页面调度算法

页面调度算法
页面调度算法

#include

#include

#include

#define null 0

#define len sizeof(struct page)

struct page

{

int num;

int tag;

struct page *next;

};

struct page *create(int n)

{

int count=1;

struct page *p1,*p2,*head;

head=p1=p2=(struct page*)malloc(len); p1->tag=-1;

p1->num=-1;

while(count

{

count++;

p1=(struct page*)malloc(len);

p1->tag=-1;

p1->num=-1;

p2->next=p1;

}

p2->next=null;

return(head);

}

void FIFO(int array[],int n)

{

int *p;

struct page *cp,*dp,*head,*New;

int count=0;

head=create(n);

p=array;

while(*p!=-1)

{

cp=dp=head;

for(;cp->num!=*p&&cp->next!=null;)

cp=cp->next;

if(cp->num==*p)

printf("!");

else

{

count++;

cp=head;

for(;cp->tag!=-1&&cp->next!=null;)

cp=cp->next;

if(cp->tag==-1)

{

cp->num=*p;

cp->tag=0;

printf("*");

}//if

else

{

New=(struct page*)malloc(len);

New->num=*p;

New->tag=0;

New->next=null;

cp->next=New;

head=head->next;

printf("%d",dp->num);

free(dp);

}//else

}//else

} //while

printf("\n缺页次数:%d\n",count);

}

void LRU(int array[],int n)

{

int count=0,*p=array;

struct page *head,*cp,*dp,*rp,*New,*endp;

head=create(n);

while(*p!=-1)

{

cp=dp=rp=endp=head;

for(;endp->next!=null;)endp=endp->next;

for(;cp->num!=*p&&cp->next!=null;)

{

rp=cp;

cp=cp->next;

}//for

if(cp->num==*p)

{

printf("!");

if(cp->next!=null)

{

if(cp!=head)

rp->next=cp->next;

else head=head->next;

}//if

endp->next=cp;

cp->next=null;

}//if

else

{

count++;

cp=rp=head;

for(;cp->tag!=-1&&cp->next!=null;)

cp=cp->next;

if(cp->tag==-1)

{

printf("*");

cp->num=*p;

cp->tag=0;

}//if

else

{

New=(struct page*)malloc(len);

New->num=*p;

New->tag=0;

New->next=null;

cp->next=New;

dp=head;

head=head->next;

printf("%d",dp->num);

free(dp);

}//else

}//else

p++;

}//while

printf("\n缺页次数:%d\n",count);

}

void OPT(int array[],int n)

{

int *p,*q,count=0,i;

struct page *head,*cp,*dp,*New;

p=array;

head=create(n);

while(*p!=-1)

{

cp=head;

for(;cp->num!=*p&&cp->next!=null;)cp=cp->next;

if(cp->num!=*p)

{

count++;

cp=head;

for(;cp->tag!=-1&&cp->next!=null;)cp=cp->next;

if(cp->tag==-1)

{

printf("*");

cp->num=*p;

cp->tag=0;

}//if

else

{

i=1;q=p;q++;cp=head;

while(*q!=-1&&i

{

for(;*q!=cp->num&&cp->next!=null;)cp=cp->next;

if(*q==cp->num)

{

cp->tag=1;

i++;

}//if

q++;

cp=head;

}//while

if(i==n)

{

for(;cp->tag!=0;) cp=cp->next;

printf("%d",cp->num);

cp->num=*p;

}//if

else

{

cp=head;

for(;cp->tag!=0;)cp=cp->next;

if(cp==head)

{

for(;cp->next!=null;)

cp=cp->next;

New=(struct page*)malloc(len);

New->num=*p;

New->tag=0;

New->next=null;

cp->next=New;

dp=head;

head=head->next;

printf("%d",dp->num);

free(dp);

}//if

else

{

printf("%d",cp->num);

cp->num=*p;

}//else

}//else

cp=head;

for(;cp->next!=null;)

{

cp->tag=0;cp=cp->next;

}//for

cp->tag=0;

}//else

} //if

else printf("!");

p++;

}//while

printf("\n缺页次数:%d\n",count); }

void main()

{

FILE *fp;

char pt;

char str[10];

int i,j=0;

int page[50],space=0;

for(i=0;i<50;i++)

page[i]=-1;

fp=fopen("page.txt","r+");

if(fp==NULL)

{

printf("Cann't open the file\n");

exit(0);

} //if

i=0;

while((pt=fgetc(fp))!=EOF)

{

if(pt>='0'&&pt<='9')

{

str[i]=pt;

i++;

space=0;

} //if

else

{

if(pt==' '||pt=='\n')

{

if(space==1)break;

else

{

str[i]='\0';

page[j]=atoi(str);

if(pt=='\n')break;

else

{

space=1;

j++;

i=0;

}//else

}//else

}//if

}//else

}//while

if(pt==EOF)

{

str[i]='\0';

page[j]=atoi(str);

}//if

i=0;

while(page[i]!=-1)

{

printf("%d",page[i]);

i++;

}//while

fclose(fp);

printf("\n");

printf("!:mean no moved \n*:mean have free space\n\n");

printf("先进先出页面置换算法:");

FIFO(page,3);

printf("\n最近最久未使用置换算法:");

LRU(page,3);

printf("\n最佳置换算法:");

OPT(page,3);

}

虚拟存储管理器的页面调度算法实现

三、虚拟存储管理器的页面调度 页面调度算法主要有:FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU),最佳算法(OPT) 1.输入: 页面流文件,其中存储的是一系列页面号(页面号用整数表示,用空格作为分隔符),用来模拟待换入的页面。 下面是一个示意: 1 2 3 4 1 2 5 1 2 3 4 5 2.处理要求: 程序运行时,首先提示“请输入页面流文件的文件名:”,输入一个文件名后,程序将读入该文件中的有关数据。 初始条件:采用三个页框,初始时均为空。 根据第二次机会算法对数据进行处理。 3.输出要求: 每换入一个页面(即:每读入一个页面号),判断是否有页面需要被换出。若有,把被换出的页面号输出到屏幕上; 若没有,则输出一个“*”号。 4.文件名约定 提交的源程序名字:sourceXXX.c或者sourceXXX.cpp(依据所用语言确定) 输入文件名字:可由用户指定 其中:XXX为账号。 5.测试说明:测试教师将事先准备好一组文件(格式为*.txt),从中为每个程序随机指定一至三个作为输入文件 (被测试者需从键盘输入指定文件的文件名),并查看程序输出结果。 6.第二次机会算法:对FIFO算法做如下简单的修改:发生替换时,先检查最老页面的R(访问)位。如果为0, 那么此页面是最早被换入的,而且近期没有被访问,可以立刻被替换掉;如果R位为1,就清除R位,并修改它的装入时间, 使它就像刚被装入的新页面一样,然后继续搜索可替换的最老页面。 我没做出来~~~~ 页面调度算法主要有:FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU),最佳算法(OPT) 这几种算法的调度都有可能在考试中碰到。 关于这一类型,大家还可以参看书本251页的实验指导。 如2001年考题: 要求: 1。实现三种算法: FIFO,最近最少使用调度算法(LRU),最近最不常用调度算法(LFU) 2。页面序列从指定的文本文件(TXT文件)中取出

课程设计报告-贪心算法:任务调度问题

数据结构课程设计报告 贪心算法:任务调度问题的设计 专业 学生姓名 班级 学 号 指导教师 完成日期

贪心算法:任务调度问题的设计 目录 1设计内容 (1) 2)输入要求 (1) 3)输出要求 (1) 2设计分析 (1) 2.1排序(将数组按照从小到大排序)的设计 (1) 2.2多个测试案例的处理方法的设计 (2) 2.3 for循环设计 (2) 2.4系统流程图 (2) 3设计实践 (2) 3.1希尔排序模块设计 (2) 3.2 多个测试案例的处理方法的模块设计 (3) 4测试方法 (4) 5程序运行效果 (4) 6设计心得 (6) 7附录 (6)

数据结构课程设计报告(2017) 贪心算法:任务调度问题的设计 1设计内容 有n项任务,要求按顺序执行,并设定第I项任务需要t[i]单位时间。如果任务完成的顺序为1,2,…,n,那么第I项任务完成的时间为c[i]=t[1]+…+t[i],平均完成时间(ACT)即为(c[1]+..+c[n])/n。本题要求找到最小的任务平均完成时间。 2)输入要求 输入数据中包含n个测试案例。每一个案例的第一行给出一个不大于2000000的整数n,接着下面一行开始列出n各非负整数t(t≤1000000000),每个数之间用空格相互隔开,以一个负数来结束输入。 3)输出要求 对每一个测试案例,打印它的最小平均完成时间,并精确到0.01。每个案例对应的输出结果都占一行。若输入某一个案例中任务数目n=0,则对应输出一个空行。 2 设计分析 这个题目属于贪心算法应用中的任务调度问题。要得到所有任务的平均完成时间,只需要将各个任务完成时间从小到大排序,任务实际完成需要的时间等于它等待的时间与自身执行需要的时间之和。这样给出的调度是按照最短作业优先进行来安排的。贪心算法通过一系列的选择来得到一个问题的解。它所做的每一个选择都是当前状态下某种意义的最好选择,即贪心选择。在许多可以用贪心算法求解的问题中一般具有两个重要的性质:贪心选择性质和最有子结构性质。所谓贪心选择性只是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到,这是贪心算法可行的第一基本要素。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所做的贪心选择最终将会得到问题的一个整体最优解。首先考察问题的一个整体最优解,并证明可修改这个最优解,使其以贪心选择开始。而且做了贪心选择后,原问题简化为一个规模更小的类似子问题。然后,用数学归纳法证明,通过每一步做贪心选择,最终可得到问题的一个整体最优解。其中,证明贪心选择后问题简化为规模更小的类似子问题的关键在于利用该问题的最优子结构性质。当一个问题的最优解包含着它的子问题最优解时,称此问题具有最优子结构性质,这个性质是该问题可用贪心算法求解的一个关键特征。 2.1排序(将数组按照从小到大排序)的设计 排序的方法有很多,如:冒泡排序、希尔排序、堆排序等,这些排序的方法都可以使用。这里采用希尔排序来实现。 它的基本思想是:先取一个小于n的整数d1作为第一个增量;这里选取n的一半作为第一个增量(increment=n》1),把数组的全部元素分成d1个组。所有距

操作系统综合实验

华北科技学院计算机学院综合性实验实验报告 课程名称《计算机操作系统》 实验学期2015 至2016 学年第一学期学生所在系部计算机系 年级2013 专业班级计科B133 学生姓名谢培旗学号201307014319 任课教师王祥仲 实验成绩

计算机学院制 华北科技学院计算机学院综合性实验报告 》课程综合性实验报告《计算机操作系统年 12 月 4 日 2015 基础二开课实验室:

页1 第 华北科技学院计算机学院综合性实验报告 (5)分析程序运行的结果,谈一下自己的认识。

四、实验结果及分析 本实验设计到三个进程调度,分别是:先来先服务调度算法,非抢占式短进程调度算法,最高响应比优先调度算法。以下为本次实验结果截图及分析: 程序运行界面截图: 先来先服务调度算法1.

页2 第 华北科技学院计算机学院综合性实验报告 分析: 当在进程调度中采用FCFS算法时,每次调度是从就绪的进程队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后,进程调度才将处理机分配给其它进程。 程序计算结果如图,设有5个进程:a、b、c、d、e在不同时间到达,按其到达时间排序则为:a->b->c->d->e,即调用先来先服务算法以后进程运行的顺序是:a->b->c->d->e。 2.非抢占式短进程调度算法 算法是以作业的长短来计算优先级,作业越短,其优先级越高。作业的长短是以作业所SJF算法可以分别用于作业调度和进程调度。在把短作业优先调度算SJF要求的运行时间来衡量的。优先将法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,它们调入内存运行。在不同时间到达,按其所需服务时间长ed、ca程序计算结果如图,设有5个进程:、b、、,即调用非抢占式短进程优先调度算法以后进程运行的顺序是:短排序则为: a->b->e->c->d 。a->b->e->c->d 页3 第

实验五-页面调度算法模拟实验报告

《计算机操作系统》实验报告 实验五:页面调度算法模拟 学校:╳╳╳ 院系:╳╳╳ 班级:╳╳╳ 姓名:╳╳╳ 学号:╳╳╳

指导教师:╳╳╳ 目录 一、实验题目 (3) 二、实验学时 (4) 三、指导老师 (4) 四、实验日期 (4) 五、实验目的 (4) 六、实验原理 (4) 6.1页面的含义 (4) 6.2 页面置换算法的含义 (4) 6.3 置换算法 (4) 6.3.1最佳置换算法(Optimal) (5) 6.3.2先进先出(FIFO)页面置换算法 (5) 6.3.3 LRU置换算法 (5) 七、实验步骤及结果 (5)

7.1 验证最佳置换算法 (5) 7.1.1 实验截图 (5) 7.1.2 实验分析 (6) 7.2 验证先进先出(FIFO)页面置换算法 (7) 7.2.1 实验截图 (7) 7.2.2 实验分析 (7) 7.3 验证LRU置换算法 (8) 7.3.1 实验截图 (8) 7.3.2 实验分析 (8) 八、报告书写人 (9) 附录一最佳置换算法(Optimal) (9) 附录二先进先出(FIFO)页面置换算法 (15) 附录三LRU置换算法 (20) 实验五:页面调度算法模拟 一、实验题目 页面调度算法模拟

二、实验学时 2学时 三、指导老师 ╳╳╳ 四、实验日期 2018年12月10日星期一 五、实验目的 (1)熟悉操作系统页面调度算法 (2)编写程序模拟先进先出、LRU等页面调度算法,体会页面调度算法原理 六、实验原理 6.1页面的含义 分页存储管理将一个进程的逻辑地址空间分成若干大小相等的片,称为页面或页。 6.2 页面置换算法的含义 在进程运行过程中,若其所要访问的页面不在内存而需把它们调入内存,但内存已无空闲空间时,为了保证该进程能正常运行,系统必须从内存中调出一页程序或数据,送磁盘的对换区中。但应将哪个页面调出,须根据一定的算法来确定。通常,把选择换出页面的算法称为页面置换算法(Page_Replacement Algorithms)。 6.3 置换算法 一个好的页面置换算法,应具有较低的页面更换频率。从理论上讲,应将那些以后不再会访问的页面换出,或将那些在较长时间内不会再访问的页面调出。

0018算法笔记——【动态规划】流水作业调度问题与Johnson法则

1、问题描述: n个作业{1,2,…,n}要在由2台机器M1和M2组成的流水线上完成加工。每个作业加工的顺序都是先在M1上加工,然后在M2上加工。M1和M2加工作业i所需的时间分别为ai和bi。流水作业调度问题要求确定这n个作业的最优加工顺序,使得从第一个作业在机器M1上开始加工,到最后一个作业在机器M2上加工完成所需的时间最少。 2、问题分析 直观上,一个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。在一般情况下,机器M2上会有机器空闲和作业积压2种情况。设全部作业的集合为N={1,2,…,n}。S是N的作业子集。在一般情况下,机器M1开始加工S中作业时,机器M2还在加工其他作业,要等时间t后才可利用。将这种情况下完成S中作业所需的最短时间记为T(S,t)。流水作业调度问题的最优值为T(N,0)。 设π是所给n个流水作业的一个最优调度,它所需的加工时间为 aπ(1)+T’。其中T’是在机器M2的等待时间为bπ(1)时,安排作业 π(2),…,π(n)所需的时间。 记S=N-{π(1)},则有T’=T(S,bπ(1))。 证明:事实上,由T的定义知T’>=T(S,bπ(1))。若T’>T(S,bπ(1)),设π’是作业集S在机器M2的等待时间为bπ(1)情况下的一个最优调度。

则π(1),π'(2),…,π'(n)是N的一个调度,且该调度所需的时间为 aπ(1)+T(S,bπ(1))

操作系统进度调度算法实验

华北科技学院计算机系综合性实验 实验报告 课程名称操作系统C 实验学期 2012 至 2013 学年第 2 学期学生所在系部计算机学院 年级 10级专业班级网络B102 学生姓名刘状学号 201007024205 任课教师杜杏菁 实验成绩 计算机系制

《操作系统C》课程综合性实验报告 开课实验室:基础六机房2013年6月3日 实验题目进程调度算法模拟 一、实验目的 通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。 二、设备与环境 1. 硬件设备:PC机一台 2. 软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java 等编程语言环境。 三、实验内容 (1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段: ?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进 入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,将 转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。 (5)分析程序运行的结果,谈一下自己的认识。

进程调度算法模拟 (操作系统课程设计报告)

福建农林大学计算机与信息学院 课程设计报告 课程名称:操作系统 实习题目:进程调度算法模拟 姓名: 系:计算机科学与技术系 专业:计算机科学与技术 年级:2012 学号: 指导教师: 职称:副教授 年月日

福建农林大学计算机与信息学院计算机类 课程设计结果评定

目录 1.本选题课程设计的目的 (4) 2.本选题课程设计的要求 (4) 3.本选题课程设计报告内容 (4) 3.1前言 (4) 3.2进程调度算法模拟的环境 (4) 3.3系统技术分析 (4) 3.4系统流程图及各模块 (5) 3.5程序调试情况 (8) 4.总结 (11) 参考文献 (11) 程序代码 (12)

1.设计目的 课程设计将课本上的理论知识和实际有机的结合起来,锻炼学生的分析系统,解决实际问题的能力。提高学生分析系统、实践编程的能力。 2.设计要求 利用学到的操作系统和编程知识,完成具有一定难度的系统分析研究或系统设计题目。其中:专题系统理论研究应包括研究目的、目标,论点和论据以及证明推导等;分析、设计系统应包括编写、调试程序以及最后写出设计报告或系统说明文档文件,系统说明文档包括系统界面、变量说明、系统功能说明、编程算法或思路、流程图和完整程序。具体要求如下: 1、对系统进行功能模块分析、控制模块分析正确; 2、系统设计要实用; 3、编程简练,可用,功能全面; 4、说明书、流程图要清楚。 3.设计方案 3.1前言 本程序包括三种算法,用C或C++语言实现,执行时在主界面选择算法(可用函数实现),进入子页面后输入进程数,(运行时间,优先数由随机函数产生),执行,显示结果。 3.2本选题设计的环境 WindowsXP下的Microsoft Visual C++ 6.0 3.3系统技术分析 (1)编程实现对N个进程采用某种进程调度算法(如动态优先权调度算法、先来先服务算法、短进程优先算法、时间片轮转调度算法)调度执行的模拟。(2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段:进程标识数ID。 进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。

算法之多机调度问题

算法之多机调度问题 用贪心法解决多机调度问题 (1)问题的描述 设有n个独立的作业{1, 2,…, n},由m台相同的机器{M1, M2,…, Mm}进行加工处理,作业i所需的处理时间为ti(1≤i≤n),每个作业均可在任何一台机器上加工处理,但不可间断、拆分。多机调度问题要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。 (2)算法设计思想 解多机调度问题的贪心策略是最长处理时间作业优先,即把处理时间最长的作业分配给最先空闲的机器,这样可以保证处理时间长的作业优先处理,从而在整体上获得尽可能短的处理时间。 (3)数据及解题过程 设7个独立作业{1, 2, 3, 4, 5, 6, 7}由3台机器{M1, M2, M3}加工处理,各作业所需的处理时间分别为{2, 14, 4, 16, 6, 5, 3}。贪心法产生的作业调度如下: (4)程序使用C++运行测试 (5)代码如下: #include #include using namespace std; //冒泡法对作业时间t降序排列,作业编号p的顺序也随t的顺序改变而改变,这点很重要! void Dsc_Order_By_t(int t[],int p[],int n) //注意:数组元素下标从1开始{ //你的代码 int i,j;

for (i=1;i<=n;i++) { for (j=1;j<=n-i;j++) { if (t[j]

高响应比调度算法

淮北师范大学 计算机学院实验设计报告 操作系统程序设计 实验报告 实验课题:高响应比调度算法 所属学院:计算机科学与技术 所属班级:11级计算机非师 姓名:李志国 辅导老师:施汉琴 2014年3月20日

目录 实验设计课题 (03) 课程设计目的 (03) 课程设计内容 (03) 课程设计要求 (04) 相关知识介绍 (05) 程序功能说明 (06) 各段程序说明 (07) 设计的流程图 (09) 程序执行截图 (11) 源程序的代码 (14) 实验小结体会 (19)

实验设计课题 设计题目:采用高响应比算法的进程调度程序 指导老师:施汉琴 课程设计目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。 ?进一步巩固和复习操作系统的基础知识。 ?培养学生结构化程序、模块化程序设计的方法和能力。 ?提高学生调试程序的技巧和软件设计的能力。 ?提高学生分析问题、解决问题以及综合利用 C 语言进行程 序设计的能力。 课程设计内容 问题分析: 在批处理系统中,短作业优先算法是一种比较好的算法,其主要的不足之处是长作业的运行得不到保证。于是我们想到了一种办法解决这个问题,就是引用动态优先权、并使作业的优先级随着等待时间的增加而以速率a提高,长作业在等待一定的时间后,必然有机会分配到处理机,这样长作业也得到了运行。由此可见:

(1)如果作业的等待时间相同,则要求服务的时间越短,其优先权越高,因此该算法有利于短作业。 (2)当要求服务的时间相同时,作业的优先权取决与其等待的时间,等待时间越长,其优先权越高,因而它实现的是先来先服务。 (3)对于长作业,作业的优先权可以随等待时间的增加而提高,当其等待时间足够长时,其优先级便可升到很高,从而也可以获得处理机。 设计内容: 设计并实现一个采用高响应比算法的进程调度演示程序,响应比 R 定义如下:RWT/T1W/T 其中 T 为该作业估计需要的执行时间,为作业在后备状态队列中的等待时 W间。每当要进行作业调度时,系统计算每个作业的响应比,选择其中 R最大者投入执行。这样,即使是长作业,随着它等待时间的增加,W/T 也就随着增加,也就有机会获得调度执行。这种算法是介于 FCFS 和 SJF 之间的一种折中算法。由于长作业也有机会投入运行,在同一时间内处理的作业数显然要少于SJF 法,从而采用 HRRN 方式时其吞吐量将小于采用 SJF 法时的吞吐量。另外,由于每次调度前要计算响应比,系统开销也要相应增加。 课程设计要求 1.每一个进程有一个PCB,其内容可以根据具体情况设定。 2.进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3.可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、 时间片长度、进程优先级的初始化 4.可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资 源与进程间的同步关系,故只有两种状态) 5.采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状 态以及相应的阻塞队列

操作系统短作业优先调度算法

课程设计 采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (13)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。 在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列

进程调度算法实验报告

进程调度算法实验报告 篇一:操作系统进程调度算法模拟实验报告 进程调度算法模拟 专业:XXXXX 学号:XXXXX 姓名:XXX 实验日期:20XX年XX月XX日 一、实验目的 通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。 二、实验要求 编写程序实现对5个进程的调度模拟,要求至少采用两种不同的调度算 法分别进行模拟调度。 三、实验方法内容 1. 算法设计思路 将每个进程抽象成一个控制块PCB, PCB用一个结构体描述。 构建一个进程调度类。将进程调度的各种算法分装在一个类中。类中存 在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。还有一个PCB实例。主要保存正在运行的进程。类中其他方法都是围绕这三个容器可以这个运行中的PCB展开。

主要用到的技术是STL中的vector以维护和保存进程容器、就绪容器、 完成容器。 当程序启动时,用户可以选择不同的调度算法。然后用户从控制台输入 各个进程的信息,这些信息保存到进程容器中。进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。判断进程容器中是否有新的进程可以加入就绪队列。 2. 算法流程图主程序的框架: ();//先来先服务 ();//最短进程优先调度//简单时间片轮转//最高优先数优先//输入进程信息 ();.m_WaitQueue.empty()||.m_ProcessQueue.empt() (); (); 进程调度过程: ; 3. 算法中用到的数据结构 struct fcfs{//先来先服务算法从这里开始char name[10];float arrivetime;float servicetime;float starttime;float finishtime;float zztime;float

实验3-页面调度算法

实验报告 院(系): 专业班级: 学号: 姓名: 实验地点: 实验日期:

课程名称实验项目名称实验学时实验类型计算机操作系统页面调度算法 2 验证型 一、实验目的及要求 通过本实验可以加深理解有关虚拟存储器的工作原理,进一步体会和了解页面替换算法的具体实现方法。 二、实验环境 PC /Windows系统/Visual C++6.0 三、实验内容 ①实现三种算法:先进先出;OPT;LRU ②页面序列从指定的文本文件(TXT文件)中取出 ③输出:第一行:每次淘汰的页面号,第二行:显示缺页的总次数 四、实验步骤 1.先进先出(FIFO)置换算法的思路 该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单,只需把一个进程已调入内存的页面,按照先后次序连接成一个队列,并设置一个替换指针,使它总指向最老的页面。 2.最近久未使用(LRU)置换算法的思路 最近久未使用置换算法的替换规则,是根据页面调入内存后的使用情况来进行决策的。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当需淘汰一个页面的时候选择现有页面中其时间值最大的进行淘汰。 3.最佳(OPT)置换算法的思路 其所选择的被淘汰的页面,将是以后不使用的,或者是在未来时间内不再被访问的页面,采用最佳算法,通常可保证获得最低的缺页率。

4、流程图如下图所示: 五、调试过程 程序结构分析: 程序共有以下九个部分: int findSpace(void);//查找是否有空闲内存 int findExist(int curpage);//查找内存中是否有该页面 开始 取一条指令 取指令中访问的页号=>L 查 页 表 页标记=1? 形成绝对地址 是“存”指令? 置L 页修改标记“1” 输出绝对地址 输出“*页号” 有后继指令? 取一条指令 结 束 J:=P[k] J 页的修改标记 输出“OUTj ” 输出“INL ” P[k]:=L k:=(k+1) mod m 修改页面 是 否 是 否 否(产生缺页中断) 是 否

求解调度问题的启发式算法(1)讲课教案

一种改进的关键工序算法 刘智勇 徐昕 江苏科技大学经济管理学院,江苏 镇江 212003 摘要:针对max ///n m p F 问题,改进了关键工序法法,该算法同时注重关键工件与关键工序,通过对关键工件与非关键工件在关键工序前后的加工时间计算、比较来获得各工件加工的先后顺序,缩短最长流程时间。并将该启发式算法与关键工序法进行了对比分析,最后利用仿真的方法来验证所提出的方法的可行性。 关键词:Flow-shop 关键工件 关键工序 启发式算法 最长流程时间 0引言 Flow-shop 调度问题(flow shop scheduling problem,FSP )是许多实际流水线生产调度问题的简化模型,它无论是在离散制造工业还是在流程工业中都具有广泛的应用,因此其研究具有重要的理论意义和工程价值。n/m/p/F max 问题是Flow-shop 调度问题中的一种特殊情况,即所有工件在各台机器上的加工顺序都相同,也称流水作业排列排序问题或同顺序排序问题。其求解方法有精确方法 [1](分支定界法、穷举法等)、智能搜索法 [2,3,4](神经网络法、遗传算法、蚁群算法等)、启发式算法[4,5,6,7](Palmer 算法、C-D-S 法、关键工序法、最小排序系数法等)等等。由于Flow-shop 调度问题一般都属于NP 难题(nondeterministic polynomial)。精确方法只能求解小规模问题,对于大规模问题几乎被认为是无效算法,智能搜索法在求解上虽比启发式算法更接近最有解,但由于设计针对具体问题的智能搜索法对于许多人来说比较困难,特别是对于实际工程人员更是如此。所以启发式算法仍是用的很多的方法。主要的启发式算法有Palmer 算法、关键工序法和最小排序系数法等。其中,关键工序法贯穿着当前先进的管理思想,能够很好的对现实情况进行解释和分析。然而关键工序法所求的可行解很可能与最优解相差甚远,鉴于此,本文对其进行了改进。 1 max ///n m p F 问题描述 max ///n m p F 问题可以描述为:有n 个工件在m 台机器上加工,各工件有完全相 同的工艺路线,每一台机器上加工工件的先后顺序也完全相同;一个工件不能同时在不同的机器上加工;每台机器同时只能加工一个工件;各工件在加工完后立即送下一道工序;工件在机器上开始加工,必须一直进行到该工序完工,中途不允许停下来插入其它工件;所有工件在0时刻已准备就绪,机器调整时间包括在加工时间内;

常用的分组调度算法

[编辑本段]常用的分组调度算法 对于调度算法有两个重要的设计参数:一个是吞吐量,另一个是公平性。调度算法是数据业务系统的一个特色,目的是充分利用信道的时变特性,得到多用户分集增益,提高系统的吞吐量。吞吐量一般用小区单位时间内传输的数据量来衡量。公平性指小区所有用户是否都获得一定的服务机会,最公平的算法是所有用户享有相同的服务机会。奸的调度算法应该兼顾吞吐量和公平性,根据算法的特点,调度算法主要可分为:轮询(Round Robin, RR)算法;最大C/I算法(MaxC/1);正比公平(Proportional Fair,PP)算法。 (1)轮询算法 在考虑公平性时,一般都把循环调度算法作为衡量的标准。这种算法循环地调用每个用户,即从调度概率上说,每个用户都以同样的概率占用服务资源(时隙、功率等)。循环调度算法每次调度时,与最大C/I算法相同,并不考虑用户以往被服务的情况,即是无记忆性方式。循环调度算法是最公平的算法,但算法的资源利用率不高,因为当某些用户的信道条件非常恶劣时也可能会得到服务,因此系统的吞吐量比较低。 图7-35给出了以时分方式使用高速下行共享信道(High Speed Downlink Share CHannel, HS-DSCH)信道的一种可能的资源分配方式。从图中可以看出,尽管UEl和UE2的信道环境不同(与基站的距离不同),但是分配了相同的信道使用时间给UEl和UE2。 (2)最大C/I算法 最大C/I算法在选择传输用户时,只选择最大载干比C/I的用户,即让信道条件最好的用户占用资源传输数据,当该用户信道变差后,再选择其他信道最好的用户。基站始终为该传输时刻信道条件最好的用户服务。 最大C/I算法获取的吞吐量是吞吐量的极限值,但在移动通信中,用户所处的位置不同,其所接收的信号强度不一样,最大C/I算法必然照顾了离基站近、信道好的用户,而其他离基站较远的用户则无法得到服务,基站的服务覆盖范围非常小。这种调度算法是最不公平的。 图7-36给出了以时分方式使用HS-DSCH信道的一种可能的资源分配方式。该图假定了服务过程中UEl的信道条件始终好于UE2。从图中可以看出,只有当信道条件较好的UEI缓冲区数据全部传输完毕,系统才调度UE2服务。

操作系统——移动臂调度算法的实现

南京工程学院 上机实验报告课程名称:操作系统 实验项目名称:移动臂调度算法的实现学生班级: 学生学号: 学生姓名: 指导教师: 实验时间: 实验地点:信息楼专业机房实验成绩评定: 2016-2017-1学期

一、实验目的及内容 掌握操作系统的设备管理功能,熟悉移动臂调度算法,设计恰当的数据结构和算法,模拟实现移动臂调度算法。要求至少模拟实现一种磁盘移臂调度算法。 二、实验相关知识简介 磁盘移臂调度的目标就是要使磁盘访问的总时间中的寻找时间最小。因此,磁盘移臂调度要尽量减少磁盘移动臂移动的距离。磁盘移臂调度算法很多,常用的也有好几种,一个好的磁盘调度算法,不仅要使磁盘寻找时间最小,同时,还要避免移动臂频繁地改变移动方向,因为频繁的改向不仅使时间增加,还容易损耗机械部件。 常用的磁盘移臂调度算法有:先来先服务、最短寻找时间优先、单向扫描、双向扫描调度算法等。 三、解决问题思路及关键程序代码分析 (一) 最短寻找时间优先调度算法简介 最短寻找时间调度算法总是使寻找时间最短的请求最先得到服务,跟请求者的请求时间先后顺序无关。这种算法具有比先来先服务更好的性能。但是该算法可能会出现请求者被“饿死”的情况,当靠近磁头的请求源源不断地到来,这会使早来的但离磁头较远的请求长时间得不到服务。 该算法的优点是可以得到较短的平均响应时间,有较好的吞吐量。该算法的缺点是缺乏公平性,对中间磁道的访问比较“照顾”,对两端磁道访问比较“疏远”,相应时间的变化幅度较大。该算法与先来先服务算法一样,都会导致移动臂频繁改向。 (二) 算法模拟 1. 对算法设计进行说明 该算法的实现中,主要是选择调度处理的磁道是与当前磁头所在磁道距离最近的磁道,以使每次的寻道时间最短。当选择了某个离当前磁头所在磁道最近的磁道,下一轮的当前磁道便改成了上一轮的最近磁道,并且把这个最近的磁道从请求序列取消,直到请求序列中不再有请求的磁道。 2. 关键代码分析 import java.io.*; import java.util.*; public class { private static int maxsize = 100; private static int Disc[] = new int[maxsize]; //请求序列 private static int count;//要访问的磁道数 private static int disc; //当前磁道号 private static int perTime;//移过每个柱面需要时间 private static int Distance=0;//总寻道长度 private static int FindTime;//查找时间 private static double AvgDistance;//平均寻道长度 public Suanfa(int disc,int count,int perTime,int Disc[]) { this.disc=disc;

负载均衡调度算法

负载调度算法 负载均衡(Load Balance),又称为负载分担,就是将负载(工作任务)进行平衡、分摊到多个操作单元上进行执行,例如Web服务器、FTP服务器、企业关键应用服务器和其它关键任务服务器等,从而共同完成工作任务。负载均衡建立在现有网络结构之上,它提供了一种廉价又有效的方法来扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。 在调度器的实现技术中,IP负载均衡技术是效率最高的。在已有的IP负载均衡技术中有通过网络地址转换(Network Address Translation)将一组服务器构成一个高性能的、高可用的虚拟服务器,称之为VS/NAT技术。在分析VS/NAT 的缺点和网络服务的非对称性的基础上,提出通过IP隧道实现虚拟服务器的方法VS/TUN,和通过直接路由实现虚拟服务器的方法VS/DR,它们可以极大地提高系统的伸缩性。 在内核中的连接调度算法上,IPVS实现了以下几种调度算法: 1 轮叫调度 1.1 轮叫调度含义 轮叫调度(Round Robin Scheduling)算法就是以轮叫的方式依次将请求调度不同的服务器,即每次调度执行i = (i + 1) mod n,并选出第i台服务器。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。 轮叫是基站为终端分配带宽的一种处理流程,这种分配可以是针对单个终端或是一组终端的。为单个终端和一组终端连接分配带宽,实际上是定义带宽请求竞争机制,这种分配不是使用一个单独的消息,而是上行链路映射消息中包含的一系列分配机制。 1.2 轮叫调度算法流程 轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。在系统实现时,我们引入了一个额外条件,即当服务器的权值为零时,表示该服务器不可用而不被调度。这样做的目的是将服务器切出服务(如屏蔽服务器故障和系统维护),同时与其他加权算法保持一致。所以,算法要作相应的改动,它的算法流程如下:假设有一组服务器S = {S0, S1, …, Sn-1},一个指示变量i表示上一次选择的服务器,W(Si)表示服务器Si的权值。变量i被初始化为n-1,其中n > 0。 j = i; do { j = (j + 1) mod n;

LRU页面调度算法实现

LRU页面调度算法实现 学院计算机科学与技术专业计算机科学与技术学号 学生姓名 指导教师姓名 2014年3月16 日

目录 1.实验要求 (2) 2.实验目的 (2) 3.实验内容 (2) 4.相关知识 (2) 5.实验原理 (3) 6.流程图 (4) 7.源代码 (5) 8.运行结果 (9) 9.实验心得 (10) 10.参考文献 (11)

LRU页调度算法实现 一实验要求: 1.不同的功能使用不同的函数实现(模块化),对每个函数的功能和调用接口要注释清 楚。对程序其它部分也进行必要的注释。 2.对系统进行功能模块分析、画出总流程图和各模块流程图。 3.用户界面要求使用方便、简洁明了、美观大方、格式统一。所有功能可以反复使用,最好使用菜单。 4.通过命令行相应选项能直接进入某个相应菜单选项的功能模块。 5.所有程序需调试通过。 二实验目的: 将课本上的理论知识和实际有机的结合起来,独立分析和解决实际问题的机会。进一步巩固和复习操作系统的基础知识。培养学生结构化程序、模块化程序设计的方法和能力。提高学生调试程序的技巧和软件设计的能力。提高学生分析问题、解决问题以及综合利用C 语言进行程序设计的能力。 三实验内容: 程序应模拟实现LRU 算法思想,对n个页面实现模拟调度。 四相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义:

虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。 请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 五.实验原理: 目前有许多页面调度算法,本实验主要涉及最近最久未使用调度算法。本实验使用页面调度算法时作如下假设,进程在创建时由操作系统为之分配一个固定数目物理页,执行过程中物理页的数目和位置不会改变。也即进程进行页面调度时只能在分到的几个物理页中进行。 LRU基本思想: LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的。 关于操作系统的内存管理,如何节省利用容量不大的内存为最多的进程提供资源,一直是研究的重要方向。而内存的虚拟存储管理,是现在最通用,最成功的方式——在内存有限的情况下,扩展一部分外存作为虚拟内存,真正的内存只存储当前运行时所用得到信息。这无疑极大地扩充了内存的功能,极大地提高了计算机的并发度。虚拟页式存储管理,则是将进程所需空间划分为多个页面,内存中只存放当前所需页面,其余页面放入外存的管理方式。 LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条指令中频繁使用。反过来说,已经很久没有使用的页面很可能在未来较长的一段时间内不会被用到。这个,就是著名的局部性原理——比内存速度还要快的cache,也是基于同样的原理运行的。因此,我们只需要在每次调换时,找到最近最少使用的那个页面调出内存。这就是LRU算法的全部内容。 实验中是用一维数组page[pSIZE]存储页面号序列,memery[mSIZE]是存储装入物理块中的页面。数组flag[10]标记页面的访问时间。每当使用页面时,刷新访问时间。发生缺页时,就从物理块中页面标记最小的一页,调出该页,换入所缺的页面。

matlab生产调度问题及其优化算法

生产调度问题及其优化算法(采用遗传算法与MATLAB编程) 信息014 孙卓明 二零零三年八月十四日

生产调度问题及其优化算法 背景及摘要 这是一个典型的Job-Shop动态排序问题。目前调度问题的理论研究成果主要集中在以Job-Shop问题为代表的基于最小化完工时间的调度问题上。一个复杂的制造系统不仅可能涉及到成千上万道车间调度工序,而且工序的变更又可能导致相当大的调度规模。解空间容量巨大,N个工件、M台机器的问题包含M ( N)! 种排列。由于问题的连环嵌套性,使得用图解方法也变得不切实际。传统的运筹学方法,即便在单目标优化的静态调度问题中也难以有效应用。 本文给出三个模型。首先通过贪婪法手工求得本问题最优解,既而通过编解码程序随机模拟优化方案得出最优解。最后采用现代进化算法中有代表性发展优势的遗传算法。文章有针对性地选取遗传算法关键环节的适宜方法,采用MATLAB 软件实现算法模拟,得出优化方案,并与计算机随机模拟结果加以比较显示出遗传算法之优化效果。对车间调度系列问题的有效解决具有一定参考和借鉴价值。 一.问题重述 某重型机械厂产品都是单件性的,其中有一车间共有A,B,C,D四种不同设备,现接受6件产品的加工任务,每件产品接受的程序在指定的设备上加工, 条件:1、每件产品必须按规定的工序加工,不得颠倒; 2、每台设备在同一时间只能担任一项任务。 (每件产品的每个工序为一个任务) 问题:做出生产安排,希望在尽可能短的时间里,完成所接受的全部任务。 要求:给出每台设备承担任务的时间表。 注:在上面,机器 A,B,C,D 即为机器 1,2,3,4,程序中以数字1,2,3,4表示,说明时则用A,B,C,D

相关文档
最新文档