 1.放电间隙(又称保护间隙):它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管:它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频耐受电流In;冲击耐受电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻:它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。压敏电阻的使用条件有:压敏电压:UN≥[(√2×1.2)/0.7]U0(U0为工频电源额定电压)最小参考电压:Ulma≥(1.8~2)Uac (直流条件下使用)Ulma≥(2.2~2.5)Uac(在交流条件下使用,Uac为交流工作电压)压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。 4.抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优

相关文档
最新文档